N

N

Joint Tracking and Segmentation of Objects using
Graph Cuts.

Aurélie Bugeau, Patrick Pérez

» To cite this version:

Aurélie Bugeau, Patrick Pérez. Joint Tracking and Segmentation of Objects using Graph Cuts..
ACIVS’07 Proceedings of the 9th international conference on Advanced concepts for intelligent vision
systems, 2007, Netherlands. hal-00551593

HAL Id: hal-00551593
https://hal.science/hal-00551593

Submitted on 4 Jan 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00551593
https://hal.archives-ouvertes.fr

Joint Tracking and Segmentation of Objects using
Graph Cuts

Aurélie Bugeau and Patrick Pérez

IRISA/INRIA,
Campus de Beaulieu,
35 042 Rennes Cedex, France
{aurelie.bugeau,perez}@irisa.fr

Abstract. This paper presents a new method to both track and segment objects
in videos. It includes predictions and observations inside an energy function that
is minimized with graph cuts. The min-cut/max-flow algorithm provides a seg-
mentation as the global minimum of the energy function, at a modest computa-
tional cost. Simultaneously, our algorithm associates the tracked objects to the
observations during the tracking. It thus combines “detect-before-track” track-
ing algorithms and segmentation methods based on color/motion distributions
and/or temporal consistency. Results on real sequences are presented in which
the robustness to partial occlusions and to missing observations is shown.

1 Introduction

In recent and thorough review on tracking techniques [20], tracking methods are di-
vided into three categories : point tracking, silhouette tracking and kernel tracking.
These three categories can be recast as "detect-before-track” tracking, dynamic seg-
mentation and tracking based on distributions (color in particular).

The principle of "detect-before-track™ methods is to match the tracked objects with
observations provided by an independent detection module. This tracking can be done
using deterministic methods or probabilistic methods. Deterministic methods corre-
spond to matching by minimizing a distance based on certain descriptors of the object.
Probabilistic methods allow taking measurement uncertainties into account. They are
often based on a state space model of the object properties.

Dynamic segmentation corresponds to a succession of segmentations. These sil-
houette tracking methods usually make evolve an initial contour to its new position
in the current frame. This can be done using a state space model defined in terms
of shape and motion parameters of the contour [9], [16] or by the minimization of a
contour-based energy function. In latter case, the energy function includes temporal
information in the form of either the temporal gradient (optical flow)[1], [7], [13] or
appearance statistics originated from the object and the background regions in previ-
ous images [15] [19]. In [18] the authors use graph cuts to minimize such an energy
function. The advantages of min-cut/max-flow optimization are its low computational
cost, the fact that it converges to a global minimum (as opposed to local methods that
get stuck in local minima) and that ropriori on the global shape model is needed.



The last group of methods is based on kernel tracking. The best location for a
tracked object in the current frame is the one for which some feature distribetipn (
color) is the closest to the reference one. The most used method in this class is the
“mean shift” tracker [5], [6]. Graph cuts have also been used for illumination invariant
kernel tracking in [8].

These three types of tracking technigues have different advantages and limitations,
and can serve different purposes. "Detect-before-track” methods can deal with the en-
tries of new objects and the exit of existing ones. They use external observations that,
if they are of good quality, might allow robust tracking and possibly accurate segmen-
tations. Silhouette tracking has the advantage of directly providing the segmentation
of the tracked object. With the use of recent graph cuts techniques, convergence to
the global minimum is obtained for modest computational cost. Finally kernel track-
ing methods, by capturing global color distribution of a tracked object, allow robust
tracking at low cost in a wide range of color videos. In this paper, we address the prob-
lem of multiple objects tracking and segmentation by combining the advantages of the
three classes of approaches. We suppose that, at each instant, the objects of interest
are approximately known as the output of a preprocessing algorithm. Here, we use a
simple background subtraction but more complex alternative techniques could be ap-
plied. These objects are the “observations” as in Bayesian filtering. At each time the
extracted objects are propagated using their associated optical flow, which gives the
predictions. Intensity and motion distributions are computed on the objects of previous
frame. For each tracked object, an energy function is defined using the observations
and these distributions, and minimized using graph cuts. The use of graph cuts directly
gives the segmentation of the tracked object in the new frame. Our algorithm also deals
with the introduction of new objects and their associated trackers.

In section 2, an overview of the method and the notations is given. The graph
and associated energy function are then defined in section 3. Experimental results are
shown in section 4, where we demonstrate in particular the robustness of our technique
in case of partial occlusions and missing observations. We conclude in section 5.

2 Principle and Notations

Before explaining the scheme of the algorithm, the notations and definitions must be
introduced for the objects and the observations.

2.1 Notations

In all this paper;> will denote the set ofv pixels of a frame from an input sequence

of images. To each pixel of the image at time is associated a feature vectar, =

(2}, 2")), wherez ) is a3-dimensional vector in RGB color space aldf’ is a2-
dimensional optical flow vector. The optical flow is computed using Lucas and Kanade

algorithm [12] with incremental multiscale implementation.



We assume that, at timtek; objects are tracked. Th&" object at time is denoted
aso!” and is defined as a set of pixets{” c P. The pixels of a frame not belonging
to the objecd”) belong to the “background” of this object.

The goal of this paper is to perform both segmentation and tracking to get the object
0" corresponding to the object”, of previous frame. Contrary to sequential seg-
mentation techniques [10], [11], [14], we bring in object-level “observations”. They
may be of various kindse(g, boxes or masks obtained by a class specific object detec-
tor, or static motion/color detectors). Here we consider that these observations come
from a preprocessing step of background subtraction. Each observation amounts to a
connected component of the foreground map after background subtraction (figure 1).
The connected components are obtained using the "gap/mountain” method described
in [17] and ignoring small objects. For the first frame, the tracked objects are initialized
as the observations themselves. We assume that, at each theee aren, observa-
tions. Thej*" observation at timeis denoted ag1\”’ and is defined as a set of pixels,
M c P. Each observation is characterized by its mean feature:
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Fig. 1. Observations obtained with background subtraction and object isolation. (a) Reference
frame. (b) Current frame (c) Result of background subtraction and derived object detection (two
objects with red bounding boxes).

2.2 Principle of the algorithm

The principle of our algorithm is as follows. A predicticﬂj"'t[1 is made for each object

i of timet — 1. Once again, the prediction is a set of pix«ﬂé";ﬁfl C P. We denote as

d!”, the mean, over all pixels of the object at time 1, of optical flow vectors:

M
o _ Tecop, %oty
d;’, = Io(i) : 2
t—1

The prediction is obtained by translating each pixel belongir(gﬁf_q by this average
optical flow: ’ ‘ ‘
Oy ={s+d s €0} . 3)

tjt—1



Using this prediction, the new observations, as well as color and motion distributions
of 0., a graph and an associated energy function are built. The energy is minimized
using min-cut/max-flow algorithm [4], which gives the new segmented object at time

t, Of”. The minimization also provides the correspondences of the objégtwith

all the available observations. The sketch of our algorithm is presented in figure 2.
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Fig. 2. Principle of the algorithm

3 Energy function

We define one tracker for each object. To each tracker corresponds, for each frame, one
graph (figure 3) and one energy function that is minimized using the min-cut/max-flow
algorithm [4]. Details of the approach are given in the following subsections.

Result for object at time t-1 Graph for object at timet

Fig. 3. Description of the graph. The left figure is the result of the energy minimization attime

1. White nodes are labeled as object and black nodes as background. The optical flow vectors for
the object are the dashed line arrows. The right figure shows the graph atTiweobservations

are available. Thick nodes correspond to the observations. See text for explanations and details
on the edges.

3.1 Graph

The undirected grapty; = (W4, &) is defined as a set of nod®s and a set of edges
&:. The set of nodes is divided in two subsets. The first subset is the set of the



pixels of the image grid>. The second subset corresponds to the observations : to
each observation sett'” is associated a node”’. The set of nodes thus reads=
PU, ny. The set of edges is divided in two subsels: & 7 - The se€p
represents all unordered pairsr} of neighboring elements gf (thm black edges on
right part of figure 3), and, ¢, is the set of unordered pais, Y, with s € MY
(thick black edges on rlght part of figure 3).

Segmenting the objee®” amounts to assigning a Iabéj), either background,
"bg”, or object, “fg”, to each pixel node of the graph. Associating observations to
tracked objects amounts to assigning a binary label (“bg” of “fg”) to each observation
node. The set of all the node labelgi$.

3.2 Energy

An energy function is defined for each object at each time. Itis composed of unary data
termsRSi and smoothness binary terrﬁé% ;

EPD(LY) =37 RO +A > BOL(1=6(8,10D) - @)

SEVe {s,r}eé&s

Following [2], the parametex is set to 20.

Data term The data term can be decomposed into two parts. While the first one corre-
sponds to the prediction, the second corresponds to the observations. For all the other
nodes, we do not want to give aaypriori on whether the node is part of the object

or the background (labeling of these nodes will then be controlled by the influence of
neighbors via binary terms).The first part of energy in (4) reads :

RGN = >0 (s LD) +Z 2l ) 6)

SEV: SEO 11

The new object should be close in terms of motion and color to the object at pre-
vious time. The color and motion distributions of the object and the background are

then defined for previous time. The distributigii$” for color, respectively"" for
motion, is a Gaussian mixture model fitted to the set of va{ué@ 11, o respec-

tively {ziﬁ”l seod - Under independency assumption for color and motion, the final

distribution for the object is :

i,C i, M M
P (26,) = p1"9) (2 D) p{7AD (20 6)

The two distributions for the background af&”’ andq(“{’. The first one is a Gaus-

sian mixture model built on the set of valu Sfﬁfll cemo The second one is a
t—1

uniform model on all color bins. The final distribution for the background is :

i,C i,M M
0 (26) = a2 D) A @0 (7)



The likelihoodp:, which is applied to the prediction node in the energy function, can
now be defined as :

0\ (z50) if 1 ="bg” .

An observation should be used only if it corresponds to the tracked object. There-
fore, we use the same distribution far as forp;. However we do not evaluate the
likelihood of each pixel of the observation mask but only the one of its mean feature
z\”). The likelihoodp, for the observation node!”’ is defined as

(@) () () P\ @) if 1 = “fg”
P2 (D) =96 )y e ) ey
g, (zy") if L ="bg" .

('L) H [ ”
i Py~ (zs,t) if I = fg
A%an={ . (8)

9)

Binary term Following [3], the binary term between neighboring pairs of piXels}
of P is based on color gradients and has the form

12D ==l

1

] ——— 7 . 10
s, dist(s,r)e ! (10)

As in [2], the parameteFr is set to
or = 4x (2" —237)) (12)

where(.) denotes expectation over a box surrounding the object.
For edges between the gridand the observations nodes, the binary term is similar :
12(5) —=27 )12
() _ T ez
B, =¢ B . (12)
Energy minimization The final labeling of pixels is obtained by minimizing the en-
ergy defined above :

ﬁgi) = arg min Etfi)(Lf)) . (13)
Finally this labeling gives the segmentation of the objeft, defined as :
O ={seP: i) ="fg"} . (14)

)

3.3 Creation of new objects

One advantage of our method comes from the nodes corresponding to the observations.
It allows the use of observations to track and segment the objects atdisngell as to
establish the correspondence between an object currently tracked and all the candidate
objects imperfectly detected in current frame. If, after the energy minimization for an
objecti, a noden!?’ is labeled as “fg” it means that there is a correspondence between
the object and the observation. If for all the objects, an observation node is labeled as
“bg” after minimizing the energies, then the corresponding observation does not match
any objects. In this case, a new object is created and is initialized as this observation.



4 Experimental Results

In this section results that validate the algorithm are presented. The sequences used are
from the PETS 2001 data corpus (data set 1 camera 1 and dataset 3 camera 2), and the
PETS 2006 data corpus (sequence 1 camera 4). The first tests are on relatively simple
sequences. They are run on a subset of the PETS 2006 and on the PETS 2001, data set
3 sequence. Then the robustness to partial occlusions is shown on a subset of the PETS
2001, data set 1 sequence. Finally we present the handling of missing observations on
a subset of the PETS 2006 sequence. For all the results except the first one, the frames
have been cropped to show in more details the segmentation.

(@) (b)

Fig. 4. Reference frames. (a) Reference frame for the PETS 2006 sequence. (b) Reference frame
forthe PETS 2001 sequence, dataset 1. (c) Reference frame for the PETS 2001 sequence, dataset
3.

4.1 Results with observations at each time

First results (figure 5) are on part of the PETS 2006 sequence with no particular
changes. Observations are obtained by subtracting current frame with the reference
frame (frame 10) shown on figure 4(a). In the first frame of test sequence, frame num-
ber 801, two objects are initialized using the observations. The chair on the left of the
image is detected and always present in the tracking because a person was sited on it in
the reference frame. Tracking this object is not a drawback as it could be an abandoned
object. The person walking since the beginning is well tracked until it gets out of the
image. A new object is then detected and a new tracker is initialized on it from frame
878. As one can see, even if the background subtraction and associated observations
are not perfect, for example if part of the object is missing, our segmentation algorithm
recovers the entire object.

Second results are shown in figure 6. Observations are obtained by subtracting
current frame with the reference frame (frame 2200) shown on figure 4(c). Two persons
are tracked in this sequence in which the light is slowly changing. In addition to this
gradual change, the left person moves from light to shade. Still, our algorithm tracks
correctly both persons.
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Fig. 5. Results on the PETS 2006 sequence for frames 801, 820, 860, 900 (a) Result of simple

background subtraction and extracted observations (bounding boxes) (b) Masks of tracked and
segmented objects (c) Tracked objects on current frame

4.2 Results with partial occlusion

Results showing the robustness to partial occlusions are shown in figure 7. Observa-
tions are obtained by subtracting current frame with the reference frame (frame 2700)
shown on figure 4(b). Three objects are tracked in this sequence. The third one, with
green overlay, corresponds to the car shadow and is visible on the last frame shown.
Our method allows the tracking of the car as a whole even when it is partially occluded
with a lamp post.

4.3 Results with missing observations

Last result (figure 8) illustrates the capacity of the method to handle missing observa-
tions thanks to the prediction mechanism. The same part of the PETS 2006 sequence
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Fig. 6. Results with partial occlusions on the PETS 2001 sequence for frames 2260, 2328, 2358

and 2398 (a) Result of background subtraction and extracted observations (bounding boxes) (b)
Masks of tracked and segmented objects (c) Tracked objects on current frame

as in figure 5 is used. In our test we have only performed the background subtraction
on one over three frames. On figure 8, we compare the obtained segmentation with the
one of figure 5 based on observations at each frame. Thanks to prediction, the result is
only partially altered by this drastic temporal subsampling of observations. As one can
see, even if one leg is missing in frames 805 and 806, it can be recovered as soon as a
new observation is available. Conversely, this result also shows that the incorporation
of observations from a detection module enables to get better segmentations than when
using only predictions.

5 Conclusion

In this paper we have presented a new method to simultaneously segment and track
objects. Predictions and observations composed of detected objects are introduced in
an energy function which is minimized using graph cuts. The use of graph cuts permits

the segmentation of the objects at a modest computational cost. A novelty is the use



@ (b)
Fig. 7. Results with partial occlusions on the PETS 2001 sequence for frames 2481, 2496, 2511

and 2526 (a) Result of background subtraction and extracted observations (bounding boxes) (b)
Masks of tracked and segmented objects (c) Tracked objects on current frame

of observation nodes in the graph which gives better segmentations but also enables
the association of the tracked objects to the observations. The algorithm is robust to
partial occlusion, progressive illumination changes and to missing observations. The
observations used in this paper are obtained by a very simple background subtraction
based on a single reference frame. More complex background subtraction or object de-
tection could be used as well with no change to the approach. As we use distributions
of objects at previous time to minimize the energy, our method would fail in case of
very abrupt illumination changes. However by adding an external detector of abrupt



illumination changes, we could circumvent this problem by keeping only the predic-
tion and update the reference frame when an abrupt change occurs. We are currently
investigating a way to handle complete occlusions. Another research direction lies in
handling the fusion and split of several detection masks in more cluttered scenes.
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Fig. 8. Results with observations only every 3 frames on the PETS 2006 sequence for frames
801 to 807 (a) Result of background subtraction and observations (b) Masks of tracked and seg-
mented objects (c) Comparison with the masks obtained when there is no missing observations



