Joint Tracking and Segmentation of Objects using Graph Cuts.

Aurélie Bugeau 1 Patrick Pérez 1
1 VISTA - Vision spatio-temporelle et active
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : This paper presents a new method to both track and segment objects in videos. It includes predictions and observations inside an energy function that is minimized with graph cuts. The min-cut/max-flow algorithm provides a segmentation as the global minimum of the energy function, at a modest computational cost. Simultaneously, our algorithm associates the tracked objects to the observations during the tracking. It thus combines “detect-before-track” tracking algorithms and segmentation methods based on color/motion distributions and/or temporal consistency. Results on real sequences are presented in which the robustness to partial occlusions and to missing observations is shown.
Type de document :
Communication dans un congrès
ACIVS'07 Proceedings of the 9th international conference on Advanced concepts for intelligent vision systems, 2007, Netherlands
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00551593
Contributeur : Aurélie Bugeau <>
Soumis le : mardi 4 janvier 2011 - 10:35:15
Dernière modification le : vendredi 16 novembre 2018 - 01:27:55
Document(s) archivé(s) le : mardi 5 avril 2011 - 02:45:43

Fichier

paper160.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00551593, version 1

Collections

Citation

Aurélie Bugeau, Patrick Pérez. Joint Tracking and Segmentation of Objects using Graph Cuts.. ACIVS'07 Proceedings of the 9th international conference on Advanced concepts for intelligent vision systems, 2007, Netherlands. 〈hal-00551593〉

Partager

Métriques

Consultations de la notice

248

Téléchargements de fichiers

97