
HAL Id: hal-00549272
https://hal.science/hal-00549272

Submitted on 21 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An experiment with reactive data-flow tasking in active
robot vision

Eric Rutten, Eric Marchand, François Chaumette

To cite this version:
Eric Rutten, Eric Marchand, François Chaumette. An experiment with reactive data-flow task-
ing in active robot vision. Software: Practice and Experience, 1997, 27 (5), pp.599-621.
�10.1177/027836499801700407�. �hal-00549272�

https://hal.science/hal-00549272
https://hal.archives-ouvertes.fr

An experiment with reactive data-
ow taskingin active robot visionE. P. RUTTEN, E. MARCHAND AND F. CHAUMETTEIRISA / INRIA - Rennes, F-35042 Rennes, France(e-mail: frutten, marchand, chaumetteg@irisa.fr)SUMMARYThis paper presents an experiment with the synchronous approach toreactive systems programming, and particularly the Signal language,applied to a signi�cant problem in robot vision: active visual recon-struction. This application consists of the speci�cation of a systemdealing with various domains such as robot control, computer visionand transitions between di�erent modes of control. It illustrates theadequacy in such domains of Signal, a data
ow programming lan-guage and environment. The programming environment features toolsfor formal speci�cation, analysis, consistency checking and code gen-eration. Signal and its language-level extension for task preemptionSignalGT _� are used at the di�erent levels of the application: data-
owfunction for the camera motion control (visual servoing), reconstruc-tion method (in parallel to visual servoing, involving the dynamicalprocesses), and reconstruction of complex scenes (with transitions be-tween several robotics tasks). The combination of these levels consti-tutes a hybrid behavior with (sampled) continuous control and discretetransitions. These techniques are validated experimentally by an im-plementation on a robotic cell.KEY WORDS: formal speci�cation language, reactive systems, data
ow, task preemp-tion, robotics, active vision. 1

AN EXPERIMENT WITH SIGNAL IN ROBOT VISIONThe synchronous methodologyThis paper presents the application in active robot vision of the synchronous approach toreactive real time systems [1], and particularly of the language Signal. Reactive systemsare characterized by the fact that their pace is determined by their environment [2]. Theirbehavior is modelled as a discrete event system, in a way related to the works of Ramadgeand Wonham [3]. An interpretation of the synchrony hypothesis is that all the relevantvalues involved in a computation (input, output and internal) are present simultaneouslywithin the single instant of logical time when the system reacts to its input. In other words,it is valid if the system can be proved to react rapidly enough to perceive all relevant externalevents. It is an abstraction of the commonly used in�nite loop of automatic controllers (inputacquisition, computation, output return). This form of synchrony is however a realisticabstraction, since it is actually present for instance in digital hardware (all computationsare performed within a clock cycle). It is also current in control theory which is preciselythe dedicated application domain of the approach. The control laws are de�ned in terms ofequations on values of the di�erent processed signals at a time t, or, in the case of �lters, attimes t � 1; t � 2; : : :: this time index t is shared by di�erent subterms of the equations. Itcan guarantee deterministic behaviors, in the sense of transition systems: given inputs anda current state, outputs and next state are completely determined. Synchrony facilitates thesemantical manipulations on programs, used in the de�nition of program transformations(e.g., compilation, optimization, distribution) that can be guaranteed to preserve propertiesof behavior (in particular their determinism). This is an advantage in the context of safety-critical applications, where it is important that the behaviors are predictable. This is notthe case of real-time operating systems or general purpose languages like Ada [4], becausetheir asynchronous communication mechanisms and tasking constructs are dependent onparameters of the operating system which are unknown or uncontrolled and can not beanalysed formally [5].The synchronous semantics provides for support to a whole set of tools assisting the designof real-time applications, all along their life-cycle. Indeed, the analysis at the di�erent levelsof abstraction, from requirements through performance evaluation and optimization, downto code generation (and possibly implementation on speci�c hardware through co-design):all this is performed on sound formal bases. The analysis and veri�cation techniques handle2

the logical time aspects of discrete event systems.Synchronous languagesA family of languages is based on the synchronous hypothesis, featuring among othersEsterel [6], Lustre [7], and Signal [8]. In Statecharts [9], the semantics of paral-lelism (called orthogonality) is consistent with the synchronous parallel composition. Theselanguages all have complete environments, with sets of tools based upon their formal se-mantics, and which support speci�cation, formal veri�cation, optimisation and generation ofexecutable code. Their aim is to support the design of safety critical applications, especiallythose involving signal processing and process control. The synchronous technology and itslanguages are available commercially, and applied in industrial contexts [10]. Parallelly, re-search is going on as well as experiments on new features, such as the experiment reportedin this paper.Among synchronous languages, Signal is a real-time synchronized data-
ow language[8]. Its model of time is based on instants, and its actions are performed within the instants.SignalGT _� is an extension that introduces intervals of time, and provides constructs forthe speci�cation of hierarchical preemptive tasks executed on these intervals [11]; this way,it o�ers a multi-paradigm language combining the data
ow and tasking paradigms, forhybrid applications blending (sampled) continuous and discrete transition aspects. Itis integrated to the environment in the form of a preprocessor, and is compatible withthe tools. The Signal programming environment provides users with tools performingthe checking of the consistency of synchronizations between data
ows (e.g. detection ofdependency cycles, i.e. deadlocks), optimisation and automatic code generation. Theseanalyses and transformations are all based on the formal semantics of the language, andprovide for an e�ective and practical formal speci�cation method. From the point of viewof debugging, the methodological approach is to perform it at compile time, closer to theoriginal speci�cation, rather than at run-time. Having this guarantee of logical correctnesson discrete event behaviors, it is then possible to make very accurate estimations of timingproperties of applications, according to the speci�c hardware architecture which can also bemulti-processor; this quantitative analysis is the purpose of the system Syndex [12] used incombination with Signal.Application to active robot visionThis paper presents a real-size experiment of Signal on a robotics system, using this3

language extension. It focuses on the programming methodology aspects; a detailed accountof the vision methods, made elsewhere [13], is outside the scope of this paper. It is illustrativeof the synchronous methodology and its adequateness for that class of systems. It concernsthe estimation of the 3-D structure of complex scenes from 2-D images, acquired by a cameramounted on a robot end-e�ector. The synchrony hypothesis clearly applies to the equationsde�ning a sensor-based control law, and facilitates the implementation of the correspondingcontrol loop. This comes from the fact that the model of time and the equational style ofSignal are similar to those of the control theory which forms the framework of the controlalgorithms. Classical asynchronous languages are less suitable to specify and implement thealgorithms involved in this particular vision problem, and in automated control in general.This is because the asynchronous composition of processes represents actual distributedprocesses and communication channels where there is no notion of global time; however,as was said before, composing systems of equations involves sharing the time index t ofsignals: hence using an asynchronous language imposes to program the reconstruction ofthis synchronization. The previous pointsare illustrated here by the use of Signal, at thevarious levels of the application, for the speci�cation and implementation of the system whichdeals with various domains such as robot control, computer vision and transitions betweendi�erent modes of control.The lowest level concerns the control of the camera motion: the vision system is includedin a control servo loop as a speci�c sensor dedicated to a task. At this level, a robot task isseen as a data
ow function computing the
ow of control values for the actuator from the
ow of sensor input data. The second level concerns the optimal estimation of the 3D param-eters describing a geometrical primitive. Embedded in the same formalism, its speci�cationis made in parallel with the motion control task, involving also a dynamical aspect, in thatit is de�ned in function of past values of observations. The highest level deals with percep-tion strategies, where di�erent estimation processes are performed in sequence, dependingon conditions. Each structure estimation involves gazing on the considered primitive, hencethey have to be performed for each primitive of the scene in sequence, according to a percep-tion strategy. The task-level programming of robots consists in specifying robot tasks andtransitions between them by associating them with modes in which they are enabled [14].SignalGT _�, the tasking extension of Signal [11], is used for the speci�cation of such nestedsequencings of servo-control tasks. 4

SIGNAL EQUATIONAL PROGRAMMING OF ROBOTICS TASKSThe general motivations for the application of Signal to robot control come from thefollowing observations. A robot control law, at the relatively lowest level, consists in theregulation of a task function, which is an equation c = f(s) giving the value of the controlc to be applied to the actuator, in terms of the values s acquired by the sensors. Thecontrol of the actuator is a continuous function f , that can be complex. Such a task canbe composed of several sub-tasks, with a priority order. The implementation of such acontrol law is made by sampling sensor information s into a
ow of values st, which areused to compute the
ow of commands ct: 8t; ct = f(st). This kind of numerical, data
owcomputation is the dedicated application domain of data
ow languages in general, and ofSignal in particular. As indicated by the time index t in this schematical equation, thevalues involved are simultaneously present, and this is preserved when several such equationsare composed. This aspect is adequately handled by the synchrony hypothesis.The Signal equational data-flow real-time languageSignal [8] is a synchronous real-time language, data
ow oriented (i.e., declarative),built around a minimal kernel of operators. This language manipulates signals, which areunbounded series of typed values, and a clock de�ned as the set of instants when values arepresent. For instance, a signal X denotes the sequence (xt)t2T of data indexed by time t ina time domain T . The clocks of di�erent signals are used to de�ne the qualitative, set-theoretic relation between their presences; for example, for a signal x down-sampled fromanother signal y, the clock of x is included in that of y. Signals of a special kind calledevent are characterized only by their clock i.e., their presence. Given a signal X, its clockis noted as event X, meaning the event present simultaneously with X. The constructs ofthe language can be used in an equational style to specify the relations between signals i.e.,between their values and between their clocks. Systems of equations on signals are builtusing a composition construct. Data
ow applications are activities executed over a set ofinstants in time: at each instant, input data is acquired from the execution environment.Output values are produced according to the system of equations considered as a networkof operations.The kernel of the Signal language is based on four operations, de�ning primitive pro-cesses, and a composition operation to build more elaborate ones.� Functions are instantaneous transformations on the data. For example, signal Yt,5

de�ned by the instantaneous function f in: 8t; Yt = f(X1t ;X2t; : : : ;Xnt) is encoded inSignal by: Y := ff X1, X2,: : :, Xng. The signals Y, X1,: : : , Xn are required to havethe same clock.These functions can be de�ned within the Signal language (like boolean or arithmeticoperations extended to series of values); they can also be de�ned as external functions,to be linked at the compilation of the code generated by the compiler. The latter is away of calling functions written in C or Fortran for instance, and to use numerical orgraphical libraries in connection with a Signal program.� Selection of a signal X according to a boolean condition C is: Y := X when C. Theoperands and the result do not generally have identical clock. Signal Y is present ifand only if X and C are present at the same time and C has the value true; when Y ispresent, its value is that of X.� Deterministic merge: Z := X default Y de�nes the union of two signals of the sametype. The clock of Z is the union of that of X and that of Y. The value of Z is the valueof X when it is present, or otherwhise that of Y if it is present and X is not.� Delay, a \dynamic" process giving access to past values of a signal. For example,equation ZXt = Xt�1, with initial value V0 de�nes a dynamic process which is encodedin Signal by: ZX := X$1 with initialization ZX init V0. Signals X and ZX havethe same clock. Derived operators include delay on N instants ($N), and a window Moperation giving access to a whole window of past values (from instants t �M to t),as well as combinations of both operators.� Composition of processes is the associative and commutative operator \|" denotingthe union of the underlying systems of equations. In Signal, for processes P1 andP2, it is written: (| P1 | P2 |). The semantics of primitive processes is given bythe solution of the system of equations, in terms of sets of the possible traces for theinvolved signals. Synchronous composition corresponds exactly to the composition ofsystems of equations, where the resulting semantics is the solution of the resultingequation system, i.e. the traces which are solution to both the composed equationssystems, in other terms the intersection of the solutions to each of them. It canbe interpreted as parallelism, with signals supporting instantaneous communication(sharing the same time index t) between processes.6

textual Signalgraphical interface

dynamical model(veri�cation)
compilation textual editordata-
ow graphsynchronizeddata-
ow graphhierarchicalanalysis transformationscode generationf77, C(execution, simulation)VHDL

Signal compiler
Syndex(distribution, performance evaluation)Figure 1: The Signal design environment.For example, a �lter de�ned by equation yt = (xt + xt�1 + xt�2)=3 which can alsobe written yt = (xt + zxt + zzxt)=3; zxt = xt�1; zzxt = xt�2, is speci�ed in Signalby: (j Y := (X + ZX + ZZX)/3 j ZX := X$1 j ZZX := X$2 j). As in the equationalde�nition, and in contrast to imperative languages, the order in which the equationsare given is immaterial: it does not change the values denoted.Derived processes have been de�ned from the primitive operators, providing programmingcomfort. For instance, synchrofX,Yg speci�es the synchronization of signals X and Y; whenC gives the clock of occurrences of C at the value true; X cell B memorizes values of Xand outputs them also when B is true; the expression X := #Unit init V0 is a counter ofthe occurrences of Unit. Arrays of signals and of processes have been introduced as well.Hierarchy, modularity and re-use of processes are supported by the possibility of de�ningprocess models, and invoking instances. 7

The Signal design environment is a set of tools around the Signal compiler, which isitself more than a translator to object code, as shown in Figure 1. The Signal compilerperforms the analysis of the consistency of the system of equations, and determines whetherthe synchronization constraints between the clocks of signals are veri�ed or not. This isbased on an internal representation featuring a graph of data dependencies between opera-tions, augmented with temporal information coming from the clock calculus: it is called thesynchronized data-
ow graph in Figure 1. This formal symbolic analysis on the speci�ca-tions supports the detection of non-deterministic behaviors, cycles of dependencies betweensignals and logical incoherences. Transformations are applied to the graph in order to builda hierarchy of the clocks of the program following their inclusion relations. Optimizationsfeature the detection of null clocks, and removal of actions associated to that clock, whichwould be dead code. If the program is constrained so as to compute a deterministic solution,then executable code can be automatically produced (in C or Fortran). Other output lan-guages are Syndex (an environment devoted to the distribution and performance evaluationof data
ow algorithms [12]), vhdl (which can be connected to hardware design environ-ments), and a formal model of the dynamical behavior of Signal programs, connected to aproof system, to verify dynamic properties of programs, involving state information (in thedelayed signals) and transitions in reaction to occurrences of other signals. This way, it ispossible to formally specify and verify the satisfaction of dynamical properties of the behav-iors; this has been applied to a production cell controller [15]. The complete programmingenvironment also contains a graphical, block-diagram oriented user interface where processesare boxes linked by wires representing signals, as illustrated in Figure 2(a).The Control and Estimation AlgorithmsGeneral issuesThis section gives a very simpli�ed presentation, corresponding to the focus of this pa-per, of the type of computations involved in the vision-based algorithms, for which generalpresentations can be found in [16, 17, 18]. It concentrates on the aspects that are impor-tant from the point of view of programming. The types of data handled are vectors andmatrices of reals, and the operations performed are arithmetic, inversion, etc : : : The set ofoperations is to be performed on each input data i.e., at each reaction instant in the logicaltime. It corresponds to the control theory equations (given in continous time) adapted tothe discretization of sampled sensor values. The considered algorithms have two speci�c8

features:� First, they have an equational nature: they express relations between various
ows ofdata, in a declarative way. In particular, the iterative aspect in the control loop (ateach instant) is completely implicit.� Second, they are synchronous: the equations involve values of the di�erent quantitiesat the same logical instant.Classical programming methods are not so well adapted to specifying and programmingsuch algorithms. Asynchronous imperative languages require the explicit management of lowlevel aspects of the implementation (like the sequencing of computations imposed by datadependencies), and of the temporal aspects (e.g., down-samplings on a
ow of data, multi-rate parallel computations), for which there is no well-founded support or model. In the caseof this application, the composition is not needed for the programming of implementationparallelism, but of speci�cation parallelism. Therefore, using asynchronous communicationwould introduce unnecessary complexity in the programming. What Signal o�ers here isan adequate high level of abstraction for declarative speci�cation, as well as a coherent andpowerful model of time.Visual Servoing ControlThe control of the camera is performed in a control servo loop where a vision system isincluded as a speci�c sensor dedicated to a task. In order to present the kind of equationsthat are programmed, we describe a general and simple control law for the positioning withrespect to a static object [17], which illustrates the kind of equations that are programmed:Tc = ��A1C(S � Sd) � �A2e2 � A2@e2@t (1)where:� Tc is the velocity to be given to the camera according to the control law� S describes the current position of the object in the image� Sd represents the desired value to be reached by S� C is a matrix which depends on the position of the objects in the image as well as itsshape and 3D position, expressed here by the corresponding parameters Sd and pD.� e2 is a secondary task such as a trajectory tracking9

� A1 and A2 are two projection operators which depend on C and ensure the realizationof the secondary task under the constraint that the primary task (S � Sd) is achieved.� � is a gain to be tuned.In other words, the control law consists of the computation of a velocity, depending on theone hand on a primary task which aims at lowering the error (S�Sd), and on the other handon a secondary task e2 (in our case a trajectory tracking); both sub-tasks interact in such away that the secondary task is performed only when it does not go against the primary task.Figure 2(a) shows the modular description, in Signal (using the graphical interface ofthe programming environment), of a general visual servoing process and the correspondingSignal program in its textual form is depicted in Fig. 2(b).
(a) Signal graphical speci�cation.

(|(| S := CAMERA OUTPUTfCLKg| ROBOT CONTROLfTcg|)|(| ferror,accg :=PERFORMING ERRORfS,SDg| C := C MATRIXfPD,SDg| fA1,A2g := AI MATRIX fCg| tau := PRIMARY TASKfC,A1,errorg| traj := TRAJECTORY TRACKINGfA2,accg| Tc := CAMERA VELOCITYftau,trajg|)| fPD,SDg := DESIRED POSITIONfg|) (b) Equational speci�cation in Signal.Figure 2: Modular description of a general visual servoing process.At a high level of the modular description, the visual servoing process is composed ofthree di�erent sub-modules. A CAMERA OUTPUT module produces a
ow S of image data atvideo rate given by the signal CLK. The signal S has the clock CLK; this data, as well as thedesired 2D position SD and 3D position PD delivered by the DESIRED POSITIONmodule, arereceived as input by the control module. In the subprocesses of the control module, theyare involved in computations with S, hence SD and PD will be given the same clock CLK bythe clock calculus in the compiler. The control module process computes the correspondingcamera velocity Tc. This camera velocity is transmitted to the ROBOT CONTROL module; itconsists basically of a call to a function writing the command in the device's commandregister, therefore it has no output visible at this level of speci�cation. For the same reason,10

the camera module has no visible image input, because the image from which S is computedis acquired by a function call to the image bu�er.The control module itself is hierarchically decomposed into sub-modules. The processnamed PERFORMING ERROR computes two signals: error is the di�erence between the desiredposition given by signal SD and the sensed value S, and acc is an event present when a givenaccuracy is reached, i.e. when the error is less than a given threshold. The C MATRIXprocess computes the matrix C. From the output of this module, a process named AI MATRIXcomputes the two matrices A 1 and A 2. C and A1 are used in combination with the outputerror of the PERFORMING ERRORmodule to determine a component tau of the camera velocityin the process PRIMARY TASK; using A2 and acc, the module TRAJECTORY TRACKING moduleperforms the secondary task computing another component traj. This trajectory trackingis performed only when the event acc is present. The �nal velocity Tc is then computed byprocess CAMERA VELOCITY using the two
ows of data coming from the PRIMARY TASK andthe secondary TRAJECTORY TRACKING task.These sub-modules are processes themselves, instanciations of process models. Di�erentlyfrom function calls, their inputs and outputs are not necessary all synchronized at the sameclock. For example, the signal acc is only present when the value of error reaches a givenaccuracy, i.e. it is present at a clock included in that of the error; hence it is also includedin that of A2, which is computed at all instants. The control module itself can be declaredas the body of a process model, with three inputs and one output, named CONTROL, and canthen be re-used by instanciation, as is illustrated next.Estimation of Structure From Controlled MotionThe recovery of the 3-D description of a scene from a sequence of images is one of themain issues in computer vision. One approach, called dynamic vision, consists in usingthe measure of the camera motion for the 3-D structure estimation of objects featured ina sequence of images. In order to obtain a better accuracy, the camera motion has to becontrolled: this is then called active vision. It can involve �xing at and gazing on the object(i.e. it must have a constant and particular position in the image), adding more constraintson the control of the camera motion [18]. The estimation method is based on the use ofthe current and the past values of the position of the object in the image (i.e Pt and Pt�1).Furthermore, the value of the camera velocity between these two instants t and t�1 must bemeasured. In Signal, the past value of P and the camera velocity can be expressed usingthe delay operator $. In addition, the output of this process is smoothed, by computing11

(a) Signal graphical speci�cation.
(|(| P := CAMERA OUTPUTfCLKg| ROBOT CONTROLfTcg|)| Tc := CONTROLfP,Pd,p estg| Pd := DESIRED POSITIONfg| p est := FILTERfestg|(| ZTc := Tc$1| ZP := P$1| est := ESTIMATIONfP,ZP,ZTcg|)|)(b) Equational speci�cation in Signal.Figure 3: Control and estimation in parallel.the mean value of the current estimation and of the two previous ones. The control processCONTROL presented previously is reused. The estimation process is added to it in such away that it is executed in parallel with the control law, as shown in Fig. 3. Textually, theprogram is shown in Fig. 3(b).This is an example of the signi�cance of the synchronous hypothesis in the framework ofsuch applications. Indeed, in order to improve the behavior of the control law, the C matrixis here computed using each new value provided by the measurement and the estimationprocesses (P and p est instead of Pd and pd). According to the synchrony hypothesis, thevalue at instant t of the C matrix is updated using the estimated 3D parameters and thecurrent position of the primitive in the image at the same logical instant t.SignalGT _� TASKS FOR THE RECONSTRUCTION STRATEGYThe previous section gave a framework for the speci�cation and implementation in Sig-nal of vision-based tasks as well as estimation algorithms. Once a library of such modulesis available, the speci�cation of higher-level, more complex behaviors requires the possibilityto combine these tasks in various ways. Especially, one wants to combine them in sequences,starting and interrupting them on the occurrence of events, that can be either external (com-ing from logical sensors) or internal (e.g., reaching certain thresholds). This level of robotprogramming necessitates preemption structures for concurrent tasks. The purpose of Sig-nalGT _� is precisely to augment Signal with objects and operations for the construction12

valuefunctionaverageof thecomputation reinitialization computation tFigure 4: Phases in speech signal processing.of such preemptive hierarchies of data
ow tasks. These extensions are de�ned on top ofSignal, and handled by a pre-processor. In that sense, being translated into Signal, theyare compatible with the tools of the rest of the environment.The preemption of data-flow tasks in SignalGT _�SignalGT _� is an extension to Signal, handling tasks executing on time intervals andtheir sequencing [11]. The motivation is to provide ways of representing behaviors switchingbetween di�erent modes of continuous interaction with their environment. These modes areidenti�ed by time intervals delimited by discrete start and end events, and within whichtasks are executed. The application domain is the control of physical processes e.g. signalprocessing or robotics, featuring both computations on
ows of sensor data, and discretetransitions in a control automaton.For example in a speech recognition system [8], the processing of the acoustic signalfeatures a segmentation treatment: boundaries of the segments are determined by changesin the signal. These are detected by comparison with an average value, which is computedon a time window on its past values. Such an application presents successive modes orphases: a phase of initialization must compute the value of this average, and then theregular computation can be performed. Hence two phases (reinitialization and computation)alternate on complementary, periodic time intervals as shown in Figure 4. The sequencingbetween these phases is intrinsic: it is imposed by dependencies on results produced andconsumed. Our goal is to provide a programmer with language constructs enabling theexplicit designation of the phases in a process. This is achieved by subdividing its activityinterval into sub-intervals for the di�erent modes, and associating sub-activities to each ofthem.In SignalGT _�, data
ow and sequencing aspects are both encompassed in the same13

� � �X � � � � � � � � � ��close Iopen I � � ���� !X in IX out I � � �� �� � � � � ��� �IFigure 5: Time intervals sub-dividing]�,!].language framework, thus relying on the same model for their execution and analysis (forthe compilation and veri�cation of correctness of programs). In this approach, a data
owapplication is considered to be executed from an initial state of its memory at an initialinstant �; it is before the �rst event of the reactive execution. A data
ow process has notermination speci�ed in itself: therefore its end at instant ! can only be decided in reactionto external events or the reaching of given values. Hence ! is part of the execution, and thetime interval on which the application executes is the left-open, right-closed interval]�,!].Time intervals are introduced in order to enable the structured decomposition of]�,!]into left-closed, right-open intervals as illustrated in Figure 5, and their association withprocesses [11]. An interval I is delimited by occurrences of bounding events at the beginningB and at the end E. It has the value inside between the next occurrence of B and the nextoccurrence of E, and outside otherwise. It has an initial value I0 (inside or outside). Thisis written: I :=]B, E] init I0. Like]�,!], sub-intervals are left-open and right-closed.This choice is coherent with the behavior expected from reactive automata: a transitionis made according to a received event occurrence and a current state, which results in anew state. Hence, the instant where the event occurs belongs to the time interval of thecurrent state, not to that of the new state. The operator compl I de�nes the complementof an interval I, which is inside when I is outside and reciprocally. Operators open Iand close I respectively give the opening and closing occurrences of the bounding events.Occurrences of a signal X inside interval I can be selected by X in I, and reciprocally outsideby X out I. In this framework, open I is B out I, and close I is E in I.Tasks consist in associating some (sub)process of the application with some (sub)inter-val of]�,!] on which it is executed. Traditional processes in Signal are tasks active on]�,!]: they are persistent throughout the whole application. Inside the task interval, thetask process is active i.e., present and executing normally. Outside the interval, the processis inexistent i.e., absent and the values it keeps in its internal state are unavailable. In some14

� !I (a) Task on interval I. !�I �0 !0 !000�000�00 !00(b) Task each interval I.Figure 6: Tasks associating a time interval with a process.sense, it is out of time, its clock being cut. Tasks are de�ned by the process P to be executed,the execution interval I, and the starting state (current, or initial) when (re-)entering theinterval. More precisely, the latter means that, when re-entering the task interval, the processcan be re-started from its current state at the instant where the task was suspended (i.e.,in a temporary fashion): this is written P on I. Figure 6(a) illustrates that the possiblebehaviors of task P on I are those that process P would have had on interval]�,!], butthey are split in time on the successive occurrences of interval I. Alternately, a task canbe re-started from its initial state as de�ned by the declaration of all its state variables, ifthe task was interrupted (meaning: aborted in a de�nitive fashion): P each I. In this case,as illustrated in Figure 6(b), the behaviors of task P each I are like pre�xes of those thatP would have had on]�,!], on each of the successive occurrences of interval I. In thatsense, each of these successive occurrences of I is a new]�0,!0],]�00,!00], ..., for P. Theprocesses associated with intervals can themselves be decomposed into sub-tasks: this way,the speci�cation of hierarchies of complex behaviors is possible.Task sequencing and preempting is achieved as a result of constraining intervals andtheir bounding events, and associating activities to them by constructing hierarchical tasks.Parallelism between several tasks is obtained naturally when tasks share the same interval,or overlapping intervals. Sequencing tasks then amounts to constraining the intervals of thetasks, by constraining their bounding events. Using on and each, as de�ned above, enablescontrol of activities and more elaborate behaviors can be speci�ed. This way, it is possibleto specify hierarchical parallel place/transition systems. Each time interval holds some stateinformation, and events cause transitions between these states. For example, in the behaviorillustrated in Figure 7(a), a transition leads from the initial place S1 to place S2 on theoccurrence of an event E, except if the event C occurs before, leading to place S3. If E andC happen synchronously or are constrained to be equal, then both places S2 and S3 are15

S1 S2S3ED CFA B(a) Hierarchical place/transition system. (| S1 :=](D in S2 default F in S3),E default C] init inside| S2 :=]E in S1, D] init outside| S3 :=]C in S1, F] init outside|) each]A, B](b) Speci�cation in SignalGT _�.Figure 7: Task sequencing and preempting in SignalGT _�.entered. This is a sub-behavior attached to a place entered upon event A and left upon eventB. This can be coded by a task and intervals such that the closing of the one is the openingof the other, as in the code shown in Figure 7(b). This example illustrates a hierarchy oftasks and intervals; it could also have featured data-
ow equations. This is the advantageof embedding such constructs into a data-
ow language and environment: it enables theintegration of the two aspects for the speci�cation of hybrid applications.The encoding of time intervals and tasks into the Signal kernel [11] is implemented asa pre-processor to the Signal compiler, called SignalGT _�. It has also been used in thespeci�cation and implementation of a model of the controller of a power transformer stationand behavioral animation in a computer graphics-based simulation environment.Reconstruction Strategies for Complex ScenesSequencing vision tasksThe purpose of the vision application under consideration is the reconstruction of environ-ments composed of several objects such as cylinders and polyhedral objects. As mentioned inthe previous section, the camera �xates at and gazes on it and performs a particular motionusing active vision, in order to obtain a precise and robust estimation of the structure of aselected primitive,. So, the estimation has to be successively performed for each primitiveof the scene, with di�erent phases: selection of a primitive, precise active estimation, andconcurrently, coarse estimation of the other ones, as well as the creation or the update of alist of 2-D segments which contains a 2-D description of the observed scene. For this, tasksare de�ned that associate the structure estimation and other processes with a time intervalon which they are active (see Figure 8). The transitions between tasks are discrete eventsand are function of the image data, the estimated parameters of the primitives, and the16

IE IRECIC IR Inat IslIR ICIclIri Iri IEIcvInat ICCylinder=true Cylinder=falseLISTempty=false LISTempty=false LISTempty=true
Figure 8: Speci�cation of the sequencing in terms of activity intervals: a possible trace.state of the list of segments. Concerning termination of estimation processes, each activeestimation ends when all the primitive parameters have been accurately computed with asu�cient precision. Each coarse estimation ends when the corresponding segment gets outof the image or when the active estimation ends. After each estimation, the list of 2-Dsegments is updated, as well as the 3D map of the scene, a new segment is chosen and another estimation is performed.Figure 8 illustrates the speci�cation of the behavior of the system using a possible ex-ecution trace. An exploration phase computes a new camera position and detects in thecorresponding image the list of 2-D segments; it is active during the time interval IE. Inalternance with this, i.e.when not in IE, the scene reconstruction process is active on IREC.It is itself an alternance between a primitive selection process, on interval IC, and the prim-itive reconstruction. The selection chooses a segment in the list to be considered. If the listis empty (i.e., LISTempty=true), it causes the scene reconstruction (IREC) to exit. Whenthe list is not empty, the primitive reconstruction process for the chosen primitive on IR isitself decomposed into sub-activities. It begins with a recognition process which estimatesthe nature of the considered primitive (segment or cylinder), on Inat, which ends with theboolean event Cylinder. It continues with the estimation of the parameters of its 3D struc-ture (according to the value of Cylinder: in the case of a segment (Cylinder=false), onlyits length on interval Isl; in the case of a cylinder (Cylinder=true), its radius and posi-tion of axis on Icv, and then its length on Icl). In parallel with this estimation, a coarseestimation of some primitives can be performed on intervals Iri. After each estimation of aprimitive, the list of 2D segments is updated and a new selection is performed on IC. Eachvision-based task incorporated in this scheme is a data-
ow task based on the visual servoingapproach. They are implemented as described previously.17

Termination and parallelismInteresting points of the speci�cation in SignalGT _� are the treatment of the terminationand sequencing of vision data-
ow tasks, and that of the parallelism between them.A data-
ow process de�nes, like our vision tasks, a behavior, but not a termination: thisaspect must be de�ned separately. One way of deciding on termination of a task is to applycriteria for reaching a goal depending on a condition involving acquired sensor values orcomputations (e.g. a given precision is reached). The evaluation of this condition must beperformed at all instants: hence this evaluation is another data
ow treatment. The instantwhen the condition is satis�ed can be marked by a discrete event, which, causing terminationof the task, can also cause a transition to another task at the higher level of the reactivesequencing. In this sense, this event can be used to specify the end of the execution intervalof the task. Evaluation of such conditions can be made following a dynamic evolution:a sequence of modes for evaluation of the condition can be de�ned, becoming �ner (andpossibly more complex) when nearing interesting or important values.Parallelism between two tasks is transparent to the programmer using the compositionoperator. This is the case, for example, of the coarse estimation process and the activeestimation process. To perform these estimations, they both use the same information (e.g.the measure of camera velocity, the image data at current and previous instants), in such away, according to the synchrony hypothesis, that they can use it at the same logical instant.In fact, it is a parallelism of speci�cation, and the compiler manages all the synchronizationand communication between tasks.Part of the speci�cation in SignalGT _� corresponding to Fig. 8 is given in Fig. 9, in asimpli�ed form keeping only the essential aspects, for the sake of brevity and readability (i.e.skipping declarations and some of the structure of the actual program). It does not detailthe processes associated to the intervals, which can be described as follows:� Exploration, which builds a list of 2-D segments, and outputs the boolean signalLISTempty at the value false, hence ending interval IE.� Choice outputs the boolean signal LISTempty: the occurrence of this signal ends in-terval IC.� Nature outputs the boolean signal Cylinder, which ends interval Inat. The value ofCylinder is true if the primitive is a cylinder, false if it is a segment.� Cylinder vertex, Cylinder length and Segment length output the respective pre-18

Application:(| IE :=] when LISTempty, when not LISTempty] init inside| IREC := comp IE| Exploration each IE| Structure estimation each IREC|)Structure estimation:(| IC :=] close Icl default close Isl, LISTempty] init inside| IR := comp IC| Choice each IC| Primitive estimation each IR|)Primitive estimation:(| Optimal estimation| (| Coarse estimation1 | : : : | Coarse estimationn |)|)Optimal estimation:(| Inat :=] LISTempty, Cylinder] init inside| Nature each Inat| Icv :=] when Cylinder, when (jpreccvj< "cv)] init outside| Cylinder vertex each Icv| Icl :=] close Icv, when (jprecclj< "cl)] init outside| Cylinder length each Icl| Isl :=] when not Cylinder, when (jprecslj< "sl)] init outside| Segment length each Isl|)Coarse estimationi:(| Iri :=] New Segment, Segment Lost] init outside| Coarse estimation each Iri|) Figure 9: Speci�cation of the reconstruction strategy.cision measures preci which, when they reach a desired value "i, end the respectiveintervals.� The tasks Coarse estimationi perform a sub-optimal estimation of segments in theimage other than the chosen one. An instance i of it is started on the event of thedetection of a segment: New Segment. It is stopped when the segment disappears fromthe image (event Segment Lost). Several instances can be active in parallel. Theactive coarse estimation tasks are all preempted at the end of the optimal estimationtask i.e., when leaving IR.IMPLEMENTATION IN A ROBOTICS CELLThe whole application presented in this paper has been implemented on an experimentaltestbed composed of a CCD camera mounted on the end e�ector of a six degrees of freedomcartesian robot (see Fig. 10(a)). The image processing part is implemented in C and per-formed on a commercial image processing board (EDIXIA IA 1000). The implementation of19

the control law, the 3D structure estimation and the sequencing was carried out using theSignal language running on a Sparc 20 workstation. Fig. 10(b) shows our testbed robotarchitecture.
(a) Camera mounted on a 6 dof robot. VME

Bit3

sbus

SIGNAL

Bit3 Bit 3

EDIXIA IA 1000

Robot Control

Camera CCD

6dof

ROBOT AFMA
Sun Sparc 20 (b) Architecture.Figure 10: The experimental robotic cell.Figure 11 shows a graphical view of the reconstruction environment, which was built usingOSF/Motif. The event-based management of this graphical interface is also programmed inSignal; only X11 functions are de�ned and called as external processes. In Fig. 11, lookingfrom the bottom to the top of the environment, the following are represented: the currentstate of the di�erent time intervals (i.e., activity of tasks), the evolution of the parametersdescribing the selected primitive, the error between the current and the desired positionof the primitive in the image, an automaton-like representation of the behavior, the imagewith the list of segments superimposed on it and �nally the current representation of thereconstructed scene. RELATED WORK AND DISCUSSIONRelated workA review of the techniques classically used for real-time programming is given in [5].The application of real-time techniques to vision applications is reviewed in [19]. The mostcommon model of time for concurrent programming is asynchrony (see e.g., [4, 20, 21]). Twomain approaches raised: one is based on formal methods (such as �nite state automata orPetri Net), the other is based on tools able to express concurrency (real timeOS, or concurentprogramming languages). The �nite state automata are well known tools, deterministic,e�cient and they allow the formal veri�cation of properties. However, the composition oflittle automata can yeld a very big one often impossible to understand; furthermore a little20

Figure 11: The synchronous environment for 3D scene reconstruction.change in the speci�cation can provoke a deep transformation of the automaton. Finally,it can be pointed out that the expression of parallelism and preemption of tasks are notsupported by this formalism. Petri Nets are often used for small applications and if theysupport concurrency, they do not support hierachical design, and they are not deterministic.The second approach is based on the expression of concurrency. Concurrent program-ming languages such as Occam (inspired by asynchronous composition in CSP) or Adahave numerous advantadges. They are well structured and allow a good modularity. But,unlike for synchronous languages [5], the synchronisation between processes is made ac-cording to a composition which takes into account the asynchrony of communications asperformed during execution. This makes that the transitions made by composed processescan be made at di�erent rates, and the resulting state is unpredictable; hence the behavior isnon-deterministic. This is a problem for their use in the implementation of reactive systems,notably if they are to be deterministic w.r.t. inputs; composing two processes involves theextra complexity of specifying all the synchronization. The most classical way for real time21

systems integration is the connection of classical programs using real-time Operating System(OS) primitives. Here, the main problem is the number of programs to analyse and connect:diagnostic and maintenance is di�cult, temporal constraints are not expressed in the tasks(programs) description but are satis�ed using the OS primitives for process synchroniza-tion/communication. This leads to systems which are generally non deterministic, and onwhich no safety properties can be formally guaranteed.On the other side is the family of synchronous languages. The main drawbacks of aclassical asynchronous implementation of reactive systems can be avoided using this class oflanguages. Resulting from the synchrony hypothesis, these languages are determistic, theyallow concurrency and hierarchical speci�cation. They provide safety, logical correctness(respect of the input/output speci�cation), and temporal correctness. Furthermore theyare based on a mathematically well de�ned semantics, supporting veri�cation tools. Forexample, the compilation of Signal code provides a graph on which static correctness proofscan be derived. It can also produce an equivalent dynamical equations system, on whichdynamical properties can be proved. Using the tool Sigali, the absence of deadlocks orproperties speci�c to the application can be checked. In Reference [22], a variety of formalspeci�cations and implementations of a real-time reactive system are proposed. This bookcontains a comparative survey of various languages (among which Signal [15], and alsoLustre, Esterel, StateCharts, Ada, ...) used to specify, verify and implement acontroller for a robotic production cell.An approach related to the integration of data-
ow and sequencing of SignalGT _� isArgolus [23]. It integrates Argos (hierarchical parallel automata) with Lustre (data
ow); in SignalGT _� sequencing is speci�ed in a more declarative style. A general study ofpreemption and concurrency, lead in combination with the imperative synchronous languageEsterel, resulted in the possibility to control the starting, suspension, resuming and ter-mination of external tasks [24]. However, the fact that these tasks can not be de�ned withinthe same language framework limits the control on interactions between di�erent levels.From the point of view of robot programming, the approach of applying synchronouslanguages is adopted in the ORCCAD environment [25]. This approach aims at a completedesign environment for robot programming, and has more general goals than ours, which isfocused on robot vision and the application of the Signal environment as it is. However,task-level programming is done using Esterel [14], and the data-
ow speci�cation of controllaws is done using another formalism at a di�erent level, and controlled as an external task22

as said before. DiscussionSignal is a data-
ow language, and as such not adapted to all kinds of computation. Forexample, image processing or linear algebra cannot generally be performed with Signal (oronly with di�culty). Arrays are available in Signal, but the algorithms involved for this kindof computation (for example the inverse of a matrix) are not naturally data-
ow. Externalfunctions written with other languages (C and Fortran for instance), can be called from theSignal program. The same method is used in our application for the management of theset of segments which is obviously not the application domain of synchronous languages.However, the use of such functions is not performed asynchronously: they are considered asany function de�ned in Signal, thus the synchronous framework is not left. Furthermore,the management of asynchronous inputs or interruptions is not supported. However, thisis not necessary in this kind of application where the inputs are provided regularly andperiodically (here at video rate). Finally, dynamical management of time at the executionis not treated here, but this is not necessary due to the regular aspect of the loops.Let us now emphasize the merits of synchronous languages, and more particularly Sig-nal, for this kind of applications. Dealing with implementation issues, advantages can befound at both control and task level. The data
ow framework is particularly appropriatefor the speci�cation of visual servoing because of the equational and data
ow nature ofthe closed-loop control laws, which can be implemented as control functions between sensordata and control outputs. The possibility of implicitly specifying parallel behaviors has beenproved useful for the 3D structure estimation using active vision. The synchrony hypoth-esis corresponds well to the model of time in the equations de�ning the control laws. Thesecond point concerns tasks sequencing and preempting. The language-level integration ofthe data
ow and sequencing frameworks have been achieved as an extension of Signal:SignalGT _�. It enables the de�nition of time intervals, their association with data
ow pro-cesses and provides constructs for the speci�cation of hierarchical preemptive tasks. This way,it o�ers a multi-paradigm language combining the data
ow and multi-tasking paradigms,for hybrid applications blending (sampled) continuous and discrete transition aspects. Sig-nalGT _� can be used for the design of a hierarchy of parallel automata, with the advantages ofboth the automata (determinism, tasks sequencing) and concurrent programming languages(parallelism between tasks) without their drawbacks. Note that SignalGT _� has not been23

developed only for the application presented in this paper, but for the speci�cation of othercomplex applications (such as behavioral animation in computer graphics [26] or the designof a transformer power station [27]).The semantics of Signal is also de�ned via a mathematical model of multiple clocked
ows of data and events. Signal programs describe relations on such objects: in thatsense, programming is done via constraints. The compiler calculates the solutions of thesystem and may thus be used as a proof system. Its programming environment, which isnot limited to the compiler, features tools for the automated analysis of formal properties.The compilation of Signal code provides a dependencies graph on which static correctnessproofs can be derived: it checks automatically the network of dependencies between data
ows and detects causal cycles, temporal inconsistencies from the point of view of timeindexes. Signal synthesizes automatically the scheduling of the operations involved insidea control-loop (note that this work is an error-prone task when done by hand in classicalC-like languages), and this scheduling is proved to be correct from the point of view of datadependencies. Furthermore, the Signal-code is thus easy to modify since the re-synthesisis automatic. Finally, the compiler synthesizes automatically a global optimization of thedependencies graph.The Signal environment provides other tools (note that they have not been used directlyin our application; see [15]): Signal can produce an equivalent dynamical equation system,on which dynamical properties can be proved. The absence of deadlocks (liveness), reacha-bility of states (or on the contrary non-reachability of a \bad" state), or properties speci�cto the application can thus be checked. These properties (both static and dynamic) checkingtools are important at two levels: for development purposes it is important to verify that thesystem really has the expected or required behavior; and for the certi�cation of the safety ofthe systems, which is meaningful regarding safety-critical applications. Research is going onconcerning the distribution of Signal programs on parallel machines, with automatic gen-eration of separate code modules and of their communications. Finally, the compilation ofSignal into VHDL opens the ways towards hardware/software co-design. An environmentwith such tools provides e�ective assistance in the context of software engineering; otherclassical asynchronous languages do not o�er them, while other synchronous languages likeEsterel or Lustre do.As a conclusion, the contribution of the synchronous approach, and of Signal in partic-ular, is that it has a programming style closer to a control engineer's speci�cation and that24

it provides him with a set of tools relieving him from error-prone tasks. Even if some otherlanguages are sometimes provided with interesting other functionalities (management of theduration of tasks, dynamic scheduling, : : :), they do not o�er the ones mentioned here, basedon the synchronous model. CONCLUSIONThe objective of this paper is to report on an experiment showing that synchronous lan-guages are suitable for specifying and implementing vision tasks at di�erent levels: cameramotion control (vision-based closed loop control), perception task (structure estimation fromcontrolled motion), and application (vision task sequencing). The �rst question addressedis to examine what the advantages are of using a data-
ow synchronous language for pro-gramming visual servoing. The data
ow paradigm is particularly adequate and suitablebecause of the equational and data
ow nature of the closed loop control laws, which can beimplemented as control functions between sensor data and control output. The possibilityof specifying implicitely parallel behaviors proved useful when adding structure estimation.The synchrony hypothesis corresponds well to the model of time in the equations de�ningthe control laws, and it is used by the compiler to perform a static veri�cation of the logicaltiming correctness.The second point concerns the speci�cation of more complex applications, involving tran-sitions between modes, i.e. the sequencing of data-
ow tasks. The language-level integra-tion of the data
ow and task preemption paradigms is made in an extension to Signal:SignalGT _�. It enables the designation of time intervals, their association with data
owprocesses in order to form tasks, and the sequencing of these data
ow tasks. This way,the whole application can be speci�ed in Signal, from the discrete event driven transitionbehavior down to the (sampled) continuous servoing loop. The synchrony hypothesis corre-sponds well to the model of time in the equations de�ning the control laws, and it is used bythe compiler to perform a static veri�cation of the logical timing correctness. Implementationand experiments have been carried out on a robotic cell.As a perspective in the direction of robot programming, it would be interesting to con-sider a generalization of the structure of data-
ow tasks proposed in this paper, towards aprogramming environment dedicated to the design of sensor-based control tasks followingthe task-function approach, as presented in the perspectives of [25].25

AcknowledgmentThis work was partly supported by the CNRS inter-PRC project VIA (Vision Intention-nelle et Action) and by the MESR under contribution to a student grant. The authors wishto thank Samuel Ketels and Florent Martinez who implemented part of the experimentalwork.References[1] A. Benveniste and G. Berry. The synchronous approach to reactive and real-time sys-tems. Proc. of the IEEE, 79(9):1270{1282, September 1991.[2] D. Harel, A. Pnueli. On the development of Reactive Systems In K.R. Apt, editor,Logics and Models of Concurrent Systems, vol. 13 of NATO ASI Series, pp. 477-498,Springer Verlag, 1985.[3] P.J. Ramadge, W.M. Wonham. The Control of Discrete Events Systems. Proc. of theIEEE, 77(1):81{97, January 1989.[4] T.P. Baker, O. Pazy. Real time features for Ada9x. In Proc. of the IEEE Real TimeSystems Symposium, pp. 172{180, December 1991.[5] G. Berry. Real-time programming: special purpose languages or general purpose lan-guages. In Proc. of the 11th IFIP World Congress, pp. 11{17, San Fransisco, California,1989.[6] F. Boussinot and R. de Simone. { The esterel language. { Proc. of the IEEE,9(79):1293{1304, September 1991.[7] N. Halbwachs. Synchronous programming of reactive systems. Kluwer, 1993.[8] P. Le Guernic, M. Le Borgne, T. Gautier, and C. Le Maire. Programming real timeapplication with Signal. Proc. of the IEEE, 79(9):1321{1336, September 1991.[9] D. Harel. Statecharts: a visual formalism for complex systems. Science of Computerprogramming, 8(3):231{274, 1987.[10] A. Benveniste. Synchronous languages provide safety in reactive systems design. ControlEngineering, pp. 87{89, September 1994.26

[11] E. Rutten and P. Le Guernic. The sequencing of data
ow tasks in Signal.In Proc. of the ACM SIGPLAN Workshop on Language, Compiler and Tool Sup-port for Real-Time Systems, Orlando, Florida, June 1994. (ftp cs.umd.edu, �le/pub/faculty/pugh/sigplan realtime workshop 94/rutten.ps.Z).[12] Y. Sorel. Massively parallel computing systems with real-time constraints: the \al-gorithm-architecture adequation" methodology. In Proc. of the Massively Parallel Com-puting Systems Conference, Ischia, Italy, 1994.[13] E. Marchand, E. Rutten, and F. Chaumette. From Data-Flow Task to Multi Task-ing: Applying the Synchronous Approach to Active Vision in Robotics. Accepted forpublication in IEEE Trans. on Control Systems Technology, 1996.[14] E. Coste-Mani�ere, B. Espiau, and E. Rutten. A task-level robot programming languageand its reactive execution. In IEEE Int. Conf. on Robotics and Automation, pp. 2751{2737, Nice, France, May 1992.[15] T. Amagbegnon, P. Le Guernic, H. Marchand, and E. Rutten. Signal { the speci�cationof a generic, veri�ed production cell controller. In [22]. (chap. VII, pp. 115 { 129)[16] F. Chaumette, S. Boukir, P. Bouthemy, and D. Juvin. Structure from controlled motion.IEEE Trans. on Pattern Analysis and Machine Intelligence, 18(5):492{504, May 1996.[17] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual servoing in robotics.IEEE Trans. on Robotics and Automation, 8(3):313{326, June 1992.[18] E. Marchand and F. Chaumette. Controlled Camera Motions for Scene Reconstructionand Exploration. In IEEE Int. Conf. on Computer Vision and Pattern Recognition,CVPR'96, pp. 169{176, San Francisco, CA, USA, June 1996.[19] A.D.H. Thomas, M.G. Rodd, J.D. Holt, C.J. Neill. Real Time Industrial Visual Inspec-tion: A Review. Real Time Imaging, 1:139-15, 1995.[20] C.AS.R. Hoare. Communicating Sequential Systems. Prentice-Hall, 1985.[21] R. Milner. A calculus of communicating systems. LNCS no 92, Springer, 1980.[22] C. Lewerentz, T. Lindner, editors. Case Study Production Cell { A Comparative Studyin Formal Software Development, LNCS no. 891, Springer, January, 1995.27

[23] M. Jourdan, F. Lagnier, F. Maraninchi, and F. Raymond. A multiparadigm languagefor reactive systems. In Proc. of the IEEE Int. Conf. on Computer Languages, ICCL'94,Toulouse, France, May 1994.[24] G. Berry. Preemption in concurrent systems. In Proc. of the 13th Conference on Foun-dations of Software Technology and Theoretical Computer Science, Bombay, India, De-cember 1993. LNCS no 761, Springer.[25] D. Simon, B. Espiau, E. Castillo, and K. Kapellos. Computer-aided design of a genericrobot controller handling reactivity and real-time controller issues. IEEE Trans. onControl Systems Technology, 1(4):213{229, December 1993.[26] S. Donikian, E. Rutten. Reactivity, concurrency, data-
ow and hierarchical preemptionfor behavioral animation. In R.C. Veltkamp, E.H. Blake (eds.), Programming Paradigmsin Graphics, Springer, Computer Science, 1995. (pp. 137{153,169)[27] H. Marchand, E. Rutten, M. Samaan. Synchronous design of a transformer station con-troller with Signal. In Proceedings of the 4th IEEE Conference on Control Applications,CCA'95, Albany, New York, September 28{29, 1995. (pp. 754{759)

28

