Role of the ghrelin/obestatin balance in the regulation of neuroendocrine circuits controlling body composition and energy homeostasis

Epelbaum Jacques, Bedjaoui Nawel, Dardennes Roland, Feng Dan Dan, Gardette Robert, Grouselle Dominique, Loudes Catherine, Simon Axelle, Tolle Virginie, Yang Seung Kwon, Zizzari Philippe

To cite this version:

Epelbaum Jacques, Bedjaoui Nawel, Dardennes Roland, Feng Dan Dan, Gardette Robert, Grouselle Dominique, et al.. Role of the ghrelin/obestatin balance in the regulation of neuroendocrine circuits controlling body composition and energy homeostasis. Molecular and Cellular Endocrinology, Elsevier, 2009, 314 (2), pp.244. 10.1016/j.mce.2009.08.026. hal-00547655
Title: Role of the ghrelin/obestatin balance in the regulation of neuroendocrine circuits controlling body composition and energy homeostasis

Authors: Epelbaum Jacques, Bedjaoui Nawel, Dardennes Roland, Feng Dan Dan, Gardette Robert, Grouselle Dominique, Loudes Catherine, Simon Axelle, Tolle Virginie, Yang Seung Kwon, Zizzari Philippe

PII: S0303-7207(09)00457-2
DOI: doi:10.1016/j.mce.2009.08.026
Reference: MCE 7304

To appear in: Molecular and Cellular Endocrinology

Received date: 27-4-2009
Accepted date: 30-8-2009

Please cite this article as: Jacques, E., Nawel, B., Roland, D., Dan, F.D., Dominique, G.Rt.G., Catherine, L., Axelle, S., Virginie, T., Kwon, Y.S., Philippe, Z., Role of the ghrelin/obestatin balance in the regulation of neuroendocrine circuits controlling body composition and energy homeostasis, Molecular and Cellular Endocrinology (2008), doi:10.1016/j.mce.2009.08.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Ghrelin/Obestatin: 2 antagonistic peptides arising from the same prohormone

Preproghrelin/obestatin

117 AA
gastro-intestinal tract

Ghrelin/Obestatin: 2 antagonistic peptides arising from the same prohormone

Preproghrelin/obestatin

117 AA
gastro-intestinal tract

Ghrelin

Obestatin

↑ GH, Food Intake & Motility

↓ GH, Food Intake & Motility

GHS-R

GPR39 ?

Ghrelin

Obestatin

↑ GH, Food Intake & Motility

↓ GH, Food Intake & Motility

GHS-R

GPR39 ?

Ghrelin

Obestatin

↑ GH, Food Intake & Motility

↓ GH, Food Intake & Motility

GHS-R

GPR39 ?
Role of the ghrelin/obestatin balance in the regulation of neuroendocrine circuits controlling body composition and energy homeostasis.

Centre de Psychiatrie & Neurosciences, UMR 894 Inserm; Faculté de Médecine, Université Paris Descartes; 2 ter rue d'Alésia, 75014 Paris France; tel: 331 (0) 40 78 92 82; fax: 331 (0) 45 80 72 93; e-mail: jacques.epelbaum@inserm.fr

Corresponding author: J. Epelbaum at the above address

Keywords: ghrelin, obestatin, GHSR1, GPR39, eating disorders

Abstract

Ghrelin and obestatin are two peptides isolated from the gastrointestinal tract and encoded by the same preproghrelin gene. They convey to the central nervous system informations concerning the nutritional status and/or the energy stores. Ghrelin, mostly acting through the GH-secretagogue receptor GH-SR, is a potent GH secretagogue, an orexigenic peptide and a long-term regulator of energy homeostasis. Obestatin was initially described for its anorexigenic effects and its binding to the G protein-coupled receptor 39 (GPR39). However, the role of obestatin is still controversial and the nature of the obestatin receptor remains an open question. This review is focussed on the possible implication of the ghrelin/obestatin system in psychiatric diseases with particular emphasis on eating disorders.
Ghrelin (Kojima et al., 1999) and obestatin (Zhang et al, 2005) are two peptides isolated from the gastrointestinal tract and encoded by the same preproghrelin gene. They convey to the central nervous system informations concerning the nutritional status and/or the energy stores. Ghrelin is a 28 amino-acid peptide which is acylated on the third amino-acid serine by the enzyme GOAT (Ghrelin-O-AcylTransferase) (Yang et al, 2008). It was initially characterized as the endogenous ligand for the growth hormone (GH) secretagogue receptor (GHS-R) (Howard et al, 1996). However, ghrelin also regulates other neuroendocrine and metabolic functions in rodents and humans: it is a potent GH secretagogue, an orexigenic peptide and a long-term regulator of energy homeostasis (Bluet-Pajot et al, 2005). Obestatin is a 23 amino-acid peptide initially described for its anorexigenic effects and its binding to G protein-coupled receptor 39 (GPR39) (Zhang et al, 2005). However, the role of obestatin is still controversial and the nature of the obestatin receptor remains an open question.

GPR39 was originally cloned in 1997 (McKee et al, 1997) along with GPR38, later on identified as the motilin receptor (Feighner et al, 1999), as two novel orphan seven-transmembrane G protein-coupled receptors showing high structural similarity to the GH secretagogue receptor. After the claim that obestatin was an endogenous ligand for GPR39, at least four different groups reported that they could not elicit any binding of obestatin to GPR39 or any stimulatory function of the obestatin peptide on GPR39 (Chartrel et al, 2007; Holst et al, 2007; Lauwers et al, 2006; Tremblay et al, 2007). Thus, it was generally agreed that GPR39 is a receptor for Zn\(^{2+}\) (Holst et al, 2006; Yasuda et al, 2007) but not the receptor for obestatin (Zhang et al, 2007). Moreover, it was reported that if full length GPR39-1a is expressed selectively throughout the gastrointestinal tract, it is not expressed in the CNS, in contrast to a truncated splice variant five-transmembrane form, GPR39-1b, and an antisense gene called LYPD1 (Ly-6/PLAUR domain containing 1) which may encode a secreted protein product (Eggerod et al, 2007). On the other hand, immunofluorescent labeling of GPR39 was recently observed as punctuate staining near dendrites and at the periphery of cells expressing the neuronal nuclear marker (NeuN) in the CA3 region of the rat hippocampus (Besser et al, 2009) and obestatin induces the association of GPR39/beta-arrestin 1/Src signalling complex resulting in the transactivation of the epidermal growth factor receptor (EGFR) and downstream Akt signalling (Alvarez et al, 2009).

Even if GPR39 is not its \textit{bona fide} receptor moiety, radiolabeled obestatin can bind in a specific and saturable manner with a subnanomolar affinity on HIT-T15 and INS-1E beta-cell membranes (Granata et al, 2008). At higher doses (10-100 M), it can also inhibit\(^{125}\)I–glucagon-like peptide-1 and \(^{125}\)I-Tyr4–acylated ghrelin binding to beta-cell membranes. In the same cellular models, obestatin exerts proliferative, survival, and antiapoptotic effects under serum-deprived conditions and interferon-(gamma)/tumor necrosis factor-(alpha)/interleukin-1\(\beta\) treatment, particularly at pharmacological concentrations. Obestatin also mediates proliferation of human retinal pigment epithelial cells by MEK/ERK 1/2 Phosphorylation in a dose-dependent manner (Camna et al, 2007).

As for the demonstration of the nature of its receptors, obestatin physiological effects appear difficult to reproduce. Indeed, a very comprehensive study could not observe any effect of obestatin, injected either peripherally or centrally, on food intake, body weight, body composition, energy expenditure,
locomotor activity, respiratory quotient, basal of ghrelin-stimulated GH secretion or the expression of hypothalamic neuropeptides involved in energy balance regulation (Nogueiras et al, 2007). Similarly, central obestatin administration did not modify either spontaneous or ghrelin-induced food intake in both ad libitum and food restricted rats (Seoane et al, 2006) and neither intravenous nor intracerebroventricular administration of obestatin affected the secretion of basal GH, PRL, TSH and ACTH secretion nor ghrelin- or GHRH-induced GH secretion in rats (Yamamoto et al, 2007).

On the other hand, obestatin effectively blunted the hunger caused by short-term starvation in young-adult male rats and it inhibited feeding but did not modulate basal or hexarelin-stimulated GH and spontaneous corticosterone secretion in 10-days-old rats (Breciani et al, 2006). In mice, acute administration of obestatin (10-100 nmol/kg i.p) inhibited feeding and similar effects were observed in lean and fatty Zucker rats (Lagaud et al, 2007). Interestingly, dose-response relationships were U-shaped such that both low and high doses were without effect in either species. A similar U-shaped dose response was also observed on gut motility: at subnanomolar doses, obestatin (0.1-1 nM) reduced by half the ability of ghrelin (1 µM) to facilitate electrical field stimulation-evoked contractions of the stomach (Bassil et al, 2007). However, at higher concentrations (10-1000 nM), changes were not statistically significant. Such peculiar dose-responses may explain the difficulties in reproducing the effects of obestatin as reported in the literature.

We recently confirmed that obestatin inhibits exogenous ghrelin actions on food intake and demonstrated that it also antagonizes its actions on GH secretion (Zizzari et al. 2007). To determine how plasma ghrelin/obestatin ratio is correlated to GH secretion and food intake, we developed sensitive immunoassays to measure ghrelin and obestatin pulsatile secretions in freely behaving rats and mice. Whereas fasting resulted in elevated ghrelin levels, obestatin levels were significantly reduced, suggesting that both hormones may be differentially regulated. Obestatin administration per se did not modify food intake. However, it inhibited ghrelin orexigenic effect that were evident in fed but not in fasted mice. The relationship between acylated ghrelin, obestatin, and GH secretions was evaluated by iterative blood sampling every 20 min during 6 h in freely moving adult male rats. Plasma obestatin levels exhibited an ultradian pulsatility with a frequency slightly lower than acylated ghrelin and GH but ghrelin and obestatin levels were not strictly correlated. Obestatin administration inhibited ghrelin stimulation of GH levels in freely moving rats. However, it was ineffective when GH release was monitored in superfused pituitary explants. It was therefore of interest to assess peptide interactions at the hypothalamic levels, taking advantage of a GHRH-GFP mouse model. Patch-clamp recordings in slices from mediobasal hypothalamus GFP transgenic mice indicated that ghrelin clearly decreased GABAergic transmission in 44% of recorded neurons (n=84) but did not affect glutamatergic transmission. Obestatin had no effect on glutamatergic or GABAergic synaptic transmission but it blocked ghrelin-induced decrease of GABA responses. Therefore, the balance between endogenous ghrelin and obestatin appears essential to maintain a homeostatic state of these neuroendocrine systems.
Interactions between ghrelin and obestatin may be relevant in term of eating disorders such as anorexia nervosa which affects 0.3 % of young girls with a mortality of 6 % per decade and is strongly familial with genetic factors (Hoek, 2006; Sullivan, 1995). The peak age of onset is between 15 and 19 yr old and the course of the disease is often marked by crossover to bulimia nervosa, mainly occurring within the first five years (Tozzi et al, 2005). Most studies on genetic factors focussed on the serotonin system but genes involved in the regulation of feeding and energy metabolism, including the ghrelin/obestatin system, are also good candidates (Ramoz et al, 2007). Intravenous administration of ghrelin to healthy human subjects increases subjective appetite and energy intake (Wren et al, 2001). Circulating ghrelin levels are elevated in patients with anorexia nervosa and return to normal after weight gain (Otto et al, 2001; Tolle et al, 2003) but binge-eating/purging patients remain higher than restricting ones (Tanaka et al, 2004).

Family trios study of the three preproghrelin sequence single nucleotide were performed in 114 probands with anorexia nervosa and both their parents recruited in two specialized French centers (Dardennes et al, 2007). A transmission disequilibrium was observed for the Met 72 SNP of the preproghrelin gene. When stratified by clinical subtype, this polymorphism was preferentially transmitted for the trios with a bingeing/purging proband. An excess of transmission of the Gln90Leu72 preproghrelin/obestatin haplotype in patients with anorexia nervosa was also observed. The Leu72Met association was also observed in case control studies in Japanese women and with the 3056 T->C SNP in the non coding region in intron 2 of the Ghr gene (Ando et al, 2006; 2007). The latter one was significantly associated with a higher acylated ghrelin concentration, body weight, body mass index, fat mass, waist circumference, and skinfold thickness and a lower HDL-cholesterol concentration. Interestingly, the 3056C allele was related to elevated scores in the Drive for Thinness–Body Dissatisfaction subscale of the Eating Disorder Inventory -2. In a large European cohort composed of family trios and case-control comparisons, no significant association were detected for the three SNPs in the preproghrelin coding sequence (Cellini et al, 2006). Nevertheless, a preferential transmission of the Glu90leu72Arg51 haplotype was observed in bulimic offsprings, suggesting a possible involvement of this allelic combination in the aetiology of this particular form of the disease.

In an elegant study on 8 out patients (6 binge-purging and two restrictive AN) compared to 8 healthy control subjects, responses of circulating ghrelin and obestatin to sham feeding were markedly impaired in the patients. Ghrelin was highly stimulated while obestatin was parallely decreased (Monteleone et al, 2008a). However, olanzapine treatment which induces weight gain in experimental animals and humans, did not elicit a further increase in BMI in AN patients subserving a 3 months course of cognitive-behavioral psychotherapy and programmed nutritional rehabilitation (Brambilla et al, 2007). The same group of investigators reported an increased ratio of total ghrelin over obestatin in AN patients (Monteleone et al, 2008b). In an other study (Germain et al, 2009), the circadian profiles of obestatin, total and acylated ghrelin levels were different in constitutional thinness (CT) subjects and AN patients, two categories of severely underweight subjects which differ only by an impaired behaviour in the latter case. Six-points circadian profiles of plasma obestatin, acylated ghrelin, total
ghrelin and other hormonal and nutritional parameters were evaluated in 10 CT, 15 restricting-type AN, 7 restored from AN and 9 control subjects. Obestatin circadian levels were significantly higher in AN while no difference was found between CT and control subjects. Acylated and total ghrelin were both increased in AN. Acylated ghrelin/obestatin and total ghrelin/obestatin were found decreased in AN compared to CT or C subjects. The percentage of acylated ghrelin was decreased in CT group. A decreased ghrelin/obestatin ratio found in AN might participate in the restraint in nutriment intake of these patients. In contrast, in CT a lower percentage of acylated over total ghrelin might be considered in the aetiology of this condition.

In summary, the present state-of-knowledge on obestatin and its cognate receptor is leaving many unanswered questions that deserve further considerations. This led some authors to propose to rename the peptide as ghrelin-associated peptide (GAP) (Gourcerol et al, 2007). Understanding how two endocrine mediators produced by the same precursor but with antagonistic actions can regulate the vital neuroendocrine functions controlling body composition and energy balance is nevertheless essential to characterize pathologies such as obesity and eating disorders. The impact of preproghrelin gene and GHS-R polymorphisms in these pathologies remains to be fully elucidated.
References

Table 1: Association of ghrelin and GHS-R1A gene polymorphisms with eating disorders and addictive phenotypes

<table>
<thead>
<tr>
<th>References</th>
<th>Association Genotype/ phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ando et al. Am J Med Genet B Neuropsychiatr Genet. 2006;141(8):929-34</td>
<td>Leu72Met (408 C>A) and 3056 T>C polymorphisms of the preproghrelin gene associated with susceptibility to BN-P</td>
</tr>
<tr>
<td>Cellini et al. Psychiatr Genet. 2006 16(2):51-2</td>
<td>Glu90Leu72Arg51 haplotype possibly associated with susceptibility to BN-P</td>
</tr>
<tr>
<td>Monteleone et al. Neurosci Lett. 2006 398(3):325-7</td>
<td>No association of the Arg51Gln and Leu72Met polymorphisms with AN or BN</td>
</tr>
<tr>
<td>Miyasaka et al, J Neural Transm. 2006;113(9): 1279-85.</td>
<td>CC type of GHSR gene polymorphism (171T/C) is a risk factor for BN, but not for AN</td>
</tr>
<tr>
<td>Monteleone et al. Psychiatr Genet 2007 17(1) :13-6</td>
<td>Leu72Met associated with binge eating disorder</td>
</tr>
<tr>
<td>Ando et al Am J Clin Nutr 2007 86 : 25-32</td>
<td>Weak negative correlation between BMI, insulin, HOMA and acyl- or desacylghrelin 3056C allele and Leu72MeT: significantly higher acylghrelin but not desacylghrelin with Leu72MeT. Drive to thinness and body dissatisfaction elevated in 3056C allele</td>
</tr>
<tr>
<td>Brambilla et al 2007 Psychoneuroendocrinol 2007 32:402-6</td>
<td>No difference with olanzapine treatment for BMI increase and ghrelin levels. In AN</td>
</tr>
</tbody>
</table>

AN: anorexia nervosa; BN: bulimia nervosa; BN-P: bulimia nervosa purging type
Figure legends

Figure 1: The ghrelin/obestatin system
Ghrelin (green box) and obestatin (orange box) are cleaved from the same 117 aminoacid precursor. The three single nucleotide polymorphisms in the sequence of preproghrelin are indicated in red. Ghrelin stimulates GH secretion, appetite and gastric motility through the GHS-R receptor. Obestatin has been reported to decrease ghrelin-induced GH secretion, food intake and gut motility but these effects are not always observed and, despite initial claims that GPR 39, an orphan GPCR closely related to GHS-R was involved, the receptor of obestatin remains to be determined.