On the Effect of Connectedness for Biobjective Multiple and Long Path Problems

Abstract : Recently, the property of connectedness has been claimed to give a strong motivation on the design of local search techniques for multiobjective combinatorial optimization (MOCO). Indeed, when connectedness holds, a basic Pareto local search, initialized with at least one non-dominated solution, allows to identify the efficient set exhaustively. However, this becomes quickly infeasible in practice as the number of efficient solutions typically grows exponentially with the instance size. As a consequence, we generally have to deal with a limited-size approximation, where a good sample set has to be found. In this paper, we propose the biobjective multiple and long path problems to show experimentally that, on the first problems, even if the efficient set is connected, a local search may be outperformed by a simple evolutionary algorithm in the sampling of the efficient set. At the opposite, on the second problems, a local search algorithm may successfully approximate a disconnected efficient set. Then, we argue that connectedness is not the single property to study for the design of local search heuristics for MOCO. This work opens new discussions on a proper definition of the multiobjective fitness landscape.
Type de document :
Communication dans un congrès
C.A. Coello Coello. Learning and Intelligent OptimizatioN Conference (LION 5), Jan 2011, Rome, Italy. Springer, 6683, pp.31--45, 2011
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00550353
Contributeur : Sébastien Verel <>
Soumis le : mercredi 18 juillet 2012 - 22:40:13
Dernière modification le : samedi 16 janvier 2016 - 01:09:56
Document(s) archivé(s) le : vendredi 19 octobre 2012 - 02:20:37

Fichiers

verel.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00550353, version 1
  • ARXIV : 1207.4628

Citation

Sébastien Verel, Arnaud Liefooghe, Jérémie Humeau, Laetitia Jourdan, Clarisse Dhaenens. On the Effect of Connectedness for Biobjective Multiple and Long Path Problems. C.A. Coello Coello. Learning and Intelligent OptimizatioN Conference (LION 5), Jan 2011, Rome, Italy. Springer, 6683, pp.31--45, 2011. <hal-00550353>

Partager

Métriques

Consultations de
la notice

353

Téléchargements du document

166