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Abstract

The representation of weighted distributions given by B lażej [B lażej, P., Preservation

of classes of life distributions under weighting with a general weight function. Statist.

Probab. Lett. (2008) 78, 3056-3061] is developed. New relations between weighted

distributions and classes of life distributions and stochastic orders are established.
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1 . Preliminaries

Let X and Y be two random variables, F and G their respective probability distribution

functions and f and g their respective density functions, if they exist. Denote by F = 1−F

the tail (or survival function) of F , by F −1(u) = inf {x : F (x) ≥ u}, u ∈ (0, 1), the

quantile (or reversed) function and by F −1(0) and F −1(1) the lower and upper bounds

of the support of F , respectively, for G analogously. We identify distribution functions

F and G with respective probability distributions and denote their supports by SF , SG

respectively.

We use increasing in place of nondecreasing and decreasing in place nonincreasing.

A distribution F is said to be IFR (or DFR) if log F is concave (or convex) on SF

which is an interval. A distribution F with SF = [a, b], −∞ ≤ a < b < ∞, is said to be

IRFR (increasing reversed failure rate) if log F is convex on SF . A distribution F is said

to be DRFR (decreasing reversed failure rate) if log F is concave on SF . It is well known

that each DFR distribution is DRFR and each IRFR distribution is IFR.

We deal with some stochastic orders. Recall their definitions and some properties for

completeness. Similarly to Shaked and Shanthikumar (2007) we use notation involving

random variables. However stochastic orders are relations between probability distribu-

tions.

We say that X is smaller than Y in the likelihood ratio order (X ≤lr Y ) if g(x)/f(x)

is increasing. We say that X is smaller than Y in the hazard rate order (X ≤hr Y )

if [G(x)]/[F (x)] is increasing or rF (x) ≥ rG(x) for every x if F and G are absolutely

continuous, where rF (x) = f(x)/F (x)] is the hazard rate function of F (for rG analo-

gously). We say that X is smaller than Y in the reversed hazard rate order (X ≤rh Y )

if G(x)/F (x) is increasing or r̆F (x) ≤ r̆G(x) for every x if F and G are absolutely

continuous, where r̆F (x) = f(x)/F (x) is the reversed hazard rate function of F (for r̆G

analogously). We say that X is stochastically smaller than Y (X ≤st Y ) if F (x) ≥ G(x)

for every x. We say that X is smaller than Y in the dispersive order (X ≤disp Y ) if

F −1(b) − F −1(a) ≤ G−1(b) − G−1(a) whenever 0 < a ≤ b < 1.

It is also well known that

X ≤lr Y ⇒ X ≤hr Y

⇓ ⇓

X ≤rh Y ⇒ X ≤st Y

Let w : IR → IR+ be a function for which 0 < E[w(X)] < ∞.
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Such a function is called the weight function. Then

Fw(x) =
1

E[w(X)]

∫ x

− ∞
w(u)dF (u) =

1

E[w(X)]

∫ F (x)

0

w(F −1(z))dz (1)

is a distribution function, so called the weighted distribution of X with the weight function

w. If a density f of F exists, then

fw(x) =
w(x)f(x)

E[w(X)]

is a density of Fw. If F (0) = 0 and w(x) = x, we call Fw the length-biased (or size-biased)

distribution of X and denote it simply by F̂ and f̂ for a density). Then if 0 < E(X) < ∞,

we have

F̂ (x) =
1

E(X)

∫ x

0

udF (u), x ≥ 0,

and

f̂(x) =
xf(x)

E(X)
, x ≥ 0.

Denote also by Xw and X̂ random variables with respective distributions Fw and F̂ , the

weighted version and the length-biased version of X, respectively.

We refer to Patil and Rao (1977, 1978) and to Rao (1985) for a survey of statistical

applications of weighted distributions, especially to the analysis of data relating to human

populations and ecology. Gupta and Keating (1986) obtained relations for reliability

measures of the length-biased distribution and some characterization results. Kochar and

Gupta (1987) studied properties of weighted distributions in comparison with those of the

original distributions for positive random variables and obtained bounds on the moments

of weighted distributions. Jain et al. (1989) and Nanda and Jain (1999) studied relations

of weighted distributions with classes of life distributions. Navarro et al. (2001) developed

characterizations through reliability measures from weighted distributions. Belzunce et

al. (2004) studied relations of weighted distributions with stochastic orders and classes

of distributions generated by measures of uncertainty. Bartoszewicz and Skolimowska

(2006), Misra et al. (2008) and B lażej (2008) studied preservation of stochastic orders

and classes of life distribution under weighting.

2 . Representations of weighted distributions

We start with a representations of weighted distributions given by B lażej (2008). Let w

be a weight function. From (1) we have that Fw(x) = F ∗(F (x)), where

F ∗(u) =
1

E(W )

∫ u

0

w(F −1(z))dz (2)
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is an absolutely continuous distribution function on the interval [0, 1]. Particularly, if

w is increasing left-continuous, F ∗(u) = LW (u) and if w is decreasing left-continuous,

F ∗(u) = 1 − LW (1 − u), where LW is the Lorenz curve of W , see Bartoszewicz and

Skolimowska (2006).

Using the B lażej’s result we will derive a simple relation between weighting and mono-

tone transformations.

Theorem 1. Let w : R → R+ be a weight function of the form w(x) = φ(v(x)), where v

is a strictly monotone left-continuous function. Then

Xw =st v−1(Vφ)

or equivalently

v(Xw) =st Vφ,

where V = v(X) and Vφ is the weighted version of V with the weight function φ.

Proof. (a) Suppose v is increasing. From (2) it follows, that the distribution F ∗ has a

density

f ∗(x) =
w(F −1(x))

E[w(X)]
=

φ(v(F −1(x)))

E[w(X)]
.

Denote by H the distribution function of V . It is clear that H(x) = F (v−1(x)). Let Hφ

be the weighted distribution of V with the weight function φ. Thus from (1) and (2) we

have

Hφ(x) = H∗(H(x)) = H∗(F (v−1(x))), (3)

where H∗ is an absolutely continuous distribution on [0, 1] with density

h∗(u) =
φ(H−1(u))

E[φ(V )]
=

φ(v(F −1(u))

E[w(X)]
= f ∗(u), u ∈ [0, 1],

i.e. F ∗ = H∗. Then from (3) we have

P {v−1(Vφ) ≤ x} = P {Vφ ≤ v(x)} = Hφ(v(x)) = H∗(F (x)) = F ∗(F (x)) = P {Xw ≤ x},

i.e. Xw =st v−1(Vφ).

(b) Let now v be decreasing. Then H(x) = 1 − F (v−1(x)), Hφ(x) = H∗(1 − F (v−1(x)))

and

h∗(u) =
φ(H−1(u))

E[φ(V )]
=

φ(v(F −1(1 − u)))

E[w(X)]
= f ∗(1 − u), u ∈ [0, 1].
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Therefore H∗(u) = 1 − F ∗(1 − u), u ∈ [0, 1], and now we obtain

P {v−1(Vφ) ≤ x} = P {Vφ ≥ v(x)} = 1 − Hφ(v(x) − 0) =

1 − H∗(1 − F (x)) = 1 − [1 − F ∗(1 − [1 − F (x)])] = F ∗(F (x)) = P {Xw ≤ x},

i.e. Xw =st v−1(Vφ). 2

Particularly, from Theorem 1 it follows that for the monotone left-continuous function

w and the length-biased version of W we have Xw =st w−1(Ŵ )

From the proof of Theorem 1 it follows that the B lażej’s representation is invariant

with respect to monotone transformations of X. Theorem 1 of B lażej (2008) may be

reformulated in the following way.

Theorem 2. Let w(x) = φ(v(x)) be a weight function, where v is strictly monotone

left-continuous. Let H be the distribution function of v(X) and Hφ(x) = H∗(H(x))

be the weighted distribution of V with the weight function φ, where H∗ is an absolutely

continuous distribution on [0, 1].

A. If v is increasing, then:

(a) X ≤lr Xw, (Xw ≤lr X) iff H∗ is convex (concave) on [0, 1];

(b) X ≤hr Xw, (Xw ≤hr X) iff 1 − H∗(1 − u) is anti-star shaped (star shaped) on [0, 1];

(c) X ≤rh Xw, (Xw ≤rh X) iff H∗ is star shaped (anti-star shaped) on [0, 1];

(b) X ≤st Xw, (Xw ≤st X) iff H∗(u) ≤ u (H∗(u) ≥ u) on [0, 1].

B. If v is decreasing, then:

(a) X ≤lr Xw, (Xw ≤lr X) iff 1 − H∗(1 − u) is convex (concave) on [0, 1];

(b) X ≤hr Xw, (Xw ≤hr X) iff H∗ is anti-star shaped (star shaped) on [0, 1];

(c) X ≤rh Xw, (Xw ≤rh X) iff 1 − H∗(1 − u) is star shaped (anti-star shaped) on [0, 1];

(b) X ≤st Xw, (Xw ≤st X) iff H∗(u) ≥ u (H∗(u) ≤ u) on [0, 1].

3 . Applications of the result

We will apply Theorem 1 for proving some properties of stochastic order relations between

weighted distributions and classes of life distributions.
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3.1. Dispersive ordering of weighted distributions

Bartoszewicz and Skolimowska (2006) and Misra et al (2008) studied preservation of the

dispersive order under weighting. We may apply Theorem 1 to obtain a new result. First

we give the following useful lemmas.

Lemma 1. (Bartoszewicz, 1985, Bagai and Kochar, 1986) Let X and Y be two nonnegative

random variables.

(a) If X ≤hr Y and F or G is DFR, then X ≤disp Y .

(b) If X ≤disp Y and F or G is IFR, then X ≤hr Y .

Lemma 2. (Bartoszewicz and Skolimowska, 2006) Let F and G be absolutely continuous.

If X ≤rh Y and r̆G(x)/r̆F (x) is increasing, then Xw ≤lr Yw and hence Xw ≤rh Yw and

Xw ≤hr Yw.

Lemma 3. If a random variable X has an IRFR distribution and v is a decreasing convex

function on SF , then the distribution of v(X) is DFR.

Proof. We have H(x) = P {v(X) ≤ x} = P {X ≥ v−1(x)) = 1 − F (v−1(x)). Then

ln[1 − H(x)] = ln F (v−1(x)) is convex as a composition of two monotone convex functions,

i.e. H is DFR. 2

Lemma 4. (Misra et al. 2008) If F is DFR and the weight function w is increasing and

log-convex on SF , then Fw is DFR.

Theorem 3. Let F and G be absolutely continuous, F be DFR and G be IRFR. Let

w be a weight function being of the form w(x) = φ(v(x)), where v is positive decreasing

log-convex on A = SF ∪ SG and φ is positive increasing log-convex on the set v(A). If

X ≤disp Y , then Xw ≤disp Yw.

Proof. It is well known that if G is IRFR then it is IFR. Since X ≤disp Y and G is

IFR, then by Lemma 1(b) we have X ≤hr Y and then v(Y ) ≤rh v(X) (see Shaked and

Shanthikumar, 2007, Theorem 1.C.8). Denote by F v and Gv distribution functions of

v(X) and v(Y ) respectively. Easy calculations show that

r̆F v(x)

r̆Gv(x)
=

rF (v−1(x))

rG(v−1(x))

and it is increasing. Therefore from Lemma 2 we have

[v(Y )]φ ≤hr [v(X)]φ, (4)

where [v(X)]φ is the weighted version of [v(X)] with the weight function φ, for [v(Y )]φ

similarly. Since v is log-convex decreasing, it is also convex decreasing, and then by

6
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Lemma 3 it follows that v(Y ) has a DFR distribution and next from Lemma 4, [v(Y )]φ

has also a DFR distribution. Therefore from Lemma 1(a) and (4) we obtain

[v(Y )]φ ≤disp [v(X)]φ.

Since (4) implies [v(Y )]φ ≤st [v(X)]φ, and v−1 is decreasing convex, then from Theorem

3.B.10(b) of Shaked and Shanthikumar (2007) we obtain

v−1([v(X)]φ) ≤disp v−1([v(Y )]φ),

which is equivalent to Xw ≤disp Yw by Theorem 1. 2

3.2. A property of the gamma distribution

It is easy to prove the following facts: if the distribution F of X is IFR (DFR) and v is an

increasing concave (convex) function on SF , then v(X) has an IFR (DFR) distribution.

Therefore it follows: if a random variable Z has the gamma distribution with shape

parameter p ≥ 1 and α ∈ (0, 1], then the distribution of Zα is IFR and if Z has the

gamma distribution with with shape parameter p ∈ (0, 1] and α ∈ [1, ∞), then the

distribution of Zα is DFR.

We will apply Theorem 1 for proving distribution results for powers of gamma random

variables. The following lemma will be useful.

Lemma 5. (Bartoszewicz and Skolimowska, 2006) Let F be absolutely continuous and w

be a monotone left continuous function weight function.

(a) If w(x) is increasing and w(x)rF (x) is decreasing, then Fw is DFR.

(b) If w(x) is decreasing and w(x)rF (x) is increasing, then Fw is IFR.

(c) If w(x) is increasing and w(x)r̆F (x) is decreasing, then Fw is DRFR.

(d) If w(x)rF (x) is decreasing, then Fw is DRFR.

Theorem 4. Let Z be a random variable with the gamma distribution with shape param-

eter p > 0 and scale parameter 1.

(a) If 0 < α ≤ 1 and 0 ≤ α(p − 1) ≤ 1 − α, then the distribution of Z1/α is DFR.

(b) If 1 ≤ α < ∞ and 1 ≤ αp ≤ α, then the distribution of Z1/α is IFR.

(c) If α(p − 1) < 0 < α, then the distribution of Z1/α is DRFR.

(d) If α(p − 1) < 0 < α, then the distribution of Z−1/α is DRFR.

Proof. Let X have the exponential distribution with mean 1. Let v(x) = x1/α, α > 0.

It is well known that V = v(X) has the Weibull distribution H(x) = 1 − e−xα
, x > 0, with

7
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the failure rate function rH(x) = αxα−1, which is decreasing for 0 < α ≤ 1 and increasing

for α ≥ 1.

Let φ(v) = vα(p−1). Thus w(x) = φ(v(x)) = xp−1 and it is easily seen that Xw =st Z. If

0 < α ≤ 1 and 0 ≤ α(p − 1) ≤ 1 − α, then φ(x) is increasing and φ(x)rH(x) is decreasing

and hence from Lemma 5(a) (applied to H and φ), Vφ has a DFR distribution. Applying

Theorem 1 we obtain Theorem 4(a).

The proofs of theorems (b) and (c) are similar. In the case (b), φ(x) is decreasing but

φ(x)rH(x) is increasing and the result follows from Lemma 5(b) and Theorem 1. In the

case (c), φ(x)rH(x) is decreasing and the result follows from Lemma 5(d) and Theorem 1.

Let now v(x) = x−1/α, α > 0. Then V = v(X) has the type II extreme value

distribution (see Pal et al., 2006) with density

h(x) = αx−(α+1) exp(−x−α) x > 0,

and the reversed failure rate r̆G(x) = αx−(α+1), which is decreasing for α > 0. Let now

φ(v) = vα(1−p) and then w(x) = xp−1, which implies that Xw =st Z also. Otherwise

φ(x)r̆G(x) = αx−(αp+1) is decreasing and Theorem 3(d) follows from Lemma 5(c) and

Theorem 1. 2

Remark. If we take, for example, α = 1/2 and p = 3/2, we have from Theorem 4(a)

that an increasing convex transformation of an IFR random variable may have a DFR

distribution. Similarly, if we take α = 2 and p = 1/2, we obtain from Theorem 4(b) that

a concave transformation of a DFR random variable may be IFR distributed. Thus the

reversed statements to those at the beginning of this subsection are not true.
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