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Abstract

We consider the inverse problem of finding the temperature distribution and the heat source whenever the temperatures
at the initial time and the final time are given. The problem considered is one dimensional and the unknown heat source
is supposed to be space dependent only. The existence and uniqueness results are proved.
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1. Introduction

In this paper, we are concerned with the problem of finding u(x, t) (the temperature distribution) and f (x) (the
source term) in the domain QT = (0, 1) × (0,T ) for the following system

Dα
0+ (u(x, t) − u(x, 0)) − uxx(x, t) = f (x), (x, t) ∈ QT , (1)

u(x, 0) = φ(x) u(x,T ) = ψ(x), x ∈ [0, 1], (2)
u(1, t) = 0, ux(0, t) = ux(1, t), t ∈ [0,T ], (3)

where Dα
0+

stands for the Riemann-Liouville fractional derivative of order 0 < α < 1, φ(x) and ψ(x) are the initial and
final temperatures respectively. Our choice of the term Dα

0+
(u(x, .) − u(x, 0))(t) rather then the usual term Dα

0+
u(x, .)(t)

is to avoid not only the singularity at zero but also to impose meaningful initial condition.
The problem of determination of temperature at interior points of a region when the initial and boundary conditions

along with heat source term are specified are known as direct heat conduction problems. In many physical problems,
determination of coefficients or right hand side (the source term, in case of the heat equation) in a differential equation
from some available information is required; these problems are known as inverse problems. These kind of problems
are ill posed in the sense of Hadamard. A number of articles address the solvability problem of the inverse problems
(see [1], [2], [3], [4], [5], [6], [7], [8] and references therein).

From last few decades fractional calculus grabbed great attention of not only mathematicians and engineers but
also of many scientists from all fields. Indeed fractional calculus tools have numerous applications in nanotechnology,
control theory, viscoplasticity flow, biology, signal and image processing etc, see the latest monographs, [9], [10], [11],
[12], [13] articles [14], [15] and reference therein. The mathematical analysis of initial and boundary value problems
(linear or nonlinear) of fractional differential equations has been studied extensively by many authors, we refer to [16],
[17] , [18], [19], [20] and references therein.

In the next section we recall some definitions and notations from fractional calculus. Section 3 is devoted to our
main results; we provide the expressions for the temperature distribution and the source term for the problem (1)-(3).
Furthermore, we proved the existence and uniqueness of the inverse problem.
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2. Preliminaries and notations

In this section, we recall basic definitions, notations from fractional calculus (see [11], [12], [13]).
For an integrable function f : R+ → R the left sided Riemann-Liouville fractional integral of order 0 < α < 1 is

defined by

Jα0+ f (t) :=
1
Γ(α)

t∫
0

f (τ)
(t − τ)1−α dτ, t > 0, (4)

where Γ(α) is the Euler Gamma function. The integral (4) can be written as a convolution

Jα0+ f (t) = (ϕα ⋆ f )(t), (5)

where

ϕα :=
{

tα−1/Γ(α), t > 0,
0 t ≤ 0. (6)

The Riemann-Liouville fractional derivative of order 0 < α < 1 is defined by

Dα
0+ f (t) :=

d
dt

J1−α
0+ f (t) =

1
Γ(1 − α)

d
dt

t∫
0

f (τ)
(t − τ)α

dτ. (7)

In particular, when α = 0 and α = 1 then D0
0+

f (t) = f (t) and D1
0+

f (t) = f ′(t) respectively; notice that the Riemann-
Liouville fractional derivative of a constant is not equal to zero.

The Laplace transform of the Riemann-Liouville integral of order 0 < α < 1 of a function with at most exponen-
tially growth is

L{Jα0+ f (t) : s} = L{ f (t) : s}/sα.

Also, for 0 < α < 1 we have

Jα0+Dα
0+

(
f (t) − f (0)

)
= f (t) − f (0). (8)

The Mittag-Leffler function plays an important role in the theory of fractional differential equations, for any z ∈ C
the Mittag-Leffler function with parameter ξ is

Eξ(z) =
+∞∑
k=0

zk

Γ(ξk + 1)
(Re(ξ) > 0). (9)

In particular, E1(z) = ez

The Mittag-Leffler function of two parameters Eξ,β(z) which is a generalization of (9) is defined by

Eξ,β(z) =
+∞∑
k=0

zk

Γ(ξk + β)
(z, β ∈ C; Re(ξ) > 0). (10)

3. Main Results

Let eξ(t, µ) := Eξ(−µtξ) where Eξ(t) is the Mittag-Leffler function with one parameter ξ as defined in (9) and µ is
a positive real number. Let us state and prove the

Lemma 3.1. The solution of equation
v(t) + µJα0+v(t) = g(t) (11)

for µ ∈ R satisfies the integral equation

v(t) =

t∫
0

g′(t − τ)eα(τ, µ)dτ + g(0)eα(t, µ), (12)
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Proof. Taking the Laplace transform of both sides of the equation (11), it follows

L{v(t) : s} = sαL{g(t) : s}
sα + µ

. (13)

There are different ways for getting the solution from the equation (13) by the inverse Laplace transform.
Writing the equation (13) as

L{v(t); s} = sα−1

sα + µ

(
sL{g(t) : s} − g(0)

)
+

sα−1

sα + µ
g(0);

and using the inverse Laplace transform, we obtain

v(t) =

t∫
0

g′(t − τ)eα(τ, µ)dτ + g(0)eα(t, µ),

which is (12).

3.1. Solution of the inverse problem
The key factor in determination of the temperature distribution and the unknown source term for the system (1)-(3)

is the specially chosen basis for the space L2(0, 1) which is

{2(1 − x), {4(1 − x) cos 2πnx}∞n=1, {4 sin 2πnx}∞n=1}. (14)

In [21], it is proved that the set of functions in (14) forms a Riesz basis for the space L2(0, 1), hence the set is
closed, minimal and spans the space L2(0, 1).

The set of functions (14) is not orthogonal and in [22] a biorthogonal set of functions given by

{1, {cos 2πnx}∞n=1, {x sin 2πnx}∞n=1}, (15)

is constructed.
The solution of the inverse problem for the linear system (1)-(3) can be written in the form

u(x, t) = 2u0(t)(1 − x) +
∞∑

n=1

u1n(t)4(1 − x) cos 2πnx +
∞∑

n=1

u2n(t)4 sin 2πnx (16)

f (x) = 2 f0(1 − x) +
∞∑

n=1

f1n4(1 − x) cos 2πnx +
∞∑

n=1

f2n4 sin 2πnx (17)

where u0(t), u1n(t), u2n(t), f0, f1n and f2n are to be determined. By plugging the expressions of u(x, t) and f (x) from
(16) and (17) into the equation (1), the following system of fractional differential equations is obtained

Dα
0+ (u2n(t) − u2n(0)) − 4πnu1n(t) + 4π2n2u2n(t) = f2n, (18)

Dα
0+(u1n(t) − u1n(0)) + 4π2n2u1n(t) = f1n, (19)

Dα
0+(u0(t) − u0(0)) = f0. (20)

Since Jα0+1 = tα/Γ(1 + α) and for 0 < α < 1, Jα0+Dα
0+

(u0(t) − u0(0)) = u0(t) − u0(0) then the solution of equation (20) is

u0(t) =
f0tα

Γ(1 + α)
+ u0(0). (21)

Setting λ := 4π2n2, F(t) := f1ntα/Γ(1 + α) + u1n(0) then equation (19) can be written as

u1n(t) + λJα0+u1n(t) = F(t),
3



and using lemma (3.1), the solution of the equation (19) is given by

u1n(t) =
f1nα

Γ(1 + α)

t∫
0

(t − τ)α−1eα(τ, λ)dτ + u1n(0)eα(t, λ). (22)

Noticing that equation (18) can be written as

u2n(t) + λJα0+u2n(t) = h(t) (23)

where h(t) := Jα0+

(
f2n + 4πnu1n(t)

)
+ u2n(0), so its solution by virtue of lemma (3.1) is

u2n(t) =

t∫
0

h′(t − τ)eα(τ, λ)dτ + h(0)eα(t, λ). (24)

As h(0) = u2n(0) and

h′(t) =
d
dt

[
Jα0+ ( f2n + 4πnu1n(t)) − u2n(0)

]
= Dα

0+

(
f2n + 4πnu1n(t)

)
.

From equation (22), we have

Dα
0+u1n(t) =

f1nα

Γ(1 + α)
Dα

0+ t
α−1 ⋆ eα(t, λ) + u1n(0)Dα

0+eα(t, λ),

since Dα
0+

tα−1 = 0 and Dα
0+

eα(t, λ) = eα,1−α(t, λ), where eα,β(t, λ) := tβ−1Eα,β(−λtα); consequently the equation (24)
becomes

u2n(t) =

t∫
0

s(t − τ)eα(τ, λ)dτ + u2n(0)eα(t, λ). (25)

where we have set

s(t) := 4πnu1n(0)eα,1−α(t, λ) + f2n
t−α

Γ(1 − α)
.

The unknown constants are u2n(0), u1n(0), u0(0), f2n, f1n and f0. In order to get these unknowns, we use the initial
and final temperatures as given in (2)

2u0(0)(1 − x) +

∞∑
n=1

u1n(0)4(1 − x) cos 2πnx +
∞∑

n=1

u2n(0)4 sin 2πnx = 2φ0(1 − x)

+

∞∑
n=1

φ1n4(1 − x) cos 2πnx +
∞∑

n=1

φ2n4 sin 2πnx,

2u0(T )(1 − x) +

∞∑
n=1

u1n(T )4(1 − x) cos 2πnx +
∞∑

n=1

u2n(T )4 sin 2πnx = 2ψ0(1 − x)

+

∞∑
n=1

ψ1n4(1 − x) cos 2πnx +
∞∑

n=1

ψ2n4 sin 2πnx.

By identification we get
u2n(0) = φ2n, u1n(0) = φ1n, u0(0) = φ0, (26)
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u2n(T ) = ψ2n, u1n(T ) = ψ1n, u0(T ) = ψ0, (27)

where {φ0,φ1n, φ2n} and {ψ0,ψ1n, ψ2n} are the coefficients of the series expansion in the basis (14)of the functions φ(x)
and ψ(x), respectively. In terms of the biorthogonal basis (15) these are

φ0 =

1∫
0

φ(x)dx, φ1n =

1∫
0

φ(x) cos 2πndx, φ2n =

1∫
0

φ(x)x sin 2πndx,

ψ0 =

1∫
0

ψ(x)dx, φ1n =

1∫
0

ψ(x) cos 2πndx, ψ2n =

1∫
0

ψ(x)x sin 2πndx.

By virtue of (21), (22), (25), and conditions (27) we have the expressions of unknowns f0, f1n and f2n as

f0 = Γ(1 + α)
[
ψ0 − φ0

Tα

]
, (28)

f1n = Γ(1 + α)
[

ψ1n − φ1neα(T, λ)

α
T∫

0
(T − τ)α−1eα(τ, λ)dτ

]
, (29)

f2n = Γ(1 − α)
[ψ2n − φ2neα(T, λ) −

T∫
0
φ1neα,1−α(T − τ, λ)eα(τ, λ)dτ

T∫
0

(T − τ)−αeα(τ, λ)dτ

]
. (30)

The unknown source term and the temperature distribution for the problem (1)-(3) are given by the series (17) and
(16), where the unknowns u0(0), u1n(0), u2n(0) are calculated from (26), while f0, f1n, f2n are given by (28)-(30). In
the next subsection we will show the uniqueness of the solution.

3.2. Uniqueness of the solution

Suppose {u1(x, t), f1(x)}, {u2(x, t), f2(x)} are two solution sets of the inverse problem for the system (1)-(3). Define
u(x, t) = u1 − u2 and f (x) = f1 − f2 then the function u(x, t) satisfies the following equation and boundary conditions

Dα
0+u(x, t) − uxx(x, t) = f (x), (x, t) ∈ QT , (31)

u(x, 0) = 0 u(x,T ) = 0, x ∈ [0, 1], (32)
u(1, t) = 0, ux(0, t) = ux(1, t), t ∈ [0,T ]. (33)

Using the biorthogonal basis (15), we have

u0(t) =

1∫
0

u(x, t)dx, (34)

u1n(t) =

1∫
0

u(x, t) cos 2πnxdx, (n = 1, 2, ...), (35)

and

u2n(t) =

1∫
0

u(x, t)x sin 2πnxdx (n = 1, 2, ...). (36)

5



Alike,

f 0 =

1∫
0

f (x)dx, (37)

f 1n =

1∫
0

f (x) cos 2πnxdx, (n = 1, 2, ...), (38)

and

f 2n =

1∫
0

f (x)x sin 2πnxdx (n = 1, 2, ...). (39)

Taking the fractional derivative Dα
0+

under the integral sign of equation (34), using (31), (37) and integration by parts,
we get

Dα
0+u0(t) = f 0, (40)

with the boundary conditions
u0(0) = 0, u0(T ) = 0. (41)

The solution of the problem (40) is

u0(t) =
tα

Γ(1 + α)
f 0;

taking into account the boundary conditions (41), we get

f 0 = 0, ⇒ u0(t) = 0. (42)

Taking the fractional derivative Dα
0+

under the integral sign of equation (35) then by using (31), (32), (38) and
integration by parts, we obtain

Dα
0+u1n(t) + λu1n(t) = f 1n; (43)

the associated boundary conditions are
u1n(0) = 0, u1n(T ) = 0. (44)

The solution of the problem (43) is
u1n(t) = eα,α(t, λ) ⋆ f 1n.

Using (44) we have
f 1n = 0, ⇒ u1n(t) = 0, (n = 1, 2, ...).

In the same manner from (36), we obtain the equation

C Dα
0+u2n(t) + 4π2n2u2n(t) = 4πnu1n(t) + f 2n; (45)

the associated boundary conditions are
u2n(0) = 0, u2n(T ) = 0. (46)

Taking account of u1n(t) = 0 then the solution of the equation (45) satisfies

u2n(t) = eα,α(t, λ) ⋆ f 2n;

using (46) we have
f 2n = 0, ⇒ u2n(t) = 0, (n = 1, 2, ...).

For every t ∈ [0,T ], the functions u(x, t) and f (x) are orthogonal to the system of functions given in (15), which
form a basis of the space L2(0, 1), consequently,

u(x, t) = 0, f (x) = 0.
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3.3. Existence of the solution
Suppose φ(x) ∈ C4[0, 1] be such that φ′(0) = φ′(1), φ′′(0) = φ′′(1). As φ1n is the coefficient of the cosine Fourier

expansion of the function φ(x) with respect to basis (15), from (26) the expression for u1n(0) can be written as

u1n(0) =

1∫
0

φ(x) cos 2πnxdx

which integrated by parts four times gives

u1n(0) =
1

16π4n4

1∫
0

φ4(x) cos 2πnxdx,

=
1

16π4n4φ
4
1n,

where φ4
1n is the coefficient of the cosine Fourier expansion of the function φ4(x) with respect to the basis (15).

Alike, we obtain

u2n(0) =
1

16π4n4 φ
4
2n, (47)

where φ4
2n is the coefficient of sine Fourier transform of the function φ4 with respect to the basis (15).

The set of functions {φ4
1n, φ

4
2n n = 1, 2, ...} is bounded as by supposition we have φ(x) ∈ C4[0, 1], and due to the

inequality
∞∑

n=1

(φ4
in)2 ≤ C ∥ φ4(x) ∥2L2(0,1), i = 1, 2

which is true by the Bessel inequality of the trigonometric series. Similarly, we have for ψ(x) ∈ C4[0, 1] the set of
functions {ψ4

1n, ψ
4
2n n = 1, 2, ...} is bounded and

∞∑
n=1

(ψ4
in)2 ≤ C ∥ ψ4(x) ∥2L2(0,1), i = 1, 2.

The Mittag-Leffler functions eα(t; µ) and eα,β(t; µ) for µ > 0 and 0 < α ≤ 1, 0 < α ≤ β ≤ 1 respectively, are
completely monotone functions (see [23] page 268). Furthermore, we have

Eα,β(µtα) ≤ M, t ∈ [a, b], (48)

where [a, b] is a finite interval with a ≥ 0, and

t∫
0

(t − τ)α−1Eα,β(λtα)dτ < ∞,

(see [24] page 9).
The solution u(x, t) becomes

u(x, t) = 2(1 − x)
(

f0tα/Γ(1 + α) + φ0

)
+

∞∑
n=1

(
f1nα

Γ(1 + α)
tα−1 ⋆ eα(t, λ) +

φ4
1n

16π4n4 eα(t, λ)
)
4(1 − x) cos 2πnx

+

∞∑
n=1

(
φ4

1n

4π3n3 eα,1−α(t, λ) + f2n
t−α

Γ(1 − α)
⋆ eα(t, λ) +

φ4
2n

16π4n4 eα(t, λ)
)
4 sin 2πnx (49)
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Setting M = max{M1,M2} where

|eα| ≤ M1, |eα,1−α| ≤ M2 t ∈ [0,T ],T is finite.

Taking into account the values of f0, f1n, f2n from (28)-(30) and the properties of Mittag-Leffler function, the
series (49) is bounded above by

2(1 − x)
(
|ψ0| + (1 − tα

Tα
)|φ0|

)
+

∞∑
n=1

({
ψ4

1n − φ4
1nM

16π4n4

}
tα

Tα
+

φ4
1n

16π4n4 M
)
4(1 − x) cos 2πnx

+

∞∑
n=1

(
φ4

1nM
4π3n3 +

t1−α

T 1−α

{
ψ4

2n − φ4
2nM

16π4n4

}
−

φ4
1nM

16π4n4 +
φ4

2nM
16π4n4

)
4 sin 2πnx. (50)

For every (x, t) ∈ QT the series (50) is bounded above by the uniformly convergent series

∞∑
n=1

( |ψ4
1n| + |φ4

1n|2M
16π4n4

)
+

∞∑
n=1

(
(4πn − 1)|φ4

1n|M
16π4n4 +

|ψ4
2n| − |φ4

2n|2M
16π4n4

)
. (51)

By the Weierstrass M-test, the series (49) is uniformly convergent in the domain QT . Hence, the solution u(x, t) is
continuous in the domain QT .

The uniformly convergent series doesn’t provide any information about the convergence of the series obtained
from its term by term differentiation. Now take the Dα

0+
derivative from the series expression of u(x, t) given by (49)

∞∑
n=1

Dα
0+Un(x, t) = 2(1 − x)

(
f0 + φ0

t−α

Γ(1 − α)

)

+

∞∑
n=1

(
φ4

1n

16π4n4 eα,1−α(t, λ)
)
4(1 − x) cos 2πnx

+

∞∑
n=1

(
φ4

1n

4π3n3 eα,1−2α(t, λ) + f2n
t−α

Γ(1 − α)
⋆ eα,1−α(t, λ) +

φ4
2n

16π4n4 eα,1−α(t, λ)
)
4 sin 2πnx, (52)

we have used Dα
0+

tα−1 = 0, Dα
0+

eα(t, λ) = eα,1−α(t, λ), Dα
0+

eα,1−α(t, λ) = eα,1−2α(t, λ) andUn(x, t) is defined by the right
hand side of the series (16).

The series (52) is bounded above by the uniformly convergent series

∞∑
n=1

( |ψ4
2n| + (4πn + 1)|φ4

1n|M
16π4n4

)
,

hence it converges uniformly, so Dα
0+

un(x, t) =
∞∑

n=1
Dα

0+
Un(x, t).

Take the x-derivative of the series expression of u(x, t) from (49), we obtain

∞∑
n=1

Un,x(x, t) := −2
(

f0tα/Γ(1 + α) + φ0

)
−
∞∑

n=1

(
f1nα

Γ(1 + α)
tα−1 ⋆ eα(t, λ) +

φ4
1n

16π4n4 eα(t, λ)
)

(
8πn sin 2πnx + 4 cos 2πnx

)
−
∞∑

n=1

(
φ4

1n

4π3n3 eα,1−α(t, λ)

+ f2n
t−α

Γ(1 − α)
⋆ eα(t, λ) +

φ4
2n

16π4n4 eα(t, λ)
)
8πn sin 2πnx. (53)
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∞∑
n=1

Un,xx(x, t) :=
∞∑

n=1

(
f1nα

Γ(1 + α)
tα−1 ⋆ eα(t, λ) +

φ4
1n

16π4n4 eα(t, λ)
)

(
16π2n2 sin 2πnx − 16π2n2(1 − x) cos 2πnx

)
−
∞∑

n=1

(
φ4

1n

4π3n3 eα,1−α(t, λ)

+ f2n
t−α

Γ(1 − α)
⋆ eα(t, λ) +

φ4
2n

16π4n4 eα(t, λ)
)
16π2n2 sin 2πnx. (54)

The series (53) and (54) are bounded above by the uniformly convergent series

∞∑
n=1

(
(1 + 2πn)|ψ4

1n| + 2πn|ψ4
2n| + (4π2n2 + 6πn + 2)M|φ4

1n| + (1 + M)2πn|φ4
2n|

4π4n4

)
,

∞∑
n=1

( |ψ4
1n| + 2|ψ4

2n| + (1 + T M)M|φ4
1n| + M|φ4

2n|
π2n2

)
,

respectively, then
∞∑

n=1
Un,x(x, t) and

∞∑
n=1
Un,xx(x, t) converges uniformly; consequently

uxx(t, x) =
∞∑

n=1

Un,xx(x, t),

is uniformly convergent.
Hence the term by term differentiation of the series (49) with respect to time t and x is valid. Similar we can show

that f (x) obtained by series (17) is continuous.

Remark 3.2. The above analysis remains valid if the boundary conditions given by (3) are replaced by

u(0, t) = u(1, t), ux(0, t) = ux(1, t), t ∈ [0,T ],
or

u(1, t) = 0, ux(0, t) = 0, t ∈ [0,T ].
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