Sharp rate for the dual quantization problem

Abstract : In this paper we establish the sharp rate of the optimal dual quantization problem. The notion of dual quantization was recently introduced in the paper [8], where it was shown that, at least in an Euclidean setting, dual quantizers are based on a Delaunay triangulation, the dual counterpart of the Voronoi tessellation on which "regular" quantization relies. Moreover, this new approach shares an intrinsic stationarity property, which makes it very valuable for numerical applications. We establish in this paper the counterpart for dual quantization of the celebrated Zador theorem, which describes the sharp asymptotics for the quantization error when the quantizer size tends to infinity. The proof of this theorem relies among others on an extension of the so-called Pierce Lemma by means of a random quantization argument.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées
Contributeur : Benedikt Wilbertz <>
Soumis le : samedi 24 janvier 2015 - 15:07:36
Dernière modification le : vendredi 4 janvier 2019 - 17:32:34
Document(s) archivé(s) le : samedi 25 avril 2015 - 10:07:14


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00547213, version 3
  • ARXIV : 1012.3441



Gilles Pagès, Benedikt Wilbertz. Sharp rate for the dual quantization problem. 2015. 〈hal-00547213v3〉



Consultations de la notice


Téléchargements de fichiers