Eddy currents and corner singularities
François Buret, Monique Dauge, Patrick Dular, Laurent Krähenbühl, Victor Péron, Ronan Perrussel, Clair Poignard, Damien Voyer

To cite this version:
hal-00549380

HAL Id: hal-00549380
https://hal.archives-ouvertes.fr/hal-00549380
Submitted on 21 Dec 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Eddy currents and corner singularities

F. Buret*, M. Dauge†, P. Dular‡, L. Krähenbühl*, V. Péron*, R. Perrussel*, C. Poignard§, and D. Voyer*

*Laboratoire Ampère CNRS UMR5005, Université de Lyon, École Centrale de Lyon, Écully, France
†IRMAR CNRS UMR6625, Université de Rennes 1, Rennes, France
‡Université de Liège, Institut Montefiore, Liège, Belgium
§INRIA Bordeaux-Sud-Ouest, Team MAGIQUE-3D, Pau, France

Abstract—The first terms of a multiscale expansion are introduced to tackle a magneto-harmonic problem in a bidimensional setting where the conducting medium is non-magnetic and has a corner singularity. The heuristics of the method are given and numerical computations illustrate the obtained accuracy.

I. INTRODUCTION

The aim of this work is to introduce a method to tackle a magneto-harmonic problem in a bidimensional setting where the conducting medium is non-magnetic and has a corner singularity. More precisely, denote by \(\Omega_- \) the bounded domain corresponding to the conducting non-magnetic material, and by \(\Omega_+ \) the surrounding dielectric material (see Fig. 1(a)). The domain \(\Omega \) is then defined by \(\Omega = \Omega_- \cup \Omega_+ \cup \Sigma \), where \(\Sigma \) is the boundary of \(\Omega_- \). The boundary of \(\Omega \) is denoted by \(\Gamma \). For the sake of simplicity, we assume that:

(H1) \(\Sigma \) has only one geometric singularity, and we denote by \(C \) this corner. The angle of the corner (from the conducting material, see Fig. 1(a)) is denoted by \(\omega \).

(H2) the current source term \(J \) is located in \(\Omega_+ \) and it vanishes in a neighborhood of \(C \).

![Fig. 1. Geometry of the problems considered.](image)

Throughout the paper \(\rho \) denotes the distance to the corner and \(\theta \) is the angular variable (see Fig. 1). Moreover the notations \([u] = u_+ - u_- \) and \(\partial_n = n \cdot \nabla \) are used, \(n \) being the normal to \(\Sigma \) inwardly directed from \(\Omega_+ \) to \(\Omega_- \). The skin depth \(\delta = \sqrt{1/(\pi f \sigma \mu_0)} \) is supposed to be small compared to the characteristic length of the domain. In the expression of \(\delta \), \(f \) is the frequency of the source term, \(\sigma \) is the conductivity, and \(\mu_0 \) is the vacuum magnetic permeability. The magnetic vector potential \(A_\delta \) (reduced to one scalar component in 2D) satisfies

\[
\begin{cases}
-\Delta A_{\delta}^+ = \mu_0 J & \text{in } \Omega_+,
-\Delta A_{\delta}^- + \frac{2i}{\delta^2} A_{\delta}^- = 0 & \text{in } \Omega_-,
[A_{\delta}]_{\Sigma} = 0 & \text{on } \Sigma,
[\partial_n A_{\delta}]_{\Sigma} = 0 & \text{on } \Sigma,
A_{\delta}^- = 0 & \text{on } \Gamma.
\end{cases}
\]

Denote by \(A_0 \) the potential in the perfectly conducting case:

\[
\begin{cases}
-\Delta A_0^+ = \mu_0 J & \text{in } \Omega_+,
A_0^- = 0 & \text{on } \Sigma,
A_0^+ = 0 & \text{on } \Gamma.
\end{cases}
\]

It is intuitive that \(A_0^+ \) approximates \(A_\delta \) in the dielectric medium. Moreover, it can be proved for a regular interface \(\Sigma \) that the “power norm” [1] of the error \(A_\delta - A_0 \) is of order \(\delta^2 \) [2]. This accuracy is no more valid for a corner singularity.

II. HEURISTICS OF THE EXPANSION

Let first note the two following remarks:

- similarly to the regular case, \(A_0 \) defined by (2) is the solution of the limit problem of (1) as \(\delta \) goes to zero. Hence the first term of the expansion should start by \(A_0 \).
- since the respective behaviors of \(A_\delta \) and \(A_0 \) are different in the corner for any non zero \(\delta \), it seems natural to truncate \(A_0 \) in the corner by a function \(\varphi \) which is zero close to the corner and 1 far from this corner. Suppose that we introduce such a smooth radial cut-off function:

\[
\varphi(\rho) = \begin{cases}
1, & \text{if } \rho \geq d_1, \\
0, & \text{if } \rho \leq d_0,
\end{cases}
\]

with \(d_0 < d_1 \), (3)

\(d_0, d_1 \) being fixed corner distances. If \(\varphi A_0 \) is taken as the first term for approximating \(A_\delta \), it will obviously not
converge to A_0 as δ goes to zero. However, if $\phi(\cdot/\delta)A_0$ is considered instead, the correct limit is obtained.

According to these remarks, consider the problem satisfied by $r_0^\delta = A_\delta - \phi(\cdot/\delta)A_0$:
\[
\begin{align*}
- \Delta r_0^\delta &= [\Delta; \phi(\cdot/\delta)] A_0^+ \text{ in } \Omega_+, \quad r_0^\delta|_\Gamma = 0, \text{ on } \Gamma, \quad (4a) \\
- \Delta r_0^\delta + \frac{2\nu}{\delta^2} r_0^\delta &= 0, \quad \text{in } \Omega_-, \quad (4b) \\
[r_0^\delta]_{\Sigma} &= 0, \quad \{\partial_\nu r_0^\delta\}_{\Sigma} = -\partial_\nu (\phi(\cdot/\delta) A_0^+), \quad \text{on } \Sigma, \quad (4c)
\end{align*}
\]
where for any couple (ν, u), $[\Delta; \phi(\cdot/\delta)] u = \Delta (\nu u) - \nu \Delta u$. Note that assumption (H2) is necessary to obtain (4a).

If we were not to use the cut-off function ϕ in the corner, therefore the jump $[\partial_\nu r_0^\delta]_{\Sigma}$ would be equal to $-\partial_\nu A_0^+|_{\Sigma}$, which blows up in the corner. Since $[\partial_\nu A_\delta]_{\Sigma}$ identically vanishes in the corner on Σ we would have to compensate this blowing term, which would lead to numerical difficulties. The use of $\phi(\cdot/\delta)$ in (4c) ensures that $[\partial_\nu r_0^\delta]_{\Sigma}$ vanishes in the corner. Solving exactly (4) has no benefits, but since
\[
A_0^+ \simeq \frac{a_1}{\rho^2} \sin(\alpha \theta) = \frac{a_1}{\rho^2} \sin(\alpha \theta)
\]
we guess a correction in the corner region such that the expansion becomes
\[
A_\delta = \phi(\cdot/\delta)A_0 + (1 - \phi) a_1 \delta^\alpha V_0(\cdot/\delta) + r_\delta.
\]
In (6), the “profile” term V_0 is the solution of a problem in \mathbb{R}^2 that is independent of A_0 and δ while r_δ lives in the domain Ω. To determine the problem solved by V_0, from (5) we first replace A_0^+ by δ^α in (4). Then we use the fact that ϕ depends only on ρ and that $\partial_\nu = \pm (1/\rho) \partial_\theta$ near the corner, and we perform the rescaling $X = x/\delta$ ($R = \rho/\delta$). Taking the limit when δ goes to zero (Γ is thus “sent” to the infinite) leads to the “profile” problem satisfied by V_0 in \mathbb{R}^2, which is divided into two infinite sectors S_+ and S_- (remember that $X = (R \cos(\theta), R \sin(\theta))$ with $R > 0$):
\[
\begin{align*}
- \Delta_X V_\alpha &= [\Delta_X; \phi] \delta^\alpha, \text{ in } S_+ = \{X : \theta \in (\omega, 2\pi]\}, \quad (7a) \\
- \Delta_X V_\alpha + 2i \nu V_\alpha &= 0, \text{ in } S_- = \{X : \theta \in (0, \omega)\}, \quad (7b) \\
V_\alpha &\to X \to +\infty 0,
\end{align*}
\]
with the transmission conditions on $G = \{X : \theta = 0, \omega\} :$
\[
[V_0]_G = 0, \quad \{\partial_\nu V_0\}_G = \alpha \nu R^{\alpha-1}.
\]
Capturing the singularity of the domain in a profile term is quite natural and has to be linked up similarly to [5, 6]. The theoretical proof that r_δ is of order δ needs more than two pages, and will be presented in a forthcoming paper.

III. NUMERICAL RESULTS

The domain presented in Fig. 1(b) is considered for numerical purpose. The errors $[r_0^\delta]$ and $[r_\alpha^\delta]$ are plotted respectively on Fig. 2(a) and 2(b). The terms A_δ, a_1, A_0 and V_α are computed by using the finite element method as in [6] where an electrostatic problem on a geometry with a rounded corner is considered. On both figures, the same color scale is used except the white area around the corner on Fig. 2(a) where the error is higher (between 0.04 and 0.14). Fig. 2(b) shows the profile correction (7); the highest error lies now in the regular part of the interface Σ, for which correction is known [2].

Suppose that $a_1 \neq 0$, which is the worst corner influence, and denote by $Z_s = (1 + i)/|\sigma\delta|$ the regular surface impedance. According to the expansion, the surface impedance Z_δ can be approximated close to the corner by:
\[
Z_\delta = Z_s \frac{1 + i}{\delta} A_\delta \simeq Z_s (1 + i) \frac{V_\alpha(\cdot/\delta)}{(\partial_\nu V_\alpha)(\cdot/\delta)},
\]
therefore for any σ and f such that δ is small enough, the function $Z_s(\delta^{-1})/|Z_s|$ behaves close to zero as $\sqrt{2} |V_\alpha(\cdot/\delta)/(\partial_\nu V_\alpha)|$.

These similar behaviors are shown on Fig. 3 where the “impedance” from the profile function is compared to the real impedance for two values of δ, where f and σ are different. According to [3], the surface impedance should blow up like ρ^{-1} for any non zero δ, which is shown to be false here.

![Fig. 2. Modulus of the errors between the solution and the two first orders of (6) for $\delta = 0.025$. The distances of (3) are $d_0 = 1$ and $d_1 = 1.2$.](image)

![Fig. 3. Behavior of $Z_\delta/|Z_s|$ vs ρ/δ. The domain characteristic length L is here 0.1m, then δ/L is between 2 and 4.6% for the situations considered.](image)

REFERENCES

