2D electrostatic problems with rounded corners
François Buret, Monique Dauge, Patrick Dular, Laurent Krähenbühl, Victor Péron, Ronan Perrussel, Clair Poignard, Damien Voyer

To cite this version:

HAL Id: hal-00549384
https://hal.archives-ouvertes.fr/hal-00549384v2
Submitted on 30 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
2D electrostatic problems with rounded corners

F. Buret\(^*\), M. Dauge\(^4\), P. Dular\(^\dagger\), L. Krähenbühl\(^*\), V. Péron\(^2\), R. Perrussel\(^*\), C. Poignard\(^\ddagger\), and D. Voyer\(^*\)

\(^*\)Laboratoire Ampère CNRS UMR5005, Université de Lyon, École Centrale de Lyon, Écully, France
\(^4\)IRMAR CNRS UMR6625, Université de Rennes 1, Rennes, France
\(^\dagger\)Université de Liège, Institut Montefiore, Liège, Belgium
\(^\ddagger\)LMAP CNRS UMR5142, INRIA Bordeaux-Sud-Ouest, Team MAGIQUE-3D, Pau, France

Abstract—The second order terms of a multiscale expansion for dealing with rounded corners in 2D electrostatic problems are studied. The main ideas and the sequence of problems to consider are recalled and finite element simulations are presented to assess the accuracy of the method.

I. INTRODUCTION

High-voltage applications require a precise knowledge of the electric field in the area where the geometry of the structure is sharp. On a real device, the geometry is not "exactly sharp" but present rounded edges or corners. The accurate description of these rounded shapes, especially when the geometry involves several corners, can be cumbersome in a numerical model. In addition most of the time only a rough (statistical) description of the rounded shape is available due to the manufacturing tolerance. Dauge et al. have proposed in [1] a theoretical approach to tackle the "rounded shape" problems by an accurate asymptotic analysis.

Define the potentials \(v_\epsilon\) in \(\Omega_\epsilon\) and \(v_0\) in \(\Omega\) (see Fig. 1) by

\[
\begin{align*}
\Delta v_\epsilon &= 0, \quad \text{on } \Omega_\epsilon \\
v_\epsilon &= v_0, \quad \text{on } \Gamma_\epsilon \\
v_\epsilon &= 1, \quad \text{on } \Gamma^1 \\
\partial_\nu v_\epsilon &= 0, \quad \text{on } \Gamma^N
\end{align*}
\]

and

\[
\begin{align*}
\Delta v_0 &= 0, \quad \text{on } \Omega \\
v_0 &= 0, \quad \text{on } \Gamma^0 \\
v_0 &= 1, \quad \text{on } \Gamma^1 \\
\partial_\nu v_0 &= 0, \quad \text{on } \Gamma^N
\end{align*}
\]

where \(\epsilon\) characterizes the "size" of the rounded corner and \(\partial_\nu\) denotes the unitary outward normal on the boundary of the domain. Throughout the paper \(\omega\) denotes the angle of the sharp corner and \(\alpha = \pi/\omega\). The main idea of [1] consists in expanding \(v_\epsilon\) into two sums in power of \(\epsilon^\alpha\). Using a smooth radial cut-off function \(\varphi\) defined by

\[
\varphi(\rho) = \begin{cases}
1, & \text{if } \rho \geq d_1 \\
0, & \text{if } \rho \leq d_0
\end{cases}
\]

with \(d_0 < d_1\), the expansion writes for any integer \(n \geq 1\) (\(\varphi(./\epsilon)\) is the function \(t \mapsto \varphi(t/\epsilon)\))

\[
v_\epsilon = \varphi\left(\frac{\cdot}{\epsilon}\right) v_0 + \varphi\left(\frac{\cdot}{\epsilon}\right) \sum_{p=1}^{n} b_p \epsilon^{p\alpha} v_{p\alpha}
\]

\[
+ \left(1 - \varphi\right) \sum_{p=1}^{n} B_p \epsilon^{p\alpha} V_{p\alpha}\left(\frac{\cdot}{\epsilon}\right) + r_{n\alpha}^\epsilon,
\]

where \(b_p\) and \(B_p\) are real parameters and \(r_{n\alpha}^\epsilon\) is such that

\[
\exists \epsilon > 0, \exists C_n > 0, \forall \epsilon < \epsilon, \int_{\Omega} \left\| \nabla r_{n\alpha}^\epsilon \right\|^2 dx < C_n \epsilon^{(n+1)\alpha},
\]

i.e. the energy norm of the error converges as \(\epsilon^{(n+1)\alpha}\) to 0, which is written \(r_{n\alpha}^\epsilon = O_{H^1}(\epsilon^{(n+1)\alpha})\). The functions \(v_{p\alpha}\) satisfy a boundary value problem in the sharp domain \(\Omega\) (see Fig 1(b)), whereas the functions \(V_{p\alpha}\) are the so-called profile terms that satisfy the Laplace equation in the infinite domain \(\Omega_\infty\) of \(\mathbb{R}^2\), which is a localization of the rounded corner (see Fig 1(c)).

The paper [2] was devoted to provide numerically the first order terms of the theoretical expansion of [1]. The following remarks have been observed:

- the exact solutions close to the corner, computed for several values of the curvature radius \(\epsilon\), are quasi-similar, up to a "scaling factor" (related to \(\epsilon\)). It is also noticed that the "shape" of the solutions close to the corner (their "shape" but not their amplitude) weakly depend on other elements of the studied structure, such as the distance to the boundaries: if the corner geometry is self-similar\(^1\), it is also said that the dominant term of the solutions close to the corner is self-similar.

- the exact solutions far from the corner are weakly influenced by the change of the curvature radius \(\epsilon\), and they converge to the solution on the domain with the sharp corner when \(\epsilon\) goes to zero.

The aim of the present paper is to push forward numerically the expansion (3) on the numerical model studied in [2], especially when non-symmetric structures are involved.

\(^1\)Roughly, it means that a single parameter, here \(\epsilon\), and a basic geometry are sufficient to describe the corners for any value of \(\epsilon\). For a precise definition, refer to [1].
II. Second order expansion

The heuristics for the construction of the two first orders are detailed in [1, subsection 4.1]. The roughest approximation \(v_0 \) of \(v_\epsilon \), far from the corner, that is defined in \(\Omega \) by (1), writes in the neighborhood of the corner

\[
v_0(x) \approx \sum_{p=1}^{\infty} a_p \rho^{p\alpha} \sin(p\alpha \theta) = \sum_{p=1}^{\infty} a_p \rho^{p\alpha}(\rho, \theta),
\]

where \((\rho, \theta)\) are the polar coordinates. As the behaviors of \(v_0 \) and \(v_\epsilon \) are different in the corner, \(v_0 \) should be truncated in the corner. Expansion (5) enforces the coefficient \(B_1 \) of (3) to equal the first singular coefficient \(a_1 \), while the profile term \(V_\alpha \) satisfies, for \(p = 1, \)

\[
\begin{cases}
-\Delta X V_{p\alpha} = [\Delta_X; \varphi]s^{p\alpha}, & \text{in } \Omega_\infty, \\
V_{p\alpha}|_{\Gamma_\infty} = 0, \\
\lim_{R \to +\infty} V_{p\alpha} = 0.
\end{cases}
\]

For any couple \((v, u)\), we remind that \([\Delta; v]u = \Delta(\epsilon vu) - \nu \Delta u\). In [1], it is especially shown that in the neighborhood of \(+\infty \)

\[
V_\alpha(X) \approx \sum_{p=1}^{+\infty} A_p s^{-p\alpha}(X) .
\]

Then, necessarily, \(b_2 \) and \(B_2 \) respectively equal \(a_1 A_1 \) and \(a_2 \) given by (5) and (7), leading to the second order:

\[
v_\epsilon = \varphi \left(\frac{\epsilon}{\epsilon} \right) v_0 + \epsilon^\alpha (1 - \varphi) a_1 V_\alpha \left(\frac{\epsilon}{\epsilon} \right) + \epsilon^{2\alpha} \left[a_1 A_1 v_{2\alpha} + (1 - \varphi) a_2 V_{2\alpha} \left(\frac{\epsilon}{\epsilon} \right) \right] + O_H(\epsilon^{3\alpha}),
\]

where \(V_{2\alpha} \) is the profile term that satisfies (6) for \(p = 2 \) and \(v_{2\alpha} \) is the correction far from the corner defined by

\[
\begin{cases}
-\Delta v_{2\alpha} = [\Delta; (1 - \varphi)]s^{-\alpha}, & \text{in } \Omega, \\
v_{2\alpha} = 0, & \text{on } \Gamma_0, \text{ and } v = 0, \text{ on } \Gamma^1, \\
\partial n v_{2\alpha} = 0, & \text{on } \Gamma^N.
\end{cases}
\]

In [2, page 9], the profile problem (25) satisfied by \(v_\infty \) did not involve the cut-off function \(\varphi \) as in (6). Actually, the profiles \(V_\alpha \) and \(v_\infty \) can be linked through the equality

\[
V_\alpha = v_\infty - \varphi s^\alpha .
\]

However, for profiles of order \(p > 2 \), the relationship is more complex and the use of the cut-off function seems to be more convenient [1].

III. Numerical results

Two L-shape geometries with a rounded corner are considered; their dimensions are specified on Fig. 2. For both cases, \(\alpha \) equals \(2/3 \). The finite element method has been used for solving (1), (6), and (9) as it was done in [2].

The errors in the energy norm of the first and second order expansions, plotted on Fig. 3, behave respectively as \(\epsilon^{2\alpha} \) and \(\epsilon^{3\alpha} \), independently of the geometry. This is remarkable since \(a_2 = 0 \) in the symmetric configuration (see Fig. 2(a)) and we could think that the first order approximation would have lead to a better approximation than in the non symmetric configuration (see Fig. 2(b)). Nonetheless, this intuition is obviously not correct and the correction \(v_{2\alpha} \) far from the corner plays an equivalent role than the correction close to the corner regarding the energy norm in the whole domain.

The normal electric field along the electrodes in the non symmetric configuration (from the bottom right to the top left of the electrode, see Fig. 2(b)) for two values of \(\epsilon \) are presented in Fig. 4. This normal field has been computed respectively from \(v_\epsilon \), from first order expansion and from second order expansion given by (8). The behavior of the normal field is “closer” for the order 2, in particular the location of the maximum is roughly equivalent to the correct solution. However the maximum electric field is overestimated by both approximations, requiring to go further in the expansion.

REFERENCES
