N
N

N

HAL

open science

Design of a Multi-formalism Application and
Distribution in a Data-flow Context: An Example

Loic Besnard, Patricia Bournai, Thierry Gautier, Nicolas Halbwachs, Simin

Nadjm-Tehrani, Annie Ressouche

» To cite this version:

Loic Besnard, Patricia Bournai, Thierry Gautier, Nicolas Halbwachs, Simin Nadjm-Tehrani, et al..
Design of a Multi-formalism Application and Distribution in a Data-flow Context: An Example.
Manolis Gergatsoulis and Panos Rondogiannis. Intensional Programming II (Based on the Papers at
ISLIP ’99), World Scientific, pp.149-167, 2000. hal-00546676

HAL Id: hal-00546676
https://hal.science/hal-00546676
Submitted on 14 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00546676
https://hal.archives-ouvertes.fr

DESIGN OF A MULTI-FORMALISM APPLICATION
AND DISTRIBUTION IN A DATA-FLOW CONTEXT:
AN EXAMPLE

LOIC BESNARD, PATRICIA BOURNAI AND THIERRY GAUTIER

IRISA — CNRS/INRIA, Campus de Beaulieu — 35042 Rennes Cedex — FRANCE -
E-masl: Loic.BesnardQirisa.fr, Patricia.BournaiQirisa.fr, Thierry.GautierQirisa.fr

NICOLAS HALBWACHS

VERIMAG - CNRS, Centre Equation, 2, avenue de Vignate — 38610 Giéeres Cedex
- FRANCE - E-muail: Nicolas.Halbwachs@imag.fr

SIMIN NADJM-TEHRANI

Dept. of Computer & Information Science, Linképing University — S-581 83
Linkoping — SWEDEN - E-mail: siminQida.liu.se

ANNIE RESSOUCHE

INRIA, 2004, route des Lucioles — 06902 Sophia Antipolis Cedex — FRANCE —
E-mail: Annie.Ressouche@sophia.inria.fr

This paper describes a multi-formalism experiment design in the domain of real-
time control systems. It uses several synchronous languages on a case study which
is a realistic industrial example. Co-simulation is provided through the use of a
common format, and automatic distributed code generation is experimented in the
context of the graphical environment of the data-flow language SIGNAL.

1 Introduction

In industrial projects, multi-formalism development is very often an issue,
especially when several teams, with possibly different cultures, collaborate,
but also when different parts of the application require different formalisms,
which can be better adapted for some of the encountered problems.

In the field of embedded control systems, in particular safety critical sys-
tems, another very important issue is to significantly reduce the risk of design
errors (and also to shorten overall design times). This can be achieved through
the use of the maximum degree of automation, especially with respect to veri-
fication, and also sequential or distributed code generation, entirely replacing
the manual coding phase still employed in current industrial design flows 3.
A requirement for that is, at the front-end level, the use of specification tools
that are based on a formal semantical model.

The synchronous languages *'* have been precisely introduced for that
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purpose. All of them rely on a precise semantics, which allows not only auto-
matic code generation through formal transformations, but also verification
of properties on the programs (by model checking, for instance). Some of
them are based on a declarative, data-flow style: this is the case for LUSTRE
15 and SIGNAL ' that mainly differ in the more intricate notion of clock in
the latter, which aims at a more direct handling of control-dominated applica-
tions. Other have an imperative style, like ESTEREL ?, but also the graphical
formalisms of mode automata '° or Statecharts 1°.

In addition, joint efforts have been made to propose a common format,
relying itself on a formal semantics, to represent programs expressed in a
synchronous language. Then this family of synchronous languages becomes
naturally a candidate to develop multi-formalism designs, including formal
verification and automatic code generation.

In this paper, we present such an experiment of multi-formalism design,
on a relatively small case study which is part of the control of a climatic
chamber. In section 2, we first present the common format of synchronous
languages, which is called DC+. Then, the case study and its programming
using LUSTRE, ESTEREL and SIGNAL are described in section 3. Finally, the
application of a distribution methodology provided by the SIGNAL graphical
environment is shown in section 4 for that case study.

2  Multi-formalism through a common semantic and syntactic

format: DC-DC+

When multi-formalism designs are considered, using together for example both
state-based and data-flow specification styles, a common representation is in
some way mandatory. One such common representation is the DC+ format.
This format implements the paradigm of synchronous programming in its full
generality 22. The Declarative Code DC+ is a high-level format dedicated
to both the representation of declarative or data-flow synchronous programs,
and to the equational representation of imperative programs. It is a parallel,
structured format, where programs are considered as a network of operators.
Although very close in its syntax to the synchronized data-flow model
advocated by the SIGNAL language, it constitutes a model for the semantic
integration of SIGNAL, LUSTRE, ESTEREL and Statecharts specifications.
The semantical basis of the DC+ format is that of Symbolic Transition
Systems 21, This model includes in particular scheduling specifications, which

are used to represent causality relations, schedulings, and communications 8.
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2.1 A brief overview of DC+

DC+ allows to handle behavioural as well as structural or mixed descriptions.

The basic object in DC+ is the flow (also called signal in some contexts).
A flow is a sequence of values synchronized with a clock: it is a typed object
which holds a value at each instant of its clock. A program receives input
flows and computes output flows, possibly using local flows which are not
visible from the environment.

Flows can be related via definitions and dependencies.

Flow definitions. A DC+ equation equ: x y at: w defines the flow
x to be equal to the expression y, when the boolean activation condition w is
true. Such an equation relates both the values and the clocks of the flows x,
y and w: in particular, x, y and w must have the same clock (when w is false,
x keeps its preceding value, at the instants at which it is defined).

A special kind of definition, called a memorization, defines the value of
its left-hand flow at the next instant of its clock: memo: x y at: w.

Flow expressions are built from basic terms and operators. A number of
operators are available via predefined functions which are standard operators
on predefined types, or polychronous operators to relate flows with different
clocks.

A system of flow definitions can also be seen as a network of operators,
or as a generalized circuit, the “wires” of which can carry values of arbitrary
types.

Dependencies. Basically, the flow definitions must be evaluated accord-
ing to their dependency order. These dependencies can be conditional.

A flow x depends on a flow y “at” a boolean condition w (noted y — )
if, at each instant for which w is present and true, the event setting a value to
x cannot precede the event setting a value to y.

The dependencies can be those induced by the definitions, or explicitly
added ones.

Assertions. Through the assertions, DC+ offers a way of expressing
properties stating that a boolean flow is invariantly ¢rue. This allows to ex-
press either known properties of the environment — for optimization purposes
—, or desired properties of the program — to be proved by verification tools,
or dynamically checked by the target code.

Nodes, clocks. DC+ allows complex systems of flow definitions to be
structured into nodes. A node is an encapsulated system of definitions, as-
sertions and dependencies, relating input flows and output flows of the node,
possibly using its own local flows. In a node, the flows can be associated with
their clocks through a table of clocks. Clocks are represented by boolean flows
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which are trueif and only if the clock is present, otherwise they can be false or
absent (a particular case is the representation of a clock by a pure flow, which
is always true when it is present). A node can be instantiated (in another
node) by a special kind of definition (node call), by providing it with actual
input parameters. The definitions of a given node can be composed of flow
equations, or of flow equations together with node calls, or exclusively of node
calls (so giving a structural description of the node).

For a DC+ code to be used as input of a code generator, every output or
local flow of a node has to be defined. However, when a DC+ code is used, for
instance, to express and check properties, some of them can be undefined, or
partially defined. To this purpose, two tables of definitions are distinguished
in a node:

— the definition table contains explicit definitions;
— the definitions of the assertion definition table are considered as an implic-

it equational system defining a relation (with possible non determinism)
on the concerned flows.

Pragmas. DC+ offers the notion of pragma: a pragma is an “executable
comment”, used to represent any sort of specific information which is not
directly representable in the syntax. This information is considered as “doc-
umentation” by the parser. However, specific tools are able to handle some
of these specific informations (which can have a particular syntax). Pragmas
can be associated with any object.

2.2 Modularity in DC+

External and imported objects; packages. Some objects are defined
within the format, while others are “external”, i.e., possibly defined in an-
other language, and used in a DC+ program. Types, constants, functions,
procedures and nodes can be external. For example, an external node does
not contain a definition table; however, it may contain an assertion defini-
tion table and a table of dependencies, allowing to specify properties (clock
relations, dependency relations, etc.) on input and output flows of the node.

Besides this possibility, a DC+ program can consist of several packages,
and a package may explicitly import objects from other packages.

2.8 The DC+ architecture

Different levels of DC+, or sub-formats, have been identified (see figure 1).
The objective of the characterization of these different levels, and of the inter-
level (or inter-format) transformations, is to adapt a given representation to
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Figure 1. The DC+ architecture

the functions that can be applied to it.

DC+ itself is the most general level.

In the bDC+ (for “boolean DC+”) sub-format, all the flows have an
explicit clock, which is represented by a boolean flow. The clocks are organized
in a hierarchy for which there exists a master clock, tick (tick is the single
clock represented by a boolean flow which is always true when it is present).
The bDC+ sub-format is the right entry point for tools based on the clock
hierarchy, such as for example, code generators.

The STS (for “Symbolic Transition Systems”) sub-format of bDC+, in
which the hierarchy of clocks is flat (the present/absent status of any flow is
defined at any instant by some Boolean which is present at tick), is used as
an input for verification tools.
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The DC sub-format is the single-clocked sub-format of DC+: all the
flows are always present, no clock is used. The control is totally encoded via
Booleans and dependencies.

Inter-format transformations, DC+ — bDC+, bDC+ — STS, STS — DC,
are defined between the different levels of DC+ 2.

2.4 Translations of languages to DC+

A translator from SIGNAL to DC+ is available in the SIGNAL compiler. Be-
sides that, the SIGNAL compiler has been restructured so that the internal
graph representation is now the same one for SIGNAL programs and for D-
C+ ones (however, windows and arrays are not yet implemented in this DC+
version). This gives access to the same functionalities for DC+ and for SiG-
NAL programs: clock calculus, graph calculus, inter-format transformations,
interface calculus, code generation, access to proof systems, etc.

A first version of the LUSTRE-V5 front-end, called LUS2DC, is available.
It performs static verifications (types, clocks, unique definition, absence of de-
pendence loops) and translates a LUSTRE program into DC (this first version
does not deal with arrays).

The ESTEREL translation to DC goes first through an intermediate pro-
prietary format called SC. ESTEREL, which is a control-dominated imperative
language, has an interpretation in boolean equation system for its control part.
In the SC format, there are specific instructions so that other data operations
are triggered exactly when the control demands. So, the ESTEREL translation
to DC via SC requires a SCDC translator, which reintroduces data variables
and values in the equation system.

There exists also translations to DC or DC+ for other formalisms: mode-
automata for example have a translation to DC, and in the SACRES project, a
translation from Statecharts to DC+ has been defined 2. In another context,
the DC+ representation of languages of the IEC 1131 standard concerning
industrial automatisms is under study.

3 A case study: climatic chamber

The case study we consider consists of a climatic chamber with a control
system which regulates and monitors the flow and the temperature of air
which is circulating in the chamber. This is a demo system which exhibits
some of the problems typically appearing in system development for aircraft
air control systems e.g. JAS Gripen.
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3.1 Description

User input System output

ON/OFF O S S ©

Heater Fan
Z‘ Q @ Wait  Work  Block
Inlet Outlet
O

Reference ® Actual
@ Temperature Temperature
Flow
O Sensor Reference Actual
T @ How @ Flow
emperature
Sensor
Warnings A —1
Light Sound

(a) The hardware components

(b) The external interface

Figure 2. The climatic chamber system

Figures 2(a) and 2(b) present the component model and physical inter-
faces between the software controller and the chamber hardware.

The chamber is to be ventilated through the inlet and outlet and has a
given volume. It has two sensors for measuring the internal air temperature
and the air flow. The external interface primarily consists of an on-off button,
two analog knobs for setting the values for required temperature and flow
(reference values), as well as warning signals in terms of a light and a sound.
It also includes lights for showing some of its internal modes of operation.

The controller has three modes while it is on. It has an initialising “wait”
mode in which the heater and the fan are used to bring the chamber tempera-
ture and flow within a given scope. It also has an “active” mode in which more
accurate regulation is achieved. This mode in itself consists of two modes, the
“solution” mode in which the actual temperature and flow values are brought
to levels close to the reference values, and the “work” mode in which the ac-
tual values are maintained in the required region (within A of the reference
values). The shut-down mode, denoted as “block” mode, is devoted to abnor-
mal situations. It is brought about when the earlier sound and light warnings
have not led to changes in the reference values by the operator, or when the
actual values fall outside the allowed scope despite manual intervention (for
example due to unforeseen changes in unmodelled inputs, e.g. the incoming
air temperature).

The overall requirement of the system is to keep the chamber’s temper-
ature and flow within given values, and to warn the operators if this goal is
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not

achievable due to problems encountered.
The functional specification can be described as follows.

Temperature control:

At start up, a requested temperature optreq is selected and the heater is turned
on. It is possible to choose optreg in the interval [tregmin, tregmaz], where
tregmin is greater than the (lowest) outside air temperature envtemp. Any
other chosen values outside the above interval are automatically adjusted up
(down) to the lower (upper) limit respectively.

Let Thin = optreq — 2A¢emp and Tae = optreq + 2Aemp. Then the system is
considered to be in the wait mode while the actual temperature (chamtact) is
not within those limits.

The system will be in the sol mode (read solution mode) from the time
the temperature hits the region Tmin < chamtact < Thmee until it leaves
the mode. The system makes a transition to the work mode when
| chamtact — optreq | < Aiemp is fullfilled. The time taken for the system
to enter and leave the sol mode is expected to be within a given fixed bound
called solution_time.

Ventilation control:

The ventilation or the mass flow rate is measured by the time it takes to
exchange one volume of air.

At start up, a requested flow time optvent is selected and the fan is turned
on. This chosen time for the rate of air change should be in the interval
[tventmin, tventmaz]. Other chosen values are automatically adjusted upwards
(downwards) to these limits respectively.

Ventilation is regulated so that the air in the chamber is changed at least once
every optvent.

The observed rate of change flowtime is based on a measure of the air flow
chamflow delivered by the sensor.

Monitoring:

The continuously measured values of chamtact and chamflow are to be dis-
played on the control panel.

Three lamps indicate being in the system modes wait, work and block re-
spectively.

A warning by light and sound shall be activated whenever
| chamtact — optreq | > Aiemp after being in the sol mode for a dura-
tion of solution_time.

The warning light is activated if flowtime > X optvent for some fixed ratio X.
When in work mode, if | chamtact — optreq | > 2A¢emp, or the derivative of
the temperature, based on chamtact exceeds a maximum value tgrad, then the
mode shall change to the block mode.

When in block mode, the heater is immediately turned off, the warning light
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and the light indicating the block mode are activated, and the fan is active
for another tblock seconds before it is turned off. It shall not be possible to
influence the system by changing optreq or optvent. The system must be turned
off before restart.
— If optreq is changed such that optreq > chamtact + A¢emp the system makes a
transition to the wait mode, and the heater is turned on.
— If optreq is changed such that optreq < chamtact —Aiemp, the system is changed
to wait mode, the heater is turned off and the fan will continue to work.
Goals of verification:

The functional description above has a prescriptive nature. It describes
how a controller should be implemented, giving some details about what
should happen in each mode. However, both to help programming and to
focus the formal verification work, we had to deduce the overall goals of the
control system: those requirements which are to be enforced by the suggested
design.

We have identified the following global requirements:

— Keeping the reference values constant, the work light will be lit within

a time bound from the start of the system, and the system will be stable

in the work mode.

— Chamber temperature never exceeds a given (hazardous) limit T.

— Whenever the reference values are (re)set, the system will (re)stabilize

within a time bound or warnings are issued.

Note that these are not properties of the controller on its own. Rather they
arise as an interaction with the physical environment not modelled here. How-
ever, to prove these it is necessary to prove certain subsidiary requirements
on the controller, for example:

— the system is deterministic (can be at most in one mode at a time for
any combination of variable values),
tregmaz + 2A < T,
— when the system is in wait, sol, or work mode, chambtact < Ty .

3.2 Multi-formalism programming
The application is split in three sub-parts, plus a main calling them:

1. One component computes the current mode of the system according to
various temporal conditions. Each time a mode is reached, a lamp (Pan-
wait, Panoper or Panblock) is highlighted on the control panel. There is
also a Panaudio warning to be emitted when the temperature overpass-
es its allowed boundaries. This component (modeselect) will be detailed
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below.

2. A second component regulates the actual temperature of the chamber
(Conheat signal) inside the prescribed interval.

3. A third component similarly regulates the ventilation of the chamber as
required from the sensors of the airflow (Confan signal).

The main module will be presented below too.

The three parts above can be viewed as finite state machines and their
behavourial steps form the control part of the application.

Since multi-formalism design was the main purpose of the study, it has
been decided to use the three synchronous languages ESTEREL, LUSTRE and
SIGNAL, to describe the application. The control part has been encoded us-
ing ESTEREL, while the data-flow computation of boundary conditions from
sensor values, which is purely combinational, was encoded in LUSTRE. In
addition, the main module was described using the SIGNAL graphical envi-
ronment to take advantage of this environment for code distribution.

Note that other design choices could have been made. In particular,
although they are often naively associated, an imperative style is not always
the best way to describe control parts. Especially when it is combined with
the notion of clock, the data-flow style is a valuable alternative.

To illustrate the combination of formalisms, we consider the part 1 above,
the purpose of which is to compute the current mode of the system. The de-
sired mode automaton is shown in figure 3. The following data are needed
to update flow and temperature: constants deltatemp (temperature variation
allowed), solution_time (maximal time to stay in sol mode), and tgrad (limit
for temperature derivative); and variable parameters chamtact (actual cham-
ber temperature), pantreq (requested chamber temperature—computed from
operator request and temperature upper and lower bounds), and con_onoff
(on-off switch). The conditions useful to determine the next mode use the
following boolean conditions:

— In2DeltaTemp = |chamtact — pantreq| < 2 x deltatemp

OutDeltaTemp = |chamtact — pantreq| > deltatemp

TempLessbTgrad = true while the two last values of chamtact differ from less
than 5 x tgrad

— mnewpanreq = true when a new pantreq occurs
— ten_solution_time_con_onoff = true each 10 % solution_time of con_onoff
The LUSTRE and ESTEREL code corresponding to this part are given in
an extended version of this paper 7. The ESTEREL module, which describes
the finite state machine, is called as an imported node from the LUSTRE node.
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Figure 3. Climatic chamber modes computation

The main module of the application is described as a SIGNAL program
which mainly computes pantreq and pantvent (respectively the requested
chamber temperature—computed from operator request and temperature up-
per and lower bounds—and the requested chamber ventilation—also comput-
ed from operator request and upper and lower bounds), and calls the three
sub-parts described above. Each sub-part is defined just like the modeselect
component, as a LUSTRE node calling itself an ESTEREL module. In the
SIGNAL program, they are represented as external processes. The SIGNAL
program is given in the appendix. A graphical view of this program is shown
in figure 4.

3.8 Compilation and simulation

The integration of the different parts of the application is obtained through
the common DC+ format. First, each one of the LUSTRE nodes and ESTEREL
modules is translated in a DC node, thanks to the corresponding translators.
The SIGNAL part could be translated as well in DC+, but this is in fact not
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Figure 4. SIGNAL graphical view of the main program

strictly necessary since there exists a common SIGNAL/DC+ compiler, which
allows to manipulate both formalisms.

Then, the DC codes from LUSTRE and ESTEREL corresponding to one of
the three sub-parts presented above are linked together in order to obtain one
single DC code for each sub-part. Each one of the three resulting DC codes
is then separately compiled with the DC+ compiler, with two results:

1. an abstraction of the corresponding DC node giving the existing clock
relations and dependencies between the inputs and outputs of the node
(in the case of a DC node, clock relations are simply equality, but the
same algorithms apply to more general DC+ nodes);

2. a C code corresponding to the DC node.

An example of clock and dependency relations calculated in this way is given
in the extended version of the paper 7 for the modeselect component (it should
be noticed that some internal flows, used for example as boolean conditions
at which the dependencies are valid, can be made visible at the interface of
the abstracted node).
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The abstractions of the separately compiled modules are included in the
main SIGNAL program so as to get a “complete” view of the application.
This program can then be compiled, cycles can be detected, C code can be

generated.

Then, the C codes corresponding to the separately compiled modules are
linked together and an executable is obtained. An example of simulation is
given in figure 5 (the simulation environment has been described in SIGNAL).

chamtact

optreq

chamflow
optvent
conheat
panwarn
chambonoff

confan
panblock
pancper
panwait

panaudio

1985

[N

chamtact

[1] [ ]

332 2002 27 ONJOFF

chamflow optvent

Figure 5. Simulation panel

4 Applying the distribution methodology provided by the
SIGNAL/DC+ environment

Although relatively small, the climatic chamber case study was used to illus-
trate different steps of the general distribution methodology provided by the
SIGNAL/DC+ graphical environment.

The purpose is to obtain automatic distributed code generation from:

— the software architecture of the application,

islip99: submitted to World Scientific on September 9, 1999 13




— a representation of the distributed target architecture,
— a manual mapping of the software modules onto the hardware compo-
nents.

It is not our purpose to detail here the formal principles of the method: this
has been done elsewhere 35813 Instead, we want to illustrate the method on
our multi-formalism example.

4.1 Virtual mapping

Here, the software architecture of the application is that of figure 4, where
external processes have been replaced by their abstraction. Then we consider
a target architecture roughly composed of, say, two processors, represented
by two boxes in the graphical editor. Thanks to the graphical environment,
each one of the software components is mapped on a processor by simple click-
and-point. Note that the idempotence property of the composition allows to
duplicate some of the components.

The required connections are automatically established. This is shown in
figure 6, where the two main boxes represent the two processors, on which
software components have been mapped.

4.2 Traceable compilation

After the virtual mapping, the next step is a global compilation that will
preserve the new structure of the application, so that each sub-graph (cor-
responding here to one processor) will be executed on one location. In the
general case, it will be necessary to add some boolean clock definitions to be
communicated between the different locations to ensure that the semantics of
synchronous communication will be preserved even though an asynchronous
communication medium is used. This refers to properties of endocrony and
isochrony 8. In particular, each processor will have a local tree of boolean
clocks (it can be represented by a bDC+ endochronous program).

This is obtained automatically through the global compiling by using some
heuristics (to complete the clock hierarchy and to transmit the Booleans used
for communication).

The result of this global compiling is made available to the user, by replac-
ing the contents of each box corresponding to one location by the compilation
result viewed as a new SIGNAL or DC+ program. In each box, the equations
representing clock relations are separated from the definitions of signals; these
definitions themselves are partitioned between boolean ones and non boolean
ones; invariant equations are separated from the state evolution ones, etc.
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Figure 6. The result of the mapping

4.3 Generating schedulings for separate modules

The actual implementation of a module has to conform to the dependencies
resulting from the causality analysis. In general, further sequentialization has
still to be performed to generate code. Of course, this additional sequentializa-
tion can be the source of potential, otherwise unjustified, deadlock when the
considered module is reused in the form of object code in some environment.
Thus, the purpose is to be able to structure the code into pieces of sequential
code and a scheduler, aiming at guaranteeing separate compilation and reuse.
In addition, the cost of dynamic execution leads to reduce as much as possible
dynamism. To do that, the nodes of a sub-graph will be gathered in such a
way that they can be considered as atomic. In this case, the scheduler only
has to manage sets of nodes instead of nodes themselves.

The first level of atomicity which is automatically provided is obtained
by building the classes of nodes transitively depending on the same subsets of
input flows. For the sake of scheduling, such a class can be seen as a procedure
call: it can be executed as an atomic action depending upon its set of inputs.
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The abstraction of a class is thus a black box abstraction. Then to ensure
a correct read-write sequencing of the classes of a module from the point of
view of the environment of that module, the internal communications have
also to be abstracted as dependency relations. We obtain what we call a grey
boxz abstraction of a module (in the sense that we know more than just its
interface: we have to know the internal classes—black box abstractions—and
their dependencies).

On the example, we have to calculate the grey box abstractions of the
two modules corresponding to the two processors.

4.4 Adding communications

Communication features, such as a shared memory, a fifo, etc., can be de-
scribed as some process abstraction. In figure 7, communications have been
added between the two processors. Other ones should be added also between
the processors and their environment. From this complete representation of

on_off |

Chambona

chantact | (] #] #] #1) Gonheat

t: —]
P antreq
Panwarn

(1 (1 (I Parwarn:= #|
Chambonoff:= #|
XEX_93:= #| g
HEE 36T:= #|

HEE 370:= #|

@ (] Tick:= true

| Tick "=

chanflow *=

optvent ~=

L chamtact = \Flock
Panaudio
Panwait
(] (] €] ZZE_367:= #| BIEREL.
e HZK_382:= #|
N XZH_3B7:= #|
chanf Low | XEH_393: = #| Confan

BCLOCK_XZX_408:=

it

Figure 7. Adding communications

the application, including its virtual distribution on a targeted architecture, it
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is possible to make a global compilation to be able to simulate the application
on the considered architecture. It is also possible to study the cost of the
implementation, to evaluate time consumption, etc. 617

On the other hand, each module corresponding to one processor can be
compiled separately for embedded code generation. In this case, only the
“send or receive” part of the communication channels is considered, and com-
munications are generated by making calls to the corresponding OS primitives,
provided by the user (for example).

5 Conclusion

Although relatively small, the experiment we have presented can be considered
in several aspects as representative of multi-formalism designs using semanti-
cally well-founded languages, such as synchronous languages. Co-simulation
of these languages has been experimented through the use of a common for-
mat and tools developed around this format. In particular, in this work there
is evidence for possibility of mixing data-flow styles and control-flow styles.
Moreover, a distribution methodology and tools for that are provided in the
framework of the graphical SIGNAL environment. The approach can be com-
pared with the implementation of synchronous programs in POLIS '°, and
with other distributed implementations 112,

Other experiments, not described here, have been applied on the same
case study: verification of some safety properties, for example (see section
3.1). On the other hand, a mathematical model of the physical environment
has been given, so that we can handle some hybrid system, composed of a
combination of discrete and continuous specifications 2°.

Finally, the same sort of experiments have been made, using LUSTRE and
mode automata on one hand, and SIGNAL and Statecharts on the other hand.
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Appendix: SIGNAL main process

process clim_cham_sys =
( ? boolean on_off; integer optreq, optvent, chamtact, chamflow;
! boolean Chambonoff; integer Conheat;
boolean Panwarn, Panaudio, Panwait, Panoper, Panblock; integer Confan; )
(| Chambonoff := if alpha then false else on_off
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pantreq := if on_off then if (optreq>=tregqmin) and (optreq<=tregmax)
then optreq*10 else (if optreq<tregqmin then treqmin*10
else (tregmax*10))else (pantreq$ init 200)
pantvent := if on_off then if (optvent>=tventmin) and (optvent<=tventmax)
then optvent*60 else (if optvent<tventmin then
tventmin*60 else (tventmax*60)) else (pantvent$ init 3000)
(Wait,Sol,Work,Block,Panaudio,Panwait,Panoper,Panblock,Warntemp)
:= modeselect(on_off,pantreq,chamtact)

| Conheat := tempreg(pantreq,chamtact,Block,on_off)

| Panwarn := if alpha then false else (if on_off then Panaudio else Panwarn$)
| (Confan,Warwent) := flowreg(pantvent,chamflow,Block,on_off)

| alpha := (not ("alpha))$ init true

(D)

where

integer pantvent, pantreq;

boolean alpha, Warwent, Warntemp, Block, Work, Sol, Wait;

constant integer treqmax:=300, treqmin:=100, tventmax:=30, tventmin:=5;
process modeselect = ...; process tempreg = ...; process flowreg = ...;
end;
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