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Abstract

Assessing the mechanical properties of materials at intermediate strain rates (1-

200/s) is one of the major concerns in impact engineering. Servo-hydraulic machines

are usually used at this range of strain rates. However, detrimental oscillations

appear on the measured load for strain rates above 10/s. In this paper, we present

a modified servo-hydraulic machine. The load is measured by a Hopkinson bar-like

technique. Besides, the BCGO wave separation method is used to overcome the

limited test duration problem. Moreover, the strain in the sample is measured using

Digital Speckle Photographs (DSP) which are captured via high-speed video camera.

This modified machine is an equivalent and alternative solution to the slow bar

technique. It is applied to aluminium 2017 T4 alloy at strain-rates of approximately

100/s. Compared to the piezoelectric force sensor, the Hopkinson bar-like method

gives less-oscillating signals. The sample attaching device is also taken into account.

It is considered as a rigid mass. This simple assumption is valid up to strain-rates
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of some hundreds per second.

Key words: Intermediate strain rate, wave separation, Servo-hydraulic machine,

Hopkinson bar, Aluminium.

PACS:

1 Introduction

In several engineering applications, such as crashworthiness, anti-seismic pro-

tection [1] and dynamic forming processes [2], materials may be subject to in-

termediate strain rates (1-200/s). The choice of material constitutive equations

and the identification of the model parameters depend on the measurement

of mechanical properties at these strain rates. However, no reliable technique

exists at this range of strain rates.

Conventional quasi-static machines are valid up to strain rates of 0.1/s. Split

Hopkinson bar (SHB) method is applied to tests at strain rates ranging from

200 to 5000/s. Servo-hydraulic machines have been regarded as a solution to

characterisation of materials at intermediate strain rates. Nevertheless, mea-

surements are distorted by the inertia and elastic response of the experimental

set-up. The measured load exhibits some oscillations which are due to the natu-

ral frequencies of the experimental structure [2]. Consequently, servo-hydraulic

machines give reliable measurements only at strain rates lower than 10/s [3].

Alternatively to servo-hydraulic machines, dropweight towers can be used to

generate data at intermediate strain-rates [4–9]. However, the load is measured

Email address: ramzi.othman@ec-nantes.fr (Ramzi Othman).
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with a piezoelectric force sensor [3] as in servo-hydraulic machines. Unless

special care is paid to the design of the load cell or to the processing of load

cell signals, large oscillations appear [1,10]. These oscillations may be large

enough to obscure the real force applied to the specimen [3]. Therefore, drop-

weight towers are generally applied to the measurement of the crash response

of structures [10,11].

The elastic response of the experimental set-up is one of the major problems

in dynamic tests. The main asset of the SHB technique is the simplicity of

the experimental set-up: two (visco-)elastic bars. Therefore, the (visco-)elastic

response is simply and finely taken into account. The SHB is limited to high

strain rates, on account of the limited test duration. Assuming that the sam-

ple is deformed at a constant strain rate ε̇, the maximum recorded strain is

therefore εmax = ε̇Δt, where Δt is the test duration. For conventional SHB the

test duration is rarely above 500μs. Hence, at a mean strain rate of 100/s, the

maximum measured strain is 5%. This leads many authors [12–25] to develop

wave separation techniques which increase the test duration.

A second problem is also encountered in intermediate strain rate tests with

SHB. Indeed, low impact velocities of the striker are needed. This yields low

kinetic energy in the striker which is not sufficient to induce large strains in

the sample. Thus, an alternative loading technique is required. A hydraulic

jack is proposed in [15,26–28]. It applies a continuous load during the test

duration. Alternatively, LeBlanc & Lassila [3] proposed a hybrid technique

which combines the loading capabilities of a servo-hydraulic machine and the

measurement technique of a Hopkinson bar. The assets of this method are:

(i) continuous loading during the test which supplies the sufficient energy to

induce important strain in the sample at intermediate strain rates and (ii)
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a reliable force and consequently stress measurement. However, in this work,

only one gauge station is used on the bar (regarded as an output bar in a SHB

technique). The gauge station is not far from the sample-bar interface. There-

fore, the test duration is approximately twice the duration of a conventional

SHB, i.e., no more than 1ms, that is not enough yet.

To maximize the test duration, Quirion & Lesaffre [29] proposed the appli-

cation of a wave separation technique to servo-hydraulic machines. They in-

strumented the anvil with two gauges stations. They recovered the force using

the wave separation technique developed in [12,13]. However, two problems

were not considered. The first one is that the Lundberg-Henchoz-Yanagihara

method [12,13] neglects wave dispersion. The anvil has a diameter of 22mm.

Consequently, geometry effects on wave dispersion are important and can not

be neglected. Thus, an alternative wave separation technique, which takes

into account wave dispersion, should have been used. The second problem is

relative to the strain measurements. The gauge stations are cemented approx-

imately 30mm from the anvil ends which was only 1.36 times the diameter.

Thus, the assumption of one-dimensional propagation of waves was not valid.

Indeed, it is usually recommended to record strain at distances above 10 times

the diameter.

In this paper, the hybrid technique of LeBlanc and Lassila [3] is improved by

using a wave separation technique. Consequently, the test duration is highly

increased. Instead of wave separation techniques one can use an inverse ap-

proach as proposed in [2,30]. Nevertheless, this approach has some drawbacks:

(i) it needs a parametric formulation of the recovered load; (ii) it is time

consuming compared to wave separation techniques; (iii) it is based on an op-

timisation problem which could yield a local minimum and not a global one.
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Hence, the obtained solution has not usually a physical sense because of (i)

and (iii).

This paper aims at applying a long duration Hopkinson bar method to servo-

hydraulic machines. Therefore, a wave separation method is needed. In the

following section, a critical review of wave separation techniques is presented.

The objective of this section is to figure out the best method. In the section

3, we describe, how the selected method, can be applied to servo-hydraulic

machines. The fourth section, gives results obtained with this new technique

on aluminium 2017 T4 alloy. Less-oscillating load measurements are obtained.

Furthermore, the test duration restraint is subdued.

2 Critical review of wave separation techniques

Let us consider a straight uniform visco-elastic bar. We denote

ε̃(x, ω), Ṽ (x, ω) and Ñ(x, ω) the Fourier transforms of the strain ε(x, t),

the particle velocity V (x, t) and the force N(x, t), respectively, at any

cross-section x. Assuming a one-dimensional wave propagation and

taking into account the 3D geometric effects on the wave dispersion,

these Fourier transforms are given by:

ε̃(x, ω) = F (ω)e−iξ(ω)x +D(ω)eiξ(ω)x (1)

Ṽ (x, ω) =
ω

ξ(ω)

(
−F (ω)e−iξ(ω)x +D(ω)eiξ(ω)x

)
(2)

Ñ(x, ω) = E(ω)A
(
F (ω)e−iξ(ω)x +D(ω)eiξ(ω)x

)
(3)

where x, A, E(ω), ξ(ω), F (ω) and D(ω) are the position of the consid-

ered cross-section, the cross-sectional area of the bar, the complex
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Young’s modulus, the wave dispersion relation, the forward wave

and the downward wave, respectively.

Eqs. (1-3) mean that the force and the particle velocity can be recov-

ered at any cross-section of the bar if the four following frequency-

dependent functions are known: E(ω), ξ(ω), F (ω) and D(ω). Fortu-

nately, the two former functions are characteristics of the bar and

have to be determined just once. Furthermore, the two waves F (ω)

and D(ω) can be recovered from a reduced number of measurements

on the bar. Two equations should be sufficient to do so, since we

have only two unknown functions: F (ω) and D(ω). Therefore, the

strain is measured at two different cross-sections, say x1 and x2.

Two equations can be derived from Eq. (1):

ε̃1(ω) = ε̃(x1, ω) = F (ω)e
−iξ(ω)x1 +D(ω)eiξ(ω)x1 , (4)

ε̃2(ω) = ε̃(x2, ω) = F (ω)e
−iξ(ω)x2 +D(ω)eiξ(ω)x2 , (5)

where ε̃1(ω) and ε̃2(ω) are the Fourier transforms of the measured

strain at the two cross-sections. If these two equations are indepen-

dent, we can simply calculate the two waves, as suggested in [15].

Unfortunately, the determinant of Eqs. (4-5) could be equal to zero

(for elastic bars) or nearly be equal to zero (for viscoelastic bars).

In the case of elastic bars, the determinant of Eqs. (4-5) equals zero

for a set of resonant frequencies defined by

Ωe = {ωn; ξ(ωn)(x2 − x1) = nπ, ∀n ∈ IN} . (6)

In the case of a viscoelastic bar, the set of resonant frequencies is theoretically
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reduced to Ωv = {0}. However, the denominator has a low value for all the

other frequencies in Ωe.

Using the one-dimensional wave equation for rods, Lundberg & Henchoz [12]

and Yanagihara [13] developed independently a time domain solution. The

main limitation of this method is that it does not take into account wave

dispersion effects. Therefore, it is limited to slender elastic bars. Zhao

and Gary [14,15] proposed a method which takes into account wave

dispersion. It uses also two strain measurements. In this method,

each measured strain is split into time intervals to operate suc-

cessive shifting. The length of each interval is equal to twice the

time needed by the wave to go from one gauge to the other. This

time depends on the wave velocity which is frequency-dependent.

Therefore, the interval length should depend on frequency. However,

in the Zhao and Gary works [14,15], this time is inevitably taken

frequency independent. As the method is iterative, errors will cu-

mulate. Consequently, its validity is limited to approximately some

hundreds of iterations. The test duration is considerably increased

(it can reach 200ms) but still limited.

The solutions presented in [12–15] did not thoroughly take into account wave

dispersion. Hence, Bacon [16] suggested the use of a hybrid method to subdue

this problem. The wave separation was performed in the frequency and time

domain. Since the problem with Eqs. (4-5) concerns only the frequencies that

are in Ωe, Bacon applied these two equations to the frequencies ω /∈ Ωe. For

the resonant frequencies (ωn ∈ Ωe), he used a time solution which is equivalent

to the solution presented in [12,13]. Thus, this method overcomes the problem

with resonant frequencies and includes wave dispersion effects. In line with
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this work, Zhao & Lok [21] deal separately with the resonant frequencies.

On one hand, they used also Eqs. (4-5) outside Ωe. On the other hand, the

frequencies ωn ∈ Ωe, F (ωn) and D(ωn) are undefined fractions of type 0/0.

Hence, F (ωn) and D(ωn) are calculated using the Hopital’s rule. The method

presented in [16] recovers the two elementary waves in the resonant frequencies

by an iterative method. Therefore, it is time consuming. On the contrary, the

method proposed in [21] is a direct frequency method. Nevertheless, it uses

numerical differentiation of measured signals. This amplifies errors mainly at

high frequencies. The maximum test duration presented in [16] is 6ms and in

[21] is 2ms. To solve the problem of dependency in Eqs. (4-5), Bussac et al.

[19,20] proposed the integration of Fourier transforms in the lower half-plane

of the frequency complex space (=(ω) ≺ 0). This numerical tool is possible

because the Fourier transforms of the measured strains ε̃1(ω) and ε̃2(ω) are

analytical bounded functions in the lower frequency half-plane. Moreover,

the wave dispersion relation is assumed to be an analytical function in the

same half-plane and maps this half-plane to itself.

The wave separation methods presented in [16,22] and the first method pre-

sented in [20] use only two strain measurements. This would be enough if the

measured strains were perfectly free from noise, which is impossible in actual

experimental situations. Besides, these methods, as deconvolution techniques,

are an ill-posed problem. Consequently, initial noise is amplified when re-

building the force and the particle velocity [18]. It was concluded in [18]

that initial noise is highly amplified by the recovering process in the

neighbourhood of the resonant frequencies. It was then suggested in

[19,20,24] the use of redundant measurements. Jacquelin & Hamelin

[24] presented a 3-strain method. It assumes a particular relation
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between the strain gauge positions. Bussac et al. [19,20] proposed

the analysis of the measured strains, and eventually velocities, by

the maximum of likelihood method. They assumed that the exper-

imental noises are white, Gaussian and two-by-two independent.

This method, called also BCGO method, is shown to be the most

insensitive to noise in [24].

Alternatively to the redundant measurements techniques, Casem et

al. [23] proposed the use of one strain and one velocity measure-

ment at the same cross-section. The two measurements give two

independent equations for all frequencies. Hence, the initial noise is

less amplified.

To summarize, the two-strain methods are noise sensitive [12–18,21,22]. In

more general case, unless one strain and one velocity measurement are recorded

at the same cross-section, two-measurement (strain or velocity measurements)

techniques amplify noise. To reduce noise effects, one can either use one strain

measurement and one velocity measurement at the same cross-section [23] or

take advantage of redundant measurements [20,24]. In this paper the BCGO

method is used for the measurement of the load applied by the servo-hydraulic

machine because of its multiple assets which comply with situation under

study. These assets can be summarised as follows:

(1) It is the most noise-insensitive wave separation technique.

(2) Wave dispersion effects are taken into account.

(3) It does not give rise to any restraint on the test duration (the test duration

is increased to some seconds [26] which is some thousand times more

than the duration of a conventional SHB).
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(4) It can be used with strain and (or) velocity measurements.

(5) The error on measurements can be taken into account individually, i.e., if

the measurements have different noise levels, a weight inversely propor-

tional to the noise level can be attributed to each measurement. There-

fore, the less-noisy measurements contribute more than the others to the

recovered force and velocity [19].

(6) The accuracy of the method can be highly improved by increasing the

number of the redundant measurements.

The BCGO method will be detailed in the subsection 3.3.

3 Testing with modified servo-hydraulic machine

3.1 Experimental set-up

An MTS 819 servo-hydraulic machine, with maximum force capacity of 25 kN

and maximum velocity of 16 m/s, is used. In the standard configuration, a

piezoelectric force sensor is fixed on the upper cross head of the machine (Fig.

1a). For low strain rate tests (ε̇ ≺ 10/s), this sensor gives reliable measure-

ments. However, for higher strain rates the force measurement is degraded

by oscillations which are induced by the elastic response of the machine [2].

To overcome this problem, an alternative force measurement is proposed (Fig.

1b). A steel bar, 0.82m in length and 16mm in diameter, is attached

to the upper cross head of the machine. Three gauge stations are

cemented on the bar at x1 = 0.2m, x2 = 0.38m and x3 = 0.64m, where the

x-origin is taken at the cross-head. The first and the third gauges are 200mm

and 180mm away from the bar ends, respectively. These gauge positions en-
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sure that the measured strains are in accord with the one-dimensional wave

propagation theory. A simplified schematic of the new set-up is given in Fig.

2.

3.2 Experimental procedure

Firstly, the strain gauges are calibrated on the SHB set-up. The three-gauge-

MTS bar is shot by a 200mm long striker at an impact velocity of approxi-

mately 10m/s. The nominal force should be Nnom = EbAbVs/2c0 where Eb, Ab,

Vs and c0 are the bar Young’s modulus, the bar cross-sectional area, the im-

pact striker velocity and the sound velocity of the bar, respectively. Let Ui be

the nominal voltage measured on the ith gauge, the calibration coefficient for

the same gauge is αi = EbAbVs/2c0Ui. This calibration test is repeated three

times. The mean values are α1=41580 N/V, α2=41746 N/V and α3=41018

N/V. In the case of our study the calibration procedure was done just once.

After the calibration step, the bar is mounted on the upper cross head.

At the same time, a speckle pattern is painted on each specimen. After 20

minutes the specimen can be tested.

The specimen to be tested is attached to the bar and to the lower cross head

via two identical attaching devices(Fig. 1b). One attaching device is screwed

on the lower end of the bar and the other is screwed on the lower cross

head. The specimen is fixed to each device by two cap screws. A couple of

approximately 30 N.m is applied to each screw.

All measurements, gauges and video camera, are synchronised. The trigger is

given by the start-up of the lower cross head. The flecked sample is illumi-
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Fig. 1. Experimental set-up: (a) original set-up with piezoelectric force

transducer, and (b) modified set-up with instrumented bar
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Fig. 2. A simplified schematic of the modified servo-hydraulic machine

nated with a coherent light. Photographs of the flecked sample are taken with

a frequency of 24000 images/s and a resolution of 512 × 128 pix2.

3.3 Analysis

The assessment of the tested material behaviour is equivalent to measuring

the true strain-true stress relationship. The true strain is computed via a high

speed video camera (PHOTRON Ultima APX) and a DSP (Digital Speckle
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Photographs) technique. Photographs are taken each 41.67μs. A small region

(the useful region) in the middle of the specimen photography taken at a

time t is compared to the same region of a reference photography (taken at

t = 0). Then a digital cross-correlation algorithm is applied to the two selected

regions [10] and calculates the in-plane displacement field. The nominal and

true (logarithmic) longitudinal strain are then deduced from the displacement

field using the conventional relation of continuum mechanics. In our study,

the recorded photographs are analysed by the ICASOFT software developed

at INSA Lyon [31].

The true stress in the sample is deduced from the force measurement assuming

volume conservation. The BCGO method is applied to recover the force at

the end of the bar (where the specimen is attached) from the three strain

measurements. Below, we will give a brief introduction to this method. For

a full development of this technique, the reader is referred to [19,20,26].

First, we assume that N strain measurements (ε̂j(t), j = 1, .., N) are recorded

at xj, j = 1, .., N (N > 2). These measurements are subject to noise. Noises are

assumed to be statistically independent Gaussian white noises with the same

variance. This hypothesis was checked by Othman [26]. The maximum of

likelihood functional is then proportional to the functional F , which

is given by:

F =
+∞∫

−∞

N∑

j=1

(ε̂j(t)− ε(xj, t))
2
dt. (7)

Using Parceval relation and Eq. (7), one obtains:

F =
+∞∫

−∞

N∑

j=1

∣
∣
∣̃ε̂j(ω)− F (ω)e

−iξ(ω)xj −D(ω)eiξ(ω)xj
∣
∣
∣
2
dω. (8)
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The maximization of the likelihood function with respect to F (ω) and D(ω)

is equivalent to the minimization of the functional F with respect to the same

parameters. The analytical solving of the optimization problem yields:

F (ω) =
h2(ω)E1(ω)− g1(ω)E2(ω)
h1(ω)h2(ω)− g1(ω)g2(ω)

, (9)

D(ω) =
h1(ω)E2(ω)− g2(ω)E1(ω)
h1(ω)h2(ω)− g1(ω)g2(ω)

, (10)

where h1(ω) =
∑N
j=1 e

−i(ξ(ω)−ξ̄(ω))xj , h2(ω) =
∑N
j=1 e

i(ξ(ω)−ξ̄(ω))xj , g1(ω) =

∑N
j=1 e

i(ξ(ω)+ξ̄(ω))xj , g2(ω) =
∑N
j=1 e

−i(ξ(ω)+ξ̄(ω))xj , E1(ω) =
∑N
j=1
˜̂εj(ω)e

iξ̄(ω)xj

and E2(ω) =
∑N
j=1
˜̂εj(ω)e

−iξ̄(ω)xj . Eqs. (9-10) give the forward and the down-

ward waves as functions of the redundant strain measurements and the wave

dispersion relation. This last parameter only depends on the bar geometry

and material. It is separately determined using the technique presented in

[32]. Hence, the force at the lower bar end is deduced using Eqs. (3,9-10).

The BCGO method is based on a uniform bar model. However, the attaching

device makes an impedance variation on the wave propagation way between

the bar and the sample. Hence oscillations may error the force measurement.

Fortunately, the wave energy appears at rather low frequencies. Fur-

thermore, the maximum in-plane dimension of the attaching device is of some

millimeters. Consequently, the lowest wavelength is much greater than the

maximum dimension of the attaching device. We can conclude that the elastic

response of the material can be neglected. Only, its inertia will be considered.

Let NBCGO be the force calculated by the BCGO method at the

lower bar end and let VBCGO be the velocity calculated by the same

method and at the same end using Eqs. (2,9-10). Then, the actual
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force applied to the specimen is:

Nsample = NBCGO −mad
∂VBCGO

∂t
, (11)

where mad is the mass of the attaching device.

4 Results and discussion

4.1 Results

Experiments are carried out on samples cut from a commercial Al 2017 T4

sheet which is 2.5 mm thick (see Fig. 3). The parameters of these tests are

detailed in Tab. 1. An example of the recorded strains at the gauge stations is

given in Fig. 4. Strain measurements show clearly important oscillations due

to the elastic response and the inertia of the measurement system (the bar +

the specimen attaching device).

Let us now consider the impact of using the BCGO method on

force recovering. In Fig. 5, we compare the recovered force, at the attaching

device-bar interface, with the force directly measured by the gauge at the

station 1. The initial oscillations on the measured force are highly reduced.

Nevertheless, they are not completely removed. Indeed, the BCGO

method, as all wave separation techniques cited above, only takes

into account the elastic response and the inertia of the bar and

not those of the attaching device. To overcome this problem, the

actual force applied to the specimen is corrected using Eq. (11)

which includes attaching device inertia. The resulting force has much
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Test Cross-beam Strain rate Force

label velocity (m/s) (s−1) Geometry measurement

B1 0.1194 5.97 Fig. 3 Bar

B2 0.1206 6.03 Fig. 3 Bar

B3 2.36 118 Fig. 3 Bar

B4 2.44 122 Fig. 3 Bar

P1 2.32 116 Fig. 3 Piezo-electric

P2 2.18 109 Fig. 3 Piezo-electric

QS 5 10−5 0.001 NF EN ISO 527 Quasi-static machine

Table 1

Parameters of the experimental tests

lower oscillating behaviour (see Fig. 6). The remaining oscillations are due to

the neglected elastic response of the attaching device. They can be removed

by considering the impedance mismatch between the bar and the attaching

device [33]. However, this treatment is out of the scope of this paper since

these oscillations have low magnitude and can be neglected.

In Fig. 7, the stress-strain curves obtained by the old and the new techniques

are compared. The new technique shows less-oscillating behaviour at interme-

diate strain rates (about 100/s). In Fig. 8, the stress-strain curves obtained by

the new technique at a strain rate of 6/s are compared to a stress-strain curve

obtained by a conventional quasi-static machine at a strain rate of 0.001/s. A

very good agreement is found between the two techniques since aluminium is

insensitive to the deformation rate in this range of strain rates.
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φ

Fig. 3. Geometry of the sample

Fig. 4. Measured strains on the gauge stations (test B4)
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Fig. 5. The force at the attaching device-bar interface compared to the measured

force at gauge 1

Fig. 6. The measured force before and after removing the inertia effects of the

attaching device
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Fig. 7. Stress-strain relation for aluminium obtained by the piezoelectric force trans-

ducer method (P1 and P2) and by the bar method (B3 and B4)

It is worth noticing that the test duration is considerably increased with the

new technique. Indeed, the used bar is 820mm long and has a wave velocity of

approximately 5100m/s. Using the same bar, the test duration will be 160μs

in the case of a conventional Hopkinson bar. It will be less than 320μs in the

case of the hybrid technique [3]. At a strain rate of approximately 100/s, the

maximum strain measured on the specimen will be less than 1.6% in case of

the first technique and less than 3.2% in the case of the second technique.

Using the new bar-like method, the test duration is theoretically unlimited.

It is 1.5ms in the tests B3 and B4 and 37ms in the tests B1 and B2. Besides,

the maximum measured strain is about 20%.

20



TPIRCSUNAM DETPECCA

ARTICLE IN PRESS

Fig. 8. Stress-strain relation for aluminium obtained by a conventional quasi-static

machine (QS) and by the bar method (B1 and B2)

4.2 Discussion

In this paper, an indirect and long duration force measurement, developed in

the past with a Split Hopkinson bar technique [20], is now applied to servo-

hydraulic machines. Many points can be discussed about this new application:

(1) The rigid mass model is valid if the test duration, Δt, is much

higher than the time needed by the wave to go through the

attaching device. Let εmax and ε̇ be the maximum strain induced

in the tested specimen and the average strain-rate during the

test, respectively. Then the validity of the rigid mass model can

be written as follows:

Δt ≈
εmax

ε̇
>>
d(ad)max

c
(ad)
min

≈
d(ad)max

c
(ad)
0 /2

, (12)
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where d(ad)max, c
(ad)
min, c

(ad)
0 the maximum dimension, the minmum

wave speed and the sound speed, respectively, of the attaching

device. By introducing a factor 100 and replacing >> by >, Eq.

(12) yields:

ε̇ ≤
c
(ad)
0 εmax

200d
(ad)
max

. (13)

(2) The second point to be adressed is the difference of complexity

between the wave separation method and the rigid body model.

The wave separation methods take into account the stiffness and the

inertia of a uniform bar. The attaching device has non uniform cross-

section. Consequently, wave propagation is affected by the impedance

variation. Furthermore, the uniform bar wave separation methods can

not be applied to the whole system (the bar + the attaching device). In

this work the force applied to the specimen is computed in two steps. In

the first step, we calculate the force at the bar-attaching device interface

using the BCGO method. Secondly, we deduce the force applied to the

sample assuming a rigid-mass model for the attaching device. The first

model is complex but necessary, whereas the second one is rather simple

but sufficient.

The force measurement is based here on strain measurement and elas-

ticity. A long bar is used to avoid 3D effects because only the axial force is

needed here. Furthermore, transient waves become significant and should

be taken into account at intermediate strain rates. This point leads also

to long bars because transient waves in long bars are the best under-

stood and because their analysis is the simplest. Therefore, inertia and

stiffness of the measuring device can be corrected. Finally, the better

way to measure force at intermediate strain rates (and higher), using
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strain measurements, is that using long (visco)-elastic bars. In addition,

the incident and reflected waves contribution are measured together

with the strain measurements, mainly at intermediate strain-rate tests.

Hence, the contributions of the two waves must be separated to cal-

culate the force at the bar end. Therefore, wave separation techniques,

despite their complexity, should be used.

The rigid model of the grip is quite simple. However, it is valid

for test durations that are much greater than the time needed

by the wave to go through the attaching device. We show in

Eq. (13), that this model is valid at least for strain-rates ε̇ ≤

C0,adεmax/200dmax. Taking C0,ad = 5000m/s, εmax = 0.2 and dmax =

22mm, this model is valid in the range of strain-rates of some

hundreds per second.

Even though the methods used in the two steps are of different

complexity, the corresponding oscillation elimination is of the same order.

In fact, wave separation methods eliminate approximately 50% of the

oscillations and the rigid body model the same amount (see Fig. 9). This

shows that the rigid mass model for the attaching device is efficient.

(3) In this work, the force applied to the specimen is computed in two steps.

Alternatively, it can be calculated within one step by taking into account

both inertia and stiffness of the bar and the attaching device. Therefore,

the bar and the attaching device can be modelled as a whole non-uniform

bar as suggested in [33]. Nevertheless, the rigid body model gives good

results in the range of strain-rates of some hundreds per second. Indeed,

the remaining oscillations have low level.

(4) The BCGO wave separation method is an indirect force measurement.

Therefore, it can be applied to any loading system. It was first applied
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Fig. 9. BCGO and rigid mass corrections (Test B3)

to Split Hopkinson bar technique. In this work, we successfully applied

it to servo-hydraulic machines. It can also be applied, for example, to

dropweight towers.

(5) In this work, the measured strains are analysed by the BCGO wave sepa-

ration method. However, one can carry out strain-measurement analysis

with any wave separation technique. Nevertheless, the section 2 clearly

shows that the BCGO method is the least noise sensitive.

(6) The test duration is theoretically unlimited. Actually, it depends on the

acquiring system which is limited by the maximum storage capacity.

This would be a problem to the quasi-static tests. Nevertheless, only

low-frequencies are excited when velocity tends to quasi-static values.

Therefore, low sampling rates are required and with the same storage

capacity, it is possible to have long acquiring duration. Consequently, the

bar method developed in this work can also be applied to quasi-static
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(7) The method developed in this paper is applied to a tensile test. It can

be easily applied to a compressive test. However, a special care should be

taken to prevent buckling.

5 Conclusion

Force measurement is one of the major concerns in impact engi-

neering. In this paper, we presented a bar-like force measurement

for servo-hydraulic machines. In the first part, wave separation techniques

were reviewed. Then we showed that the BCGO method [20] is the most

insensitive to the experimental noise. In the second part, this method is ap-

plied to improve the hybrid technique presented in [3]. Indeed, intermediate

strain rate tests are carried out without any limitation on the test duration.

The oscillations, due to the elastic behaviour and the inertia of the measuring

set-up, are almost totally removed. Results obtained at a strain rate of approx-

imately 120/s are more accurate than those obtained by a piezoelectric cell

at the same range of strain rates. Moreover, the results obtained at a strain

rate of approximately 6/s are in line with those obtained by a conventional

quasi-static machine.
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