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Abstract—Augmented reality aims to insert virtual objects in In our study, we were interested in this second case.
real scenes. In order to obtain a coherent and realistic integration, Therefore, to achieve a realistic augmented reality, we need
these objects have to be relighted according to their positions and to acquire several types of environment information. For now,

real light conditions. They also have to deal with occlusion by K f t d liaht. si both ded
nearest parts of the real scene. To achieve this, we have to extractOUr WOrK ToCuses on geometry and light, since both are neede

photometry and geometry from the real scene. In this paper, we for virtual objects incrustation and basic re-lighting. A great
adapt high dynamic range reconstruction and depth estimation number of methods have been proposed to acquire these

methods to deal with real-time constraint and consumer devices. jnformation from single and multiple points of view, but very

We present their limitations along with signi cant parameters — ¢a\y of them have been adapted to real-time processing with
in uencing computing time and image quality. We tune these
consumer hardware.

parameters to accelerate computation and evaluate their impact

on the resulting quality. To t with the augmented reality context, In this paper, we propose to select one method for photo-

we propose a real-time extraction of these information from video metric acquisition and one for geometry acquisition, and to test

streams, in a single pass. in uence of various input parameters on computation time. We
I. INTRODUCTION propose to use the same input data for simultaneously applying

oth techniques on a unique process. The nal objective is to

Augmented reality is a set of techniques used to mtegragstain a good compromise between computation and quality,

virtual and real elements int herent ne. Th ser : .
ual and real eleme S Into a coherent scene € Us€Torder to apply these methods in an augmented reality
can usually move freely in a real environment augment qocess

with synthetic objects. Applications of this technology ar This article is divided into three sections. The next section

numerous, ranging from video games to personal training -rpesents previous works, and methods we developed to fast

hazgrgious environments like quclear power p!arjts for exam quire photometry from images sets and video streams. The
Traditionally, augmented reality needs specialized hardwaig flowing section is similar with geometry acquisition. The

like see-th_roughhglasg_es, _ofte_n with spemﬁlly eqt;:ppled rOOMRxt section describes a sample of application joining both

Lnrogtgerprgleqt’ the objective Is to open this technology to cquisition elds. Finally, the last section concludes with
udience. Therefore, we chose to only use W'def ortant results, perspectives and future works

adopted consumer products (webcams, graphics processmB ' '

units, video-projectors...). [I. PHOTOMETRY ACQUISITION

Augmenting reality also means synchronizing two represef- previous work

tations: the real environment and the virtual scene we want _. o .

to insert. Depending on the targeted application, this fusio Since standard cameras are unable to give images con_talnmg

necessitates more or less precise or complete computati&ﬁg whole dynamic of a scene, we use HDffigh Dynamic

For instance, a copy machine repair assistance needs pre?@@ge images [1] which allows to store real radiance values
localization of virtual indications (ie. aligned with the ma-

or each pixel. These images therefore neeiwhree mapping

chine's mechanical parts). But re-lighting and shading theggnsformation to be displayed on a screen. Techniques to

elements is not critical for application viability. In the oppositerecover HDR images combine multiple images from the same

a re-construction of a destroyed historical heritage needszSWpOllnt \é\”th different exposures [2] [3] or different shutter
be convincing to one's perception. In this case, regi:stratié'rlfnes [4] [5]
may be less precise without disturbing the user, but incorrggt HDR image construction

occlusions and lighting affect visual realism. In our augmented reality approach, the input is a video

_ stream, with possible shutter time variations, so we chose De-
MMSP'10, October 4-6, 2010, Saint-Malo, France. bevec and Malik method [4]. This technique uses images taken
978-1-4244-8112-5/1$26.00 c 2010 IEEE from the same point of view and with different shutter times.



First, it introduces a method for camera response functidsingg, we can now compute radiance picture for each pixel:
determination, and then proposes a way of combining input Pp

images with this function. It is nally possible to determine In(E;) = j=1 W(PZU 9(Zij) In(Tj)] (5)

all radiance levels contained in the image set. images taken jpzl w(Zj )
with a short shutter time (ex: 1/1000) contain information

on high energy areas of the scene, while long shutter timeVith our implementation (Quadcore 2.5GHz with RAM

images give information on low energy areas. For the camergB): this method constructs an HDR image (6480) in
response determination, authors manually select points $§€cONds, starting from a sequence of 12 pictures of a video
images, then search the response function that best matcHggam Wwith shutter time varying from 1/1024s. to 2s. We
them. An approximating function is estimated by solving aﬁdded an automatic point selection, based on similar energy

over-determined equation system, built with radiance vaIu_@EeaS through different images. Since ourstudy_evaluates exist-
ng methods to adapt them to augmented reality, we focused

on each selected point and its corresponding shutter tinie? | e Pt PR
For HDR image construction, authors apply the inverse 8f identifying their limitations. Therefore, we searched for

response function to all input images. Final image is obtaing&rameters accelerating the computation in order to reach real-

by computing the weighted average of transformed imagestime With minimal quality loss.

For each pixeli of a picture with a shutter tim&j, the -~ paoquction of computation time
radiance valu&; is computed from energi; obtained by

the sensor and transformed by response fundtispecic to N order to reduce computing time, we consider that the
the sensorZ; = f (E;T;). To build HDR picture, we compute camera response funct!on is constant. _Therefore, it may be
E; to pixeli: est!mated once for all in a pre_—compu'qng_ phase. Then, we
noticed that the number of input images is directly related with
E = f XZj) @ the computation time. Thus we proposed a test to evaluate the

T in uence of this parameter on HDR images. In a rst step,

We have to compute simultaneously the response funtftiontsqea c:n;gtra fgsﬁqo;sssfur}(;]t;onn Ise prg;foornr:]pﬂtgg (():gr:gter chthgrl]e
andE; to each point of the picture. To build HDR picture, w 9 (12 'ag ).' we p uctl
rom 2, 4 and 6 input images. We also compute a reference

rst compute napierian logarithng of the inverse function of adiance map from the 12 input images ( gure 1). We display

f. gis a discrete function de ned on interval [0-255], so W({hese results with a color range visualization tool in which
have to compute values frog{0) to g(255) to totally compute : .
P 9{0) t0 g(255) y P each color correspond to an half order of radiances. This tool

g allows a quick evaluation of radiance map coherence with
9(Ziy) = In(f YZj))=In(E)+In(Ty) (2) the observed environment. We also proposed a second tool

which compares each HDR image with the reference one. It

Functiong is specic to a sensor. So we searg(Z;; ) such returns an image in which each pixel color corresponds to
as equation (2) is veried for all points of all input picturesne relative percentage difference between current image and
We obtain a system witP N equationspP is the number yeference image. Results, on gure 2, show that radiance maps
of input picturesN; the number of pixels on each picture: zre coherent whatever the number of input images. It also
e shows that differences are low when using more than 2 input

[9(zj) In(Ei) In(Tj)] = O (3) images.
i=1 j=1

To solve this over-determined system, Debevec and Malik
proposed to manually pick some pixels, and to fogcdo

be continuous and monotonous by xing’{z) = g(z

1) 29(z) + g(z +1) = 0 with z belonging to [1-254].
Moreover, they add a ponderation functiar{z) to decrease
the impact ofz near extrema of radiance values. 8(z) = z
forz2 [0 127]andw(z) =256 z for z 2 [128 255]
Finally, we have to minimize the following system, is the
number of picked pixelsz are the radiance values of input

pictures (grayscale beetwe@npn =0 andZmax = 255): Fig. 1. Tone mapping of HDR reference image.
The reduction of input images involves to carefully select
= fw(Zi)g(Zj) In(Ei) In(T))]g their shutter times. This choice has no in uence on computing
i=1 j=1 time but has an important impact on HDR image quality
Zmg 1 and acquisition time. A new test, similar to the previous one
+ W(2)g™(2)]*> (4) but not displayed here for space considerations, showed that

2= Zpin +1 choosing shutter times equally distributed on the available



method. All images are taken from the same viewpoint, but
with different focus parameters. Then, we apply on each pixel
of these images an estimator of focus which returns a value
representing the blur level. The chosen estimator is based
on laplacian operator computing the variation of intensity on
edges. The higher this operator is on a given edge, the better
the camera is focussed on it. We then compute a single image
registering for each pixel the focus parameter of the best
focussed image. Finally, this image is converted into depth
map using a look up table (LUT) pre-computed during a
calibration step. This calibration is performed by shooting a
chessboard pattern positioned at a known distance using all
focus values available in our camera. Assuming that all points
contained in the chessboard plan are at the same distance
from the camera, we compute the sum of local laplacian
operator on each image. Then, we search the maximum of this
sum according to the focus value. The corresponding focus
parameter is associated with the chessboard distance in the
LUT. This process is iterated with other distances until having

Fig. 2. Inuence of the input image number. Left: Color range visualizationg Comp|ete LUT between focus parameters and distances.
Right: Comparisons with reference. Upper line: 6 images. Middle line: 4

images. Lower line: 2 images. Comparison scale: from black for pixels having To _C_Omp_Ute depth m_aps, we rst acquire an image set
the same value on image and reference to red for pixels having 25% or mé@ntaining images with different focus values. Then, we apply

difference. the focus estimation on each pixel of each image and we
just retain the focus value corresponding to the best focused

range offers good results. We can also notice that this rarigége (the image where the estimator is maximum). However,
is not interesting in its whole for augmented reality. IndeediS method computes focus estimation on every pixel in
to relight virtual objects we need to know information ofiMage, even pixels located in a non-textured area. In this
environment light sources only. A light source is supposé@®Se; the edge information used to evaluate the focusing
to have a high radiance and therefore to be observed i§nMissing and the estimator returns very low values. The
short shutter time images. It is then possible to remove lofgfained value is then the one corresponding to the maximum
shutter time images, which are obviously very long to acquir@f noise. For this reason, we decided to add a threshold to
This test also pointed out that the observed loss of quality #f" estimator values and remove unreliable points. Finally,

HDR reconstruction is quite predictable: errors systematicafij¢ depth map is reconstructed by replacing the focus value

appeared in the area where the well-exposed image has b&&R the corresponding distance in the LUT. Figure 3 shows
removed. an example of depth map computed from 256 images in 9

seconds.

IIl. GEOMETRY ACQUISITION
A. Previous works

There is a great number of methods allowing to retrieve
geometry from images. Geometry can be described in a global
coordinate system, usirghape from silhouettmethods based
on visual hull [6], or stereo-vision techniques [7]. These
techniques need several calibrated cameras, quite dif cult on
unknown environments. Geometry can also be described with
a depth map giving the distances between objects and Hjg 3. |eft: Example of image from the input set (64680). Right: Depth
user's viewpoint, using single image from a single viewpointnap coresponding to the same resolution. The color scale is linearly varying
Depth map can be computed using dedicated hardware LSH‘]eb'sgi';t(g‘ir’:‘af‘g‘r’;izjsgctfe‘é"g;etﬁgghmoﬁﬂggmore)- Green pixels correspond
[9] or under control lighting likeshape from shading10] '
[11]. A recent method [12] uses automatic learning on images _ _
database. Others techniques compute depth from focus lengthhe depth map we currently construct has only information

of standard devices, likéepth from defocufL3] [14] or depth  ©N edges that are not enough for proper occlusion handling,
from focus[15] [16]. so we developed methods returning dense depth maps to

_ correctly manage occlusions. The more convincing method

B. Depth map construction works on two passes. First pass horizontally (resp. vertically)
Since we use camera with focus length variation in oulls missing data betweens valued edges. All non valued
augmented reality environment, we chosdepth from focus pixels between a picture boundary and an edge are lled with



highest (farthest) value. All non valued pixels between two These results show that the reduction of input images
valued edges are lled with the highest (farthest) value of bottiumber implies a proportional reduction of computation time.
edges values. We don't perform a linear interpolation to avolleconstructed depth maps are visually coherent whatever the
the creation of artifacts between background and foregroundmber of input images. Therefore, reducing the volume
objects. Second pass is a simple average of horizontal afdinput images seems to be a interesting method to save
vertical lled picture. Figure 4 shows an example of lling computation time in order to be used in augmented reality.
depth map. An other way to reduce computation times consists in
reducing the size of input images and evaluating consequences
on depth maps. Indeed, as for radiance recovering, we suppose
that the depth information does not have to be very spatially
accurate for synthetic object inclusion in a real scene. We also
perform a new test of computation speed using sets of 256
resized images. We used two sets of images which size are
respectively 320240 and 160 120. Depth map is computed
from the rst set in 4.1 seconds, from the second set in
1.1 second (gure 5). Resizing images to 320 preserves
Fig. 4. Filling of depth map. Left: sparse depth map. Right: resulting dengge global coherence but a 16020 resizing produces errors
depth map. which are visually important. It is currently better to avoid

Better dense depth maps can be built by taking into a]t?r:_]e use of to small images, but this may be revised in case of

. . ) ; 8Iementing other focusing estimator.

count smoothness constraints between neighboring pixels an

performing a global optimization of the depth map, but these

methods are traditionally slower and thus might not seem to be

useful in our application. Notice that real-time methods exist,

using GPU and stereo devices for belief propagation for the

computation of dense depth maps in real-time [17]. The belief

propagation module could take the values which are obtained

by the Laplace operator applied to a defocused image as an

input.

Fig. 5. Reduction of image size. Left: 32@40. Right: 160 120.

C. Reduction of computation time . ) o )
As in the previous test, we observed signi cant computation

A rst way to reduce computation time is reducing imaggime reduction, which is very interesting for augmented reality.
number. We noticed during the calibration step that, becatﬁ@wever, we observe that resizing images to 3200 pre-
of hardware limitations, images which have a focus paramet@{yes the global coherence but a 1820 resizing produces
at extremities of the focus range do not contain useful infogors which are visually important. It is currently better to
mation for depth recovering. So we may reduce the input dalgyid the use of to small images, but this may be revised in
volume by removing these extreme images and by regulagyge of implementing other focusing estimator.
exgluding images from th_e input set. To evaluate CONsequencegg conclude this study, we want to present an other test
of image number reduction, we made some other tests Wihmpining both types of reduction ( gure 6). We perform the
3 input image subsets. The rst one is built by selectingompytation of a depth map using a selection of 5 input images
1 image on 10 in the initial data set. The second keepsdsized to 320240, computation time is 170ms. This is an
image on 20 and the third 1 on 40. Computation time Ofhcouraging result because we can construct 6 depth maps
640 480 is 1.5s for 20 images, 0.8s for 10 images and 0.58r second with 5 input images for each. It corresponds to the

for 5 images. Reconstructed depth maps are visually coherﬁeﬁ;ut data acquisition limit which is 30 FPS for an ordinary
whatever the number of input images. Therefore, reducing thgpcam.

volume of input images seems to be an interesting method to

save computation time in order to be used in augmented reality. IV. RESULTS

It is important to see that removing images from the input setTo put our method to the test, we show an example appli-
directly in uence the accuracy of resulting depth maps becausation ( gures 8, 9 and 10) by inserting a virtual object into
the construction method obviously gives a number of dep#hreal scene using a single capture with an ordinary webcam.
plans equal to the number of input images (respectively 20, Wk acquire six HDR images from the middle of the scene,
and 5 in our case). Notice that the performed selection does patsix basis directions (front, back, left, right, up and down),
correspond to a regular discretization of depth space: the LWy simples hand manipulations of the webcam. These pictures
gives a non-linear correspondence between focus parametgesthus converted on a HDR cubemap during a pre-procesing
and distances. It is however enough to reconstruct depth magep ( gure 7). Than we capture a depth map and HDR images
and evaluate their coherence. from the point of view.



Fig. 6. Example of combining image size and number of image reductions.

Fig. 7. Cubemap built with 6 HDR pictures (top view) and re ection on a
sphere (front view).

The rendering process is then decomposed in two passes.

During the rst one, we use a very simple relighting technique
by lighting a specular virtual object using the HDR cubemap
and storing the resulting image into a texture. During the

second pass, we add the previous pass with the HDR image.

We handle occlusions between real and virtual objects by
comparing virtual depth computed in the previous pass with
the value stored in the depth map. Environment acquisition
(HDR + depth) is done in a few seconds, using 9 images
for each HDR image and 9 for the depth map. It is ng
real-time, but a fast out-of-core pre-computation, in whicg"
variations of focus and shutter time during acquisition do n
affect nal rendering. Scene rendering is real-time. Althoug
changing the point of view is not possible after acquisitio
step, moving the virtual object with dynamic lighting an
occlusion computation is performed in real-time.

Fig. 9. Rendering of a virtual objecsgherg in a real scene.

Fig. 10. Rendering of a virtual objecbnny in a real scene.

em presented dif culties for augmented reality applications

ecause they require much computation or represent data in
n incompatible way. Then, we have selected some methods
at we considered well adapted and we have explained
daxperiments we performed on to evaluate their capacity to be
used in augmented reality. These tests have shown that HDR
acquisition and depth map acquisition would both be possible

in interactive time with consumer hardware.
This work also opens number of perspectives in environment
acquisition, like GPU and multi-core CPU programming. We

Fig. 8. Rendering of a virtual objecbigguy) in a real scene.

V. SUMMARY, CONCLUSION AND PERSPECTIVES

also foresee to improve the rendering in augmented reality, by
acquiring other data on environment, such as surface aspect
of objects. Thus, we would be able to consider more complex
optical phenomena to increase rendering realism. For instance,
recovered data are currently not enough to determine if there
is a mirror-like surface in the scene. So we can not compute
any re ection of synthetic object on the environment, which
produces a important lack of realism. Moreover, to relight an
object, we have to know the lighting at its insertion point.

This study has pointed out that multiple methods of depth our future work, we will necessary have to develop and

and light acquisition exist. We have also seen that most

afe methods evaluating the lighting in any point of a scene



from the known information. On the other hand, working
on augmented reality present some advantages too because
it allows to access further information (user's location in
environment, camera gaze direction, multiple and close views
of a same scene) on which we plan to develop more ef cient
and robust acquisition methods.
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