CVaR hedging using quantization based stochastic approximation algorithm

Abstract : In this paper, we investigate a method based on risk minimization to hedge observable but non-tradable source of risk on financial or energy markets. The optimal portfolio strategy is obtained by minimizing dynamically the Conditional Value-at-Risk (CVaR) using three main tools: stochastic approximation algorithm, optimal quantization and variance reduction techniques (importance sampling (IS) and linear control variable (LCV)) as the quantities of interest are naturally related to rare events. As a first step, we investigate the problem of CVaR regression, which corresponds to a static portfolio strategy where the number of units of each tradable assets is fixed at time 0 and remains unchanged till time $T$. We devise a stochastic approximation algorithm and study its a.s. convergence and rate of convergence. Then, we extend to the dynamic case under the assumption that the process modelling the non-tradable source of risk and financial assets prices are Markov. Finally, we illustrate our approach by considering several portfolios in the incomplete energy market.
Type de document :
Pré-publication, Document de travail
2010
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00547776
Contributeur : Noufel Frikha <>
Soumis le : vendredi 17 décembre 2010 - 12:23:34
Dernière modification le : mercredi 12 octobre 2016 - 01:03:42
Document(s) archivé(s) le : jeudi 30 juin 2011 - 13:43:14

Fichier

CVaR_hedging.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00547776, version 1

Collections

UPMC | PMA | INSMI | USPC

Citation

Olivier Bardou, Noufel Frikha, Gilles Pagès. CVaR hedging using quantization based stochastic approximation algorithm. 2010. <hal-00547776>

Partager

Métriques

Consultations de
la notice

335

Téléchargements du document

173