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The passive acoustic monitoring (PAM) is a tool of choice for non-intrusive study of aquatic organisms
in the wild. Anthropogenic disturbance may affect animal behavior and should generally be minimised.
In this study, a PAM system was used to record the bioacoustic sound produced by the valve movements
of the great scallop (Pecten maximus). The primary function of PAM system is to detect bioacoustic
emissions embedded in the background noise. Sounds produced by the great scallop are transients.
Detecting them with power based detector could lead to misses particularly when signal to noise ratio is
weak. In this paper, a click detection scheme based on higher-order statistics is applied to the monitoring
of the great scallop in its habitat. The detector is effective in tracking the sound produced by the
valve movements of the great scallop. The PAM system in association with the click detector represent
a promising tool for monitoring, with minimal anthropogenic disturbance, the behavior of minimally
mobile aquatic organisms in the wild.

1 Introduction

Passive acoustic monitoring (PAM) [1] is effective for
underwater sound surveys. It has been successfully de-
ployed in sea observatories to study the impacts of an-
thropogenic sounds on marine mammals and for the mit-
igation of mass stranding due to navy sonar or seismic
airgun impulses [2, 3, 4]. One of the major benefits of
PAM is that it provides a wide range [5] non-intrusive
and non-destructive monitoring.

Since it has been shown that biogenic marine carbon-
ate could be indicators of pollution and climate variation
[6], needs of methods for monitoring them are of grow-
ing importance. In particular, the relation between the
bivalve movement and the growth of the great scallop
(Pecten maximus) is of great interest. Anthropogenic
disturbance may affect animal behavior and should gen-
erally be minimised [7]. PAM may be an effective non-
intrusive method for monitoring bivalve movements.

Prior laboratory experiments with acoustic and
video monitoring showed that the sound production of
the scallop is composed of three types of sounds asso-
ciated with scallop valve movements that result in the
”cough”, the ”jump” and the ”swim” [8]. The ”breath
sound” (see top panel of Fig.5) induced by a single
valve adduction due to either cough or jump depend-
ing on the speed and magnitude of the adduction, the
”creak sound” (see bottom panel of Fig.5) related to a
valve abduction (creak sounds occur often just before
a breath sound) and the ”swim sound” which consists
in sequences of jumps that enable the scallop to move
away from its current location. In this paper we applied
an impulse sound dedicated PAM algorithm [9] to the
issue of the non-intrusive monitoring of the great scallop
breath sound production.

The first function of PAM is the detection of bioa-

coustic signals in a mixture of ambient marine noises and
bioacoustic productions. Detector effectiveness and de-
tection range depend on the environmental conditions,
the sea state and the hydrophone implementation. Am-
bient noise is low and stationary compared to bioacous-
tic signals in deep-sea observatories while it is loud,
widely fluctuating and subject to spikes in coastal ob-
servatories. Common implementations of a detection
function are based on the power of the signal. A sig-
nal to noise ratio (SNR) of about 14 dB is required for
reliable detection [5]. The common estimation of noise
level by signal averaging over a time interval is not ro-
bust to abrupt changes in the signal level as encountered
in stochastic noise conditions. Applying a power detec-
tor in non-stationary noise conditions will result in false
alarms and misses.

The Teager-Kaiser (TK) operator has been proposed
as an alternative to power detectors for transient sounds.
It has been shown effective in tracking clicks when ap-
plied on already isolated data segments of interest [10]
but its automated implementation suffers from false
alarms under noise-only conditions [11].

Kurtosis as well as higher order statistics have been
widely used in signal processing [12, 13, 14, 15]. In
particular, the signal kurtosis and the higher order mo-
ments are tools of choice for the detection of transients
in underwater sounds [16] the investigation of station-
arity and gaussianity of underwater noise [17]. Perfor-
mances of high order detectors are improved via pre-
filtering of the signal [18]. In the work related here,
we use a preliminary data conditioning step using an
automated processing filtering scheme prior proceeding
with click detection. The outcomes of this filtering step
are time window in the sound recordings, as well as op-
timal frequency bands focusing on targeted impulsive
sounds. The assumption made in [9] is that click trains



are embedded in stochastic but Gaussian noise. Click
detection is achieved by normal distribution tests, us-
ing the kurtosis of signal segments as a non-Gaussianity
test. Applications of the click detector on field data
show that the SNR of beaked whales clicks can be up-
grade from -4.6 dB for the raw data up to 14 dB in the
optimal frequency band [9].

In the present paper, we first recall how the click de-
tection algorithm works. The algorithm is then applied
to a synthetic signal with gaussian noise and to field
data (monitoring of the great scallop in the wild) where
the noise reveals to be non-gaussian.

2 Method

2.1 The detection theory

Let be a PAM system that gives a set of measurements
m = {m(t), t = nTs, n[0, N − 1]} with Ts = 1/fs be-
ing the sampling period and fs being the sampling fre-
quency. m(t) can either containing only noise (hypoth-
esis H0, signal absent) or noise plus bioacoustic sound
(hypothesis H1, signal present). Given the measure-
ment m and some a priori information about noise and
signal, the detection task consists of discriminating be-
tween two hypotheses H0 and H1. The detector has two
stages. The first stage applies a statistical test T on m
and the second stage computes a threshold λ. The de-
cision between which hypotheses is correct is made as
follows: {

H0 : T < λ
H1 : T > λ

(1)

If H1 is indicated by the statistical test T when a
true signal is present, it is called a correct detection.
Let Pd be the related probability. If H1 is indicated by
the statistical test T when a true signal is absent, it is
a false alarm, with Pfa as the related probability.

The choice of test T and the estimation of proba-
bility distribution functions (pdf) for m and T are de-
cided by a priori information on noise and signal. Let
F0(T ) and F1(T ) be the respective cumulative distribu-
tion functions (cdf) of T for hypotheses H0 and H1 and
let f0(T ) and f1(T ) be the pdfs of T for H0 and H1.
For a chosen Pfa level of false alarms compatible with
the function of the PAM system, λ and Pd are assessed:

λ = F−1
0 (1− Pfa) (2)

Pd = F1(λ) (3)

T is chosen so that it maximizes the contrast be-
tween H0 and H1. Our study uses the kurtosis as the
statistical test T.

2.2 Kurtosis as a statistical test T

When X be a random variable, the kurtosis is defined
as:

KX =
E[(X − E(X))4]
E[(X − E[X])2]2

(4)

where E stands for ensemble expectation. KX ∈
[1,+∞[, it is a measure of the degree of peakedness of a

distribution. Pdf of random variables with high kurto-
sis tend to have a distinct peak near the mean, decline
rather rapidly, and have fat tails. Pdfs with KX higher
than 3 are called leptokurtic and those with KX lesser
than 3 are called platykurtic. Because of the impulsive
nature of clicks, we make the assumption that click se-
quences embedded in Gaussian noise have a leptokurtic
distribution and we use kurtosis as a click detector.

Because the ensemble mean of m at time t cannot
be assessed for real-data measurements, we use an es-
timate of KX . If m is a L samples signal, under the
assumption of ergodicity and stationarity for m over N
samples around sample n0, we can define a ’sliding win-
dow’ estimate for KN

m around the index n0 ∈ [1, L− 1],
by:

KN
m =

1
n

∑n
i=1(m(i)−m)4(

1
n

∑n
i=1(m(i)−m)2

)2 (5)

with

m =
1
N

n0+N/2∑
i=n0−N/2+1

m(i) (6)

2.3 Architecture of a kurtosis based
click detector

Biological impulse sounds cover a wide range of central
frequencies (500 Hz for Right Whale gun shots, 4 kHz
for off-axis click of sperm whales and from 10 kHz to
200 kHz for other odontocetes) while underwater am-
bient noise may be loud and non-stationary. SNR has
to be high enough for good detection rate by a kurtosis
detector (higher than 6 dB in the click frequency band
[9]). Filtering of ambient noise is necessary to achieve
proper SNR levels. PAM systems running over long pe-
riods require that the detector runs automatically with-
out the need of human operators. The kurtosis based
detection scheme we use automatically selects the click
bandwidth and adapts its detection threshold to varying
background noise.

The kurtosis click detector we use takes raw digital
signal as input and gives as output time-frequency inter-
vals where the clicks sequences are and optimally filtered
waveforms of click sequences. Raw signal goes through a
series of 6 processing blocks. The first block consists of
computing a 4th order Butterworth filter bank. Given
a bandwidth [fmin; fmax], which can be set to [0;fs/2],
and a frequency step ∆f, a grid f for lower or higher
cutoff frequencies is computed:

f : {f(i) = fmin + i∆f, i ∈ {0, R}} (7)

with R such as

fmin +R∆f ≤ fmax (8)

From grid f, M = CR
2 /2 allowable bandwidths are

defined by:

B : B(u) = [f1 = f(i), f2 = f(j) (9)

with

f(i) < f(j) and u = i+R(j − 1) (10)



Figure 1: Sketch of the architecture of the automatic
detection scheme based on kurtosis.

The raw signal m(t) is passed through a filter bank B
to produce M channels u of bandpassed signals mf (u, t).
In Block 2, a sliding window estimator of kurtosis (eq.
(5)) is applied to mf (u, t) to produce KNint

mf
(u, t). Nint

(or equivalently Tint = Nint/fs the window duration) is
a parameter to set. KNint

mf
(u, t) is compared to a decision

threshold λ(u, t) in Block 4. The threshold estimation
made in Block 3 is based on the kurtosis property that
for a given set of m(t), lowest values of KNint

mf
(u, t) are

for noise only. At each t0 time and u bandwidth , Block
3 gathers a vector of L seconds kurtosis values:

vKNint
mf

(u, t0, L) = KNint
mf

(u, t), t ∈ [−L
2 + t0,

L
2 + t0]

(11)
vKNint

mf
(u, t0, L) are sorted in ascending order and

only pnoise percents of their maximum values are kept.
Let nvKNint

mf
(u, t0, L, pnoise) be this collection of sup-

posed ’noise only’ samples of kurtosis. As mentioned
in [9] nvKNint

mf
(u, t0, L, pnoise) is supposed to follow a

Gaussian distribution N (µ, σ) where µ and σ have
to be estimated from nvKNint

mf
(u, t0, L). µ and σ

cannot be estimated from nvKNint
mf

(u, t0, L) via clas-
sic expectation and standard deviation formula be-
cause nvKNint

mf
(u, t0, L, pnoise) have been chosen from

the smallest samples of the distribution. Moment es-
timation via classic formula would lead to biased es-
timation. To overcome this difficulty, we estimate
the cdf Fn(u, t0, L, pnoise) of nvKNint

mf
(u, t0, L, pnoise) in-

stead. A non-linear least square fit (using Levenberg-
Marquardt optimization scheme [20]) is applied be-
tween Fn(u, t0, L, pnoise) and the cdf of a Gaussian

random variable FG(µ, σ). Optimization is initialized
with µ and σ obtained from nvKNint

mf
(u, t0, L) via stan-

dard expectation and standard deviation formula. Let
FG(µopt, σopt) be the best fit, then given a target Pfa,
detection threshold λ(u, t0) is obtained with equation
(2). (Tint, L, pnoise) are a triplet of parameters to set
before running our detection scheme. Due to cumula-
tive effect in equation (5), one click contributes to raise
the kurtosis during Tint. If Tint is chosen too long,
the real percentage of ’noise only’ sample will be too
weak. λ(u, t0) will be overestimated and the actual Pd

will drop. On the contrary, if Tint is chosen too short the
running window estimator of kurtosis (eq. 5) may de-
viate from a Gaussian random variable (because of the
few samples taken into account). λ(u, t0) will be un-
derestimated and the actual Pfa will raise. Tint should
be close to the duration of a whole click sequence. Once
Tint is chosen, the key point to set L and pnoise is that L
seconds of kurtosis estimation should encompass pnoise

percents of ’noise only’ values.
Block 5 looks over each channel of the filter bank. If

there is no detection, hypothesis H0 is decided. If there
is detection in one or more channels H1 is decided. In
that case, the output of Block 5 is the bandwidth that
maximizes the kurtosis KNint

mf
(u, t) over u.

Block 6 is dedicated to graphical outputs and op-
timal filtering of clicks sequences. Time-frequency in-
tervals are built by grouping detected contiguous time-
frequency samples. A ’click enhanced’ composite sig-
nal is created by stacking up the time intervals filtered
in bandwidths given by Block 5. The ’click-enhanced’
composite signal can be further used for dedicated lo-
calization species or individual classification processors.

3 Results

3.1 Synthetic data

To illustrate the behavior of the detection scheme (blocs
1 to 6), we apply it to synthetic data. We build 1 minute
of a 200 kHz frequency sampled signal composed of:

• a first clicks sequence (duration = 1 second, cen-
tral frequency = 40kHz, clicks bandwidth = 20
kHz, Inter Click Interval (ICI) = 0.025 second,
magnitude =5 ) beginning at 20 seconds ,

• a second clicks sequence (duration = 1 second,
central frequency = 70kHz, clicks bandwidth = 20
kHz, ICI=0.025 second, magnitude =5 ) beginning
at 40 seconds ,

• gaussian white noise with unity standard devia-
tion.

We apply our detection scheme with the following set-
tings:

• block 1: filter bank (fmin = 10kHz, fmax = 90kHz,
∆f = 10kHz) which gives 36 channels,

• block 2 to 4: Tint = 0.3s, L = 5s, p = 0.2.

The figure 2 illustrates behavior of blocks 1 to 4.
The top-left plot shows the 36 channels filter bank: the



x-axis is for fmin and the y-axis is for fmax, the number
near each square is the channel index. The top-right
figure shows the time and the channel index where de-
tection occurs in red and the green points are for the
channel which maximize the kurtosis. The bottom-left
plot shows the log-kurtosis versus time and channel in-
dex. The bottom-right figure depicts the log-detection
threshold over time and channel index.

Figure 2: Outputs of blocks 1 to 4 applied on synthetic
data: top-left plot shows the 36 channels filter bank ,

bottom-left plot shows KNint
mf

(u, t) versus time and
channel index, the bottom-right is the log-λ(u, t0) over
time and channel index, and the top-right are the time
and channel index where detection occurs in red and
the green points are for the channels which maximize

the kurtosis.

Figures 3 and 4 are the outputs provided by block 6.
We can see that optimal bandwidths are in good agree-
ment with the 2 time-frequency components of the syn-
thetic signal: the first optimal bandwidth is [30 kHz; 50
kHz] and the second is [60 kHz; 80 kHz]. Both time lo-
cations and frequency positions are correct. The second
click sequence beginning at 40 second is well detected.
Optimal filtering increases the SNR of the click sequence
(see top-left plot of figure 4).

3.2 Field data

The detection algorithm is applied to the monitoring
of the scallop ”breath sound” in its natural environ-
ment. The figure Fig.5 displays in the top panel a
”breath sound” and a ”creak sound” in the bottom panel
recorded in a quiet and controlled tank. The breath
sound has a 500 ms duration whereas the creak sound
last only for 8 ms. Both sounds are wide band and are
composed of multiple oscillations before a main pick and
then a release. The challenge for the impulse detector is
to discriminate between both type of sounds in a noisy
environment.

A spat of scallops was installed three weeks before
the experiments in the Brest (France) harbor (latitude:
-4.51 W, longitude: 48.28 N, April 2009). The depth
was about 10 m. An autonomous acoustic recorder was
deployed over the spat. The sounds were recorded at
a sampling frequency of fs = 32768 Hz with a 16 bit

Figure 3: First output of bloc 6, top : the optimal
kurtosis versus time (black), the detection threshold

(black–) and in red the detection decision (zero if H0,
one if H1), bottom graph is the spectrogram of the
signal in gray scale and time-frequency area where

clicks are detected in red contour boxes.

Figure 4: Second output of bloc 6, in black the original
signal and in red the ’clicks enhanced’ composite

signal. Each graph represents a 2 seconds segment.

resolution. The detection scheme was applied with the
following settings on a 2 minute sound file:

• block 1 : filter bank (fmin = 100, fmax = 15 kHz,
∆f = 3 kHz), which gives 10 channels,

• block 2 to 4: Tint= 0.003 s, L = 15 s, pnoise = 0.5.

As the study animals occur in shallow water envi-
ronment, the background noise is non-stationary due to
ship noise, wave noise and weak impulse sounds pro-
duced by living organisms. Gaussianity analysis of the
underwater noise of a shalllow water harbor shows that
the noise is mainly Gaussian even though it may be
non-stationary [17]. In our experiment, a one-sample
Klomogorov-Smirnov test applied on a 1 minute sound
recording does not reveal that the sound was Gaussian.

The figure Fig.6 shows the results of the detection
scheme applied to the breath sound of the scallop. The
top plot displays in black the original signal and in red



Figure 5: Sound production of the great scallop
recorded in laboratory. Top panel: breath sound,

bottom panel: creak sound.

the ’clicks enhanced’ signal. The bottom panel shows
the spectrogram of the signal and the time-frequency
area where the kurtosis exceeds the detection threshold.
The 2 minute signal contains only one breath sound.
The algorithm is able to detect it and to discard all the
others impulse sounds (for example, creak sounds at 6 s
and 8.5 s in top panel Fig.6). In order to check for the
robustness of the algorithm, we apply the detector with
the same setting to another 2 minute sound file. In the
latter, we identify 9 breath sounds with varying SNR.
The detector is able to find 5 of the 9 breath sounds and
report 6 false alarms. The optimal bandwidths of 4 of
the 5 correct detections have lower frequency superior
or equal to 6000 Hz. The figure Fig.7 shows the mean
power spectral density (PSD) of the harbor noise and
the breath sound computed for 16 occurrences of each
type of sound. Up to 6 kHz, the recording are dominated
by the ambient noise and both curves are similar. Be-
yond 6 kHz, the PSD difference between ambient noise
and breath sound increases from 2.5 dB up to 10 dB
at 15 kHz. The optimal bandwidths are in close agree-
ment with the frequency range of the PSD excess of the
breath sound over the background noise. This result
shows that the detector is able to detect transients even
in noisy environment (the detection range is estimated
to be equal to 1 m).

4 Conclusion

A click detection scheme is applied to detect underwa-
ter bioacoustic impulsive sounds. It worked under the
assumption that clicks are embedded in Gaussian noise.
Clicks were detected if the sliding window estimate of
kurtosis in a segment of signal was higher than a de-
tection threshold. The kurtosis threshold between noise
and impulsive sounds was adaptively computed, hence
the detector was adjusted to varying noise conditions.

The architecture of the click detector based on kur-

Figure 6: Detection of the scallop breath sound in its
real habitat. Top panel: in black the original signal
and in red the ’clicks enhanced’ composite signal.

Bottom panel: spectrogram of the signal in gray scale
and time-frequency area where the breath sound is

detected in a red contour box.

Figure 7: Power spectral density in dB ref 1 µPa2/Hz
of harbor noise (black) and scallop breath (red).

tosis was recalled. The application to synthetic data
where the noise was Gaussian showed that the detec-
tion was effective and the optimal bandwidth correctly
adapted to changing central frequency of the clicks.

The click detector was then applied to field data for
the purpose of the non-intrusive monitoring of the great
scallop in its habitat. Results showed that the click de-
tector was able to detect the breath sound of the scallop
and to discriminate between the breath sound and the
creak sound. Even when the background noise was loud,
non Gaussian and non-stationary, the detector was effec-
tive in tracking breath sound optimal bandwidth. The
next step of development of the algorithm is to conduct
advanced analysis of the scallop sound and the variabil-
ity of the harbor noise in order to get more robust set-
tings.

We conclude that PAM associated with the kurtosis
based click detector represents a promising step in the
development of non-intrusive sensor for the monitoring
of minimally mobile aquatic organisms such as scallops
in the wild.
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