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Abstract. Using the recently proposed model of combinatorial landscapes: lo-
cal optima networks, we study the distribution of local optima in two classes of
instances of the quadratic assignment problem. Our results indicate that the two
problem instance classes give rise to very different configuration spaces. For the
so-called real-like class, the optima networks possess a clear modular structure,
while the networks belonging to the class of random uniform instances are less
well partitionable into clusters. We briefly discuss the consequences of the find-
ings for heuristically searching the corresponding problem spaces.

1 Introduction

We have recently introduced a model of combinatorial landscapes: Local Optima Net-
works (LON) [6, 7], which allows the use of complex network analysis techniques [2]
for studying fitness landscapes and problem difficulty in combinatorial optimization.
The model, inspired by work in the physical sciences on energy surfaces[5], is based
on the idea of compressing the information given by the whole problem configura-
tion space into a smaller mathematical object which is the graph having as vertices
the local optima and as edges the possible transitions between them. This character-
ization of landscapes as networks has brought new insights into the global structure
of the landscapes studied. Moreover, some network features have been found to corre-
late and suggest explanations for search difficulty on the studied domains. Our initial
work considered binary search spaces and the NK family of abstract landscapes [6, 7].
Recently, we have turned our attention to more realistic combinatorial spaces (permuta-
tion spaces), specifically, the Quadratic Assignment Problem (QAP) [1]. In this article,
we focus on a particular characteristic of the optima networks using the QAP, namely,
the manner in which local optima are distributed in the configuration space. Several
questions can be raised. Are they uniformly distributed, or do they cluster in some non-
homogeneous way? If the latter, what is the relation between objective function values
within and among different clusters and how easy is it to go from one cluster to another?
Knowing even approximate answers to some of these questions would be very useful to
further characterize the difficulty of a class of problems and also, potentially, to devise
new search heuristics or variation to known heuristics that take advantage of this infor-
mation. This short paper starts to address some of these questions. The sections below
summarize our methodology and preliminary results.



2 Methodology

2.1 The Quadratic Assignment Problem

The QAP is a combinatorial problem in which a set of facilities with given flows has to
be assigned to a set of locations with given distances in such a way that the sum of the
product of flows and distances is minimized. A solution to the QAP is generally written
as a permutation π of the set {1, 2, ..., n}. The cost associated with a permutation π is:
C(π) =

∑n
i=1

∑n
j=1 aijbπiπj

, where n denotes the number of facilities/locations and
A = {aij} and B = {bij} are referred to as the distance and flow matrices, respec-
tively. The structure of these two matrices characterizes the class of instances of the
QAP problem. For the statistical analysis conducted here, the two instance generators
proposed in [4] for the multi-objective QAP were adapted for the single-objective QAP.
The first generator produces uniformly random instances where all flows and distances
are integers sampled from uniform distributions. The second generator produces flow
entries that are non-uniform random values. The instances produced have the so called
“real-like” structure since they resemble the structure of QAP problems found in practi-
cal applications. For the purpose of community detection, 200 instances were produced
and analyzed with size 9 for the random uniform class, and 200 of size 11 for the real-
like instances class. Problem size 11 is the largest one for which an exhaustive sample
of the configuration space was computationally feasible in our implementation.

2.2 Local Optima Networks

In order to define the local optima network of the QAP instances, we need to provide
the definitions for the nodes and edges of the network. The vertexes of the graph can be
straightforwardly defined as the local minima of the landscape, w.r.t. the neighborhood
defined by a 2-opt swap in the permutation space. In this work, we select small QAP
instances such that it is feasible to obtain all the nodes exhaustively by running a best-
improvement hill-climbing algorithm from every configuration of the search space. The
edges account for the transition probability between basins of attraction of the local
optima. More formally, the edges reflect the total probability of going from basin bi to
basin bj , which is the average over all s ∈ bi of the transition probabilities to solutions
s
′ ∈ bj . The reader is referred to [1] for a more detailed exposition.

We define a Local Optima Network (LON) as being the graph G = (S∗, E) where the
set of vertices S∗ contains all the local optima, and there is an edge eij ∈ E with weight
wij = p(bi → bj) between two nodes i and j iff p(bi → bj) > 0. Notice that since
each maximum has its associated basin, G also describes the interconnection of basins.

The study of LONs for the QAP instances [1], showed that the networks are dense.
Indeed, they are complete or almost complete graphs, which is inconvenient for cluster
detection algorithms. Moreover, from the perspective of heuristic search algorithms,
only the most likely transitions play a role. Therefore, we opted for filtering out the
networks edges keeping the more likely transitions. In filtering, we first replace the
directed graph by an undirected one (wij =

wij+wji

2 ), and then suppress all edges that
have wij smaller than the value making the α-quantile (α = 0.05 in experiments) in the
weights distribution. Such a less dense network provides a coarser but clearer view of
the fitness landscape backbone, and can be used for minima cluster analysis.



3 Results and Discussion

Clusters or communities in networks can be loosely defined as being groups of nodes
that are strongly connected between them and poorly connected with the rest of the
graph. Community detection is a difficult task, but today several good approximate
algorithms are available [3]. Here we use two of them: (i) a method based on greedy
modularity optimization, and (ii) a spin glass ground state-based algorithm, in order
to double check the community partition results. Figure 1 shows the modularity score
(Q) distribution calculated for each algorithm/instance-class. In general, the higher the
value of Q of a partition, the crisper the community structure [3]. The plot indicates
that the two instance classes are well separated in terms of Q, and that the community
detection algorithm does not seem to have any influence on such a result.
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Fig. 1. Boxplots of the modularity score Q on the y-axis with respect to class problem (rl stands
for real-like and uni stands for random uniform) and community detection algorithm (1 stands
for fast greedy modularity optimization and 2 stands for spin glass search algorithm).

The modularity measurements (Fig. 1) indicate that real-like instances have signifi-
cantly more minima cluster structure than the class of random uniform instances of the
QAP problem. This can be appreciated visually by looking at Fig. 2 where the commu-
nity structures of the LON of two particular instances are depicted. Although these are
the two particular cases with the highest Q values of their respective classes, the trends
observed are general. For the real-like instance (Fig. 2, left) one can see that groups of
minima are rather recognizable and form well separated clusters (encircled with dotted
lines), which is also reflected in the high corresponding modularity value Q = 0.79.
Contrastingly, the right plot represents a case drawn from the class of random uniform
instances. The network has communities, with a Q = 0.53, although they are hard to
represent graphically, and thus are not shown in the picture.



Fig. 2. Community structure of the filtered LONs for two selected instances: real-like (Left);
uniform (Right). Node sizes are proportional to the corresponding basin size. Darker colors mean
better fitness. The layout has been produced with the R interface to the igraph library.

The clustering results discussed above may have deep consequences on the heuris-
tic algorithms used to search the corresponding landscapes. For example, on the ran-
dom uniform instances a simple local heuristic search, such as hill-climbing, should
be sufficient to quickly find satisfactory solutions since they are homogeneously dis-
tributed. In contrast, in the real-like case they are much more clustered in regions of the
search space. This leads to more modular optima networks and using multiple parallel
searches, or large neighborhood moves would probably be good strategies. These ideas
clearly deserve further investigation. Future work will confirm the statistical signifi-
cance of our results, consider larger instances using appropriate sampling, and explore
additional combinatorial problems.
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