
HAL Id: hal-00547261
https://hal.science/hal-00547261

Preprint submitted on 16 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling trains with delayed departures
Fernand Meyer

To cite this version:

Fernand Meyer. Scheduling trains with delayed departures. 2010. �hal-00547261�

https://hal.science/hal-00547261
https://hal.archives-ouvertes.fr

Scheduling trains with delayed departures

Fernand Meyer

Mines ParisTech,
Département maths et systèmes,

Centre de Morphologie Mathématique,
F-77305 Fontainebleau Cedex, France

Abstract. A number of image transformations may be expressed as
shortes paths algorithms in various algebras We introduce a general
framework where a graph is considered as a railway network on which the
trains follow shortest paths. Given a fixed traveling time on each edge
and an arbitrary distribution of departure times, one searches the first
arrival time of a train at each node. This formulation leads to interesting
filters and image decomposition in the (min,+) algebra and sheds new
light on flooding and razing algorithms in the algebras (min,max) and
(max,min).

1 Introduction

Reconstruction openings and closings, levelings and flattenings [3], all these op-
erators transform an input image under constraints coming from another image.
For instance the reconstruction opening of an image f with a marker function
g is the highest flooding of f under g. We reinterpret these operators in terms
of shortest paths algorithms. The highest flooding of f under g may be seen as
the schedules of trains circulating on a graph, at departure times derived from
g and traveling times derived from f. These shortest paths are expressed in a
particular path algebra, the (min,max) algebra.
Gondran and Minoux [1] have shown that many problems in graph theory

amount to searching shortest paths in a particular algebra. The common struc-
ture of these algebra is a dioïd ; they differ by the laws by which the lengths of
the paths on a graph are measured and compared. For instance the algebra (min,
+) deals with the ordinary shortest paths: the second operator, here +, permits
to define the length of a path as the sum of the lengths of its edges ; the first
operator permits to compare two paths, the shortest path being the one with the
shortest length. In the algebra (min,max), the "length" of a path is the greatest
weight of its edges ; the "shortest" will be the path for which this highest weight
is the smallest. This algebra is familiar in morphological segmentation, as any
flooding always follows a shortest path in this algebra. In a dual way, in the
algebra (max,min) the "length" of a path is the smallest weight of its edges ;
the "shortest" will be the path for which this smallest weight is highest.
The triangular inequality immediately proceeds from the two operators of

the algebra. It relies on the fact that the shortest path between two nodes x and

2

z is shorter than the length of the path obtained by concatenating the shortest
path between x and a node y on one hand and the shortest path between y and
z on the other hand.
In the algebra (min,+) one gets the classical triangular inequality δ(x, z) ≤

δ(x, y) + δ(y, z). In the algebra (min,max) one gets the ultrametric inequality
δ(x, z) ≤ δ(x, y)∨ δ(y, z), stronger than the triangular inequality. In the algebra
(max,min) one gets the dual ultrametric inequality δ(x, z) ≥ δ(x, y) ∧ δ(y, z).
We introduce a general framework where a graph is considered as a railway

network on which the trains follow the shortest paths. Given a fixed traveling
time on each edge, and an arbitrary distribution of departure times, one searches
the first arrival time of a train at each node. This formulation leads to interesting
filters and image decompositions in the (min,+) algebra and sheds new light on
flooding and razing algorithms in the algebras (min,max) and (max,min).

2 Scheduling trains in the algebra (min,+)

2.1 Setting the scenario of trains circulating on graphs

Let G = (N,E) be a graph where nodes N and oriented edges or arrows E
are weighted with positive weights. The graph may be considered as a rail-
way network, where the nodes are railway stations and the arrows are con-
nections between them. Trains may follow all possible paths on G. Consider
a particular train. It starts at station s ∈ N at time τ(s), follows a path
θ = (x0 = s, x1, ..., xn = t) where xi and xi+1 are two railway stations linked by
an arrow (i, i+1) of E, weighted by the time ei,i+1 needed for following it. The
arrival time at destination is then τ(s) +

P
i,i+1∈θ

ei,i+1.

We now consider all trains starting at all possible nodes and taking all pos-
sible routes, and observe the earliest time when each node is reached by a train;
if a train arrives at i before τ(i), we replace τ(i) by this first arrival time. For
some nodes no train ever arrives ; i is such a node, if τ(i) is too early, so that
all trains coming from another node arrive at i after τ(i). For others, no train
departs: if τ(i) is too late, no train starting from i has a chance to be the first
to reach another node ; this is in particular the case if τ(i) = ∞. Some nodes
cumulate both situations, and no train departs or arrives.
The resulting shedules bτ = Θ(e, τ) depend on the distribution of initial de-

parture times and travelling times along each edge. It is an opening on τ, as
it is obviously anti-extensive and increasing. It is also idempotent, as a second
scheduling would not change the distribution τ(i) any further.
Scheduling the trains highlights a number of structures in the graph, associ-

ated to the distribution of weights on nodes and edges:

— time flat zones: maximal connected components for which it takes no time
for travelling from a node to the next.

— nodes or time flat zones where trains only start.
— nodes or time flat zones where trains only arrive.

3

— nodes or time flat zones where no train appears.
— maximal routes, which are geodesics of the traveling times.
— at any node, measure of the number of trains passing through this node.

Let us now present how to easily schedule the trains, given a distribution of
traveling times e on edges and an initial distribution of departure times τ .

Remark 1. For a node distribution where all nodes get the initial weight ∞
except the node s for which τ(s) = 0, the scheduling produces the shortest
path between s and all others. The same holds if we replace s by all nodes of a
collection X of nodes.

2.2 Scheduling the trains

Shortest path in an augmented graph. We now fix G and e and consider
varying distributions of starting times. Any such distribution is a function defined
on the nodes of G. In case of images defined on a grid, G is the graph associated
to the grid: pixels are nodes and neighboring pixels are connected by an edge.
We obtain an augmented graph GΩ, by adding to G a dummy node Ω with

weight τ(Ω) = 0 and dummy edges (Ω, i) between Ω and each node i of N , with
eΩi = τ i. Since the travelling time along the edge (Ω, i) is τ i, it is equivalent for
a train to start from i at time τ i or from Ω at time 0 and follow the edge (Ω, i)
for reaching i. The earliest time for a train to arrive at any node k of GΩ is the
total duration of the shortest path between Ω and k. It follows that scheduling
the graph G amounts to constructing the shortest paths between Ω and all
other nodes in the graph GΩ, which is a classical problem in graph theory for
which many algorithms exist. Here we consider the algorithms of Moore Dijkstra
and of Berge [1]. The first is a fast and greedy algorithm. The second may be
implemented for images with local operators requiring a simple raster scan, very
easy to realize in hardware.

Algorithm of Moore Dijkstra The algorithm takes |N | steps. At any step,
S represents the subset of nodes for which the shortest path is known. For any
neighboring node of S, the length of the shortest path for which all edges but the
last belong to S constitutes an overestimation of this length. However the node
for which this overestimation is the lowest is correctly estimated. The algorithm
proceeds by incorporating this node into S and updating its neighborhood.
Initialisation:

S = Ω and S = N
While S 6= ∅ repeat:

Select j ∈ S for which τ(j) = mini∈S [τ(i)]
S = S\{j}
For any neighbor i of j in S do τ(i) = min [τ(i), τ(j) + eji]

End While

4

Fig. 1. Synchronisation Θ(f4ij, f) of image f in the graph G4
f

Remark 2. Introducing the dummy node Ω and the dummy edges helps us in
reformulating the scheduling problem in a known framework. It is however use-
less in practice and the algorithm gives the same results by replacing during
initialisation the instruction S = Ω by S = ∅.

Algorithm of Berge The shortest path to j may come from its neighbor i and
then τ(j) = τ(i)+eij . If it is not the case we have τ(j) ≤ τ(i)+eij . The algorithm
scans the image and corrects the values of τ until the previous inequality is
satisfied everywhere.
As long there exists an arrow (i, j) such that τ(j) > τ(i) + eij do τ(j) =

τ(i) + eij
If one considers all neighbors of j at the same time the algorithm becomes

τ(j) = τ(j) ∧ V
i neighbor of j

(τ(i) + eij ,)

Remark 3. The algorithm makes no use of Ω nor of the dummy edges, since the
relation τ(j) ≤ τ(Ω) + eΩj is satisfied by construction: τ(Ω) + eΩj = 0+ τ(j).

2.3 Illustration

In case of images defined on a grid, the nodes N of the graph G are the pixels
and the arcs E are the edges between neighboring pixels. In our illustration we
take an image f represented left in figure 1. The valuation of the arrow from
i to j is equal to f4ij = ∨(fj − fi, 4) ; only the ascending transitions with an
amplitude higher than 3 are considered, in all other cases the weight is 0. As
these traveling times are much smaller than the pixel values represented on
the nodes, the scheduling Θ(f4ij , f) represented right in figure 1 has a dramatic
effect of filtering and simplification of the initial image. It highlights all sharp
transitions and completely discards the noise dark or bright noise particles with
less contrast.
In "Image decompositions and transformations as peaks and wells" in the

same issue, we show how to decomposes an image as a difference between a
peaks component and a wells component. Both components are obtained by
scheduling two distinct graphs. Both have as node weights the valuations of the
pixels and as edge weights respectively the upwards and downwards transitions
in the image.

5

3 Scheduling trains in the algebra (min,max)

We consider the same framework as previously, same graph, same weight inter-
pretation, same circulation rules of trains. Durations of the journey and arriving
times of the trains are however computed differently. In the algebra (min,max),
the arrival time of a train starting at s and following a path θ is the maximum
between the starting time and the traversal time of all followed edges (i, j) ∈ θ
; it is equal to τ(s)∨ W

i,j∈θ
eij . In this algebra, the arrival time of a train is equal

to its departure time as soon as this time is higher than the crossing time of
the edges along the path. For such a path, the passing time of the train at each
railway station is the same. Such a trajectory belongs to "a time flat zone".
The shortest path algorithms are still valid if one replaces the operator +

by the operator max. The scheduling of trains, given a fixed distribution e of
weights on the edges and an initial distribution of weights τ on the nodes will be
written Θ(e, τ). Adding the same dummy node and edges as previously permits
to reformulate the scheduling problem as a shortest path problem between Ω
and all other edges. The algorithms of Moore-Dijkstra and Berge remain the
same if one replaces the operator + by the operator ∨.
It is possible to reformulate Berge’s algorithm with the help of two adjunc-

tions between edges and nodes on a graph
- an erosion from the nodes to the edges [εenn]ij = ni ∧ nj with its adjunct
dilation [δnee]i =

W
eik

(k neighbors of i)

- a dilation from the nodes to the edges [δenn]ij = ni ∨ nj with its adjunction
erosion [εnee]i =

V
eik

(k neighbors of i)

For storing intermediate results we will need a second set of valuations l on
the edges of the graph. If the shortest path follows an edge (i, j), it leaves the
smallest node at time τ(i) ∧ τ(j) = (εenτ)ij and arrives at the largest at time
lij = (εenτ)ij + eij . Now, the final schedule attached to i will be τ(i) if no path
arrives earlier ; in the other case, it reaches i at the earliest time of any path
passing through one of the adjacent paths, that is

V
j voisin de i

lji=(εnel)i. Thus

the shortest path at i has the value (τ ∧ εnel)i . Finally, if the preceding relations
will be satisfied if we repeat until stability {l = εenτ + e ; τ = τ ∧ εnel}. In [4]
we derived this algorithm from considerations on the relationt between flooding
levels and heights of pass points on a graph.

Minimum spanning tree The shortest distances in the algebra (min,max) are
called ultrametric distances, as they verify the ultrametric inequality presented
above. The theorem of Hu (1961) states that all shortest paths belong to a
minimum spanning tree (MST) of the graph. This implies that all problems
implying shortest path may be solved using an MST of the graph (the MST is
unique if all edges have different weights). Like that, one has to process far less
neighbors. These distances are closely linked to flooding. The trains starting at
s and arriving at p follows the same route as a flood where the source would

6

be placed at s. The result of any scheduling in the (min,max) algebra also is a
scheduling.

3.1 Scheduling and floodings on graphs

A criterion for recognizing a flooding on graphs. We now establish a
local criterion which characterizes the schedules of the trains on the graph, or
equivalently the floodings on this graph.
Consider two neighboring pixels p and q on a geodesic path, they verify

τ(q) = τ(p) ∨ epq. The flood going from p to q remains at the same level if
epq < τ(q), and climbs at level epq in the opposite case. If (p, q) do not belong
to a geodesic path, we only have an inequality τ(q) ≤ τ(p) ∨ epq. The follow-
ing expressions are all equivalent and characterize floodings on graphs: τ(q) ≤
τ(p) ∨ epq ⇔ [τ(q) ≤ τ(p) or τ(q) ≤ epq] ⇔ [not{τ(q) > τ(p)} or τ(q) ≤ epq] ⇔
{τ(q) > τ(p)⇒ τ(q) ≤ epq}
The interpretation of this last implication is obvious: the flooding level can

stay at level τ(q) > τ(p) only if the edge epq verifies τ(q) ≤ epq and prevents its
leakage towards the lower level of τ(p).
This criteria are useful for recognizing whether a distribution of weights on

nodes ais a flooding on an edge weighted graph. It permits to show that the
maximum and minimum of two floodings still is a flooding. Let μ and ν be two
floodings of G. They both verify the first criterion, and so do μ ∨ ν and μ ∧ ν
showing that the also are floodings of G.
If we now consider an arbitrary distribution μ of weights on G, the supremum

of all floodings of G below μ is nothing but the scheduling Θ(e, μ). Indeed, if we
follow a geodesic path downwards, the lowest node verifies Θ(e, μ) = μ, which
shows that this flooding path could not be higher without offending the condition
Θ(e, μ) ≤ μ .

3.2 Morphological applications

Scheduling the neighborhood graph

Hierarchical segmentation We start from a partition of a domain D, for which a
dissimilarity between neighboring regions has been defined. For segmenting an
image, one often takes the catchment basins of is gradient image as partition.
Each region being represented as a node of a graph ; adjacent regions being
linked by an edge weighted by the height of the pass point between. Cutting
all edges with a weight above a threshold produces a forest, where each tree
represents a region of a partition which is coarser than the original one. For
increasing values of λ, the partitions become coarser and coarser.
The same coarse partition may be obtained by flooding. Assigning a constant

value τ(i) = λ to all nodes constitutes a valid flooding of any edge weighted
graph, as the criterion τ(q) ≤ τ(p)∨epq is everywhere satisfied. Cutting all edges
with a weight eij > λ, is the same as cutting the edges verifying eij > τ(i)∨τ(j)
for this uniform distribution of weights.

7

The mechanism is however general, and one may use any distribution of
weights τ for generating coarser partitions. The scheduling bτ = Θ(e, τ) is a
flooding of the graph which may be submitted to the same pruning: cutting all
edges verifying eij > bτ(i) ∨ bτ(j) produces a coarser graph. The distribution τ
may be tailored in order to favour the segmentation of particular structures.
For instance, swamping is a particular case where τ is equal to ∞ except at the
position of markers.

Flooding images through their neighborhood graph A flooded image is entirely
known if one knows for each of its catchment basins whether it contains or not
a lake and if it is the case, the level of this lake. This remark is at the basis of
the following algorithm for obtaining the highest flooding of a function f below
a function g.

First one constructs the region adjacency graph of f , each node i representing
a catchment basin Ri ; an edge links neighboring basins Ri and Rj with a weight
equal to th height of the pass point between them. This weight distribution
permits to model the flood progression, as it crosses the path points from one
basin to the next. The weight τ(i) of node i is the minimum altitude of g inside
the catchment basin Ri. The scheduling Θ(e, τ) produces the height of the flood
in each region Ri. It is of course much faster to compute the flooding on the
graph or its MST than on the initial image. However, this graph and MST has
first to be constructed. We have shown in [4] that it becomes interesting if one
has a few levelings to do on the same image.

Filtering Scheduling may also be used for filtering and simplifying the image
represented on the nodes. We schedule two graphs derived from the image 2.
The nodes are initialized with the function τ0, equal to 0 on the upper side of
the image and to ∞ everywhere else. Both graphs have different valuations on
the edges.

— in G+f , the arrow eij from i to j gets the valuation f+ij = ∨(fj − fi, 0) ; the
value is positive only for increasing transitions

— in G−f , the arrow eij from i to j gets the valuation f+ij = ∨(fi − fj, 0) ; the
value is positive only for decreasing transitions

The schedules Θ(f+ij , τ0) and Θ(f
−
ij , τ0) are presented in positions 2.1 and 3.1

of figure 2. Bright noise particles appear in the positive transitions and dark noise
particles in the negative transitions. Filtering these noise components thanks to
a reconstruction opening associated to size and contrast produces the images 2.2
and 2.3. Subtracting the minimum of these images from the image 2.3 produces
a clean image, represented in position 1.2.

Equivalence between flooding on graphs and flooding on images

8

Fig. 2. Harmonization in a positive and a negative part, filtering and reconstruction
of the filtered result.

Reformulation of flooding of images as a flooding of graphs We now have two
related notions: floodings as reconstruction closings on images and floodings as
schedulings on graphs in the algebra (min,max). The first operates on images at
the pixel level, takes two images f and g as arguments, and produces the high-
est flooding of f under g. The second operates on an edge and node weighted
graph, starts from an initial distribution of weights τ on nodes, and produces
by scheduling Θ(e, τ) a distribution of weights on the nodes which may be in-
terpreted as a flooding. We now establish the correspondence between these two
types of flooding.
Floodings on images are characterized by a local criterion imageflood [3]:

h ≥ f is a flooding of f if for any couple of neighboring pixels (p, q), we have:
hp > hq ⇒ fp ≥ hp.
As established above, floodings on graphs are characterized by the criterion

graphflood : τ(q) > τ(p)⇒ τ(q) ≤ epq where p and q are neighboring nodes.
Images are defined by their values on the pixels of a grid. As noted above,

this grid may be considered as a graph. The nodes are the pixels, the edges
connect neighboring nodes. We call it grid graph. Consider two functions f and
g verifying g ≥ f. The image flooding algorithm: g(0) = g and g(n+1) = f ∨ εg(n)
produces a decreasing sequence converging towards the flooding g(∞).
We now show, that with appropriate weights on the nodes and edges of

the grid graph, the same result may be obtained by graph flooding. On the
grid graph, we assign to the nodes the valuation τ(i) = g(i) and to the edges
eij = fi ∨ fj. The algorithm of Berge progressively decreases g: every time
τ(i) > τ(j)∨ eij , τ(i) is replaced by τ(j)∨ eij . Replacing τ and e by their values
shows that we replace gi by gj = gj ∨ fi ∨ fj, which garanties that all along
the process g verifies g ≥ f. The flooding obtained at convergence verifies the
criterion graphflood which becomes here: gp > gq ⇒ gp ≤ epq = fp ∨ fq. Since
gp > gq ≥ fq, the relation gp ≤ fp ∨ fq simply becomes gp ≤ fp which precisely
is the criterion imageflood indicating that g is a flooding of f , now considered
as images.

9

Algorithmic consequences For flooding an image f , it is not necessary to use all
edges of the images but only the edges which belong to the minimum spanning
tree of the graph weighted by fi ∨ fj.
The algorithm of Moore Dijkstra may be implemented using a hierarchical

queue.
Initialisation: each pixel i of the image is introduced into a hierarchical queue

HQ with priority gi
While HQ is not empty:
- extract i, the node with the highest priority
- label i as treated
- introduce in HQ all untreated neighbors j of i, with the prioriry gj =

gj ∧ (fj ∨mini∈S(j) gi) = fj ∨
£
gj ∧mini∈S(j) gi)

¤
, where S(j) are the neighbors

of j which are already treated.
End while
The Dijkstra algorithm is a greedy algorithm, i.e. it processes each pixel only

once and produces the correct response. Furthermore, it requires checking only
the neighbors of j belonging to S, and not the complete neighborhood of j, as
do the usual algorithms. Finally, this neighborhood may be further reduced to
the neighbors of j on the MST if the tree is already known.

The minimum spanning tree of steepest descent and the watershed As
a conclusion of the preceding section, we proved that scheduling the grid graph
with the weights τ(i) = g(i) for the nodes and fi ∨fj for the edges produces the
same result as flooding the function f with the marker g. As the same weight
fi ∨ fj is given to each edge linking the node i to each of its lower neighbors,
there are many possibilities to construct distinct minimum spanning trees, which
may be indifferently followed by the flow, yielding the same end result.
Now, constructing the watershed line may also be obtained as a flooding: it

starts with the regional minima and follows the lines of steepest descent. This
will be the case if each pixel is flooded through its lowest neighbor. Assigning a
distinct label to each minimum and propagating the labels all along the flooding
permits to obtain a partition of the image where each region is a catchment
basin with the same label as the minimum at the source of its flooding.
Consider again the grid graph of f with its edge valuations fi ∨ fj. Among

all its MSt, there is one which contains the lines of steepest descent for f : each
node is connected with one of its lowest neighbors. The classical algorithm [2]
for constructing the watershed propagates the labels of the minima along this
tree T.
Initialisation: assign a distinct label to each minimum and put the boundary

pixels of the minima in a hierarchical queue HQ.
While HQ is not empty, extract p, the node with the highest priority:

— for each neighbor q of p without label, do label(q) = label(p), introduce q in
HQ, and add the edge (p, q) to T with the weight fq = fp ∨ fq (p being the
first neighbor to exit the HQ, is indeed one of the lowest neighbors of q)

10

— if q is neighbor of p with a label and if both labels meet for the first time,
add the edge (p, q) to T with an edge valuation fp∨fq (this edge corresponds
to a pass point between two catchment basins.

End while
The tree T is indeed a minimum spanning tree, and the valuation of its edges

(p, q) are fp∨fq. If we have a series of markers, we assign a distinct label to each
marker, and produce a function τ equal to f on the markers and to∞ everywhere
else. The scheduling Θ(e, τ) on T with label propagation permits to obtain the
watershed associated to the markers. The catchment basins where a marker is
present are flooded from this marker, whereas the catchment basins without
marker are flooded from neighboring basins. Paying the cost of constructing T
becomes interesting only if several distinct segmentations have to be obtained
for the same image.

4 Scheduling in the algebra (max,min)

The algebra (max,min) is dual to the algebra(min,max). Hence all results are
updated if one replaces in the preceding section:

— max by min and min by max
— ∧ by ∨ and ∨ by ∧
— minimum spanning tree by maximum spanning tre

Floodings become razings.

5 Conclusion

Considering shortest paths with delayed departure times permits to unify a num-
ber of algorithms under a common algorithmic framework. One may then chose
the algorithm which is best suited to a given framework, or best adapted to
the primitives which are present in a particular library or in a particular hard-
ware. The scheduling algorithm enlarges to the (min,+) algebra the rich world
of transformations, where an image is transformed under constraints derived
from another image, as is the case in the (min,max) algebra with reconstruction
closings and in the (max,min) algebra with reconstruction openings.

References

1. M. Gondran and M. Minoux. Graphes et Algorithmes. Eyrolles, 1995.
2. F. Meyer. Topographic distance and watershed lines. Signal Processing, pages 113—
125, 1994.

3. F. Meyer. The levelings. In H. Heijmans and J. Roerdink, editors, Mathematical
Morphology and Its Applications to Image Processing, pages 199—207. Kluwer, 1998.

4. F. Meyer and R. Lerallut. Morphological operators for flooding, leveling and fil-
tering images using graphs. In F. Escolano and M. Vento, editors, Graph-Based
Representations in Pattern Recognition, volume 4538 of Lecture Notes in Computer
Science, pages 158—167. Springer Berlin / Heidelberg, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

