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DESIGN OF A MULTI-FORMALISM APPLICATIONAND DISTRIBUTION IN A DATA-FLOW CONTEXT:AN EXAMPLELO�IC BESNARD, PATRICIA BOURNAI AND THIERRY GAUTIERIRISA { CNRS/INRIA, Campus de Beaulieu { 35042 Rennes Cedex { FRANCE {E-mail: Loic.Besnard@irisa.fr, Patricia.Bournai@irisa.fr, Thierry.Gautier@irisa.frNICOLAS HALBWACHSVERIMAG { CNRS, Centre Equation, 2, avenue de Vignate { 38610 Gi�eres Cedex{ FRANCE { E-mail: Nicolas.Halbwachs@imag.frSIMIN NADJM-TEHRANIDept. of Computer & Information Science, Link�oping University { S-581 83Link�oping { SWEDEN { E-mail: simin@ida.liu.seANNIE RESSOUCHEINRIA, 2004, route des Lucioles { 06902 Sophia Antipolis Cedex { FRANCE {E-mail: Annie.Ressouche@sophia.inria.frThis paper describes a multi-formalism experiment design in the domain of real-time control systems. It uses several synchronous languages on a case study whichis a realistic industrial example. Co-simulation is provided through the use of acommon format, and automatic distributed code generation is experimented in thecontext of the graphical environment of the data-
ow language Signal.1 IntroductionIn industrial projects, multi-formalism development is very often an issue,especially when several teams, with possibly di�erent cultures, collaborate,but also when di�erent parts of the application require di�erent formalisms,which can be better adapted for some of the encountered problems.In the �eld of embedded control systems, in particular safety critical sys-tems, another very important issue is to signi�cantly reduce the risk of designerrors (and also to shorten overall design times). This can be achieved throughthe use of the maximum degree of automation, especially with respect to veri-�cation, and also sequential or distributed code generation, entirely replacingthe manual coding phase still employed in current industrial design 
ows 3.A requirement for that is, at the front-end level, the use of speci�cation toolsthat are based on a formal semantical model.The synchronous languages 4;14 have been precisely introduced for thatislip99: submitted to World Scienti�c on September 9, 1999 1



purpose. All of them rely on a precise semantics, which allows not only auto-matic code generation through formal transformations, but also veri�cationof properties on the programs (by model checking, for instance). Some ofthem are based on a declarative, data-
ow style: this is the case for Lustre15 and Signal 18, that mainly di�er in the more intricate notion of clock inthe latter, which aims at a more direct handling of control-dominated applica-tions. Other have an imperative style, like Esterel 9, but also the graphicalformalisms of mode automata 19 or Statecharts 16.In addition, joint e�orts have been made to propose a common format,relying itself on a formal semantics, to represent programs expressed in asynchronous language. Then this family of synchronous languages becomesnaturally a candidate to develop multi-formalism designs, including formalveri�cation and automatic code generation.In this paper, we present such an experiment of multi-formalism design,on a relatively small case study which is part of the control of a climaticchamber. In section 2, we �rst present the common format of synchronouslanguages, which is called DC+. Then, the case study and its programmingusing Lustre, Esterel and Signal are described in section 3. Finally, theapplication of a distribution methodology provided by the Signal graphicalenvironment is shown in section 4 for that case study.2 Multi-formalism through a common semantic and syntacticformat: DC-DC+When multi-formalism designs are considered, using together for example bothstate-based and data-
ow speci�cation styles, a common representation is insome way mandatory. One such common representation is the DC+ format.This format implements the paradigm of synchronous programming in its fullgenerality 22. The Declarative Code DC+ is a high-level format dedicatedto both the representation of declarative or data-
ow synchronous programs,and to the equational representation of imperative programs. It is a parallel,structured format, where programs are considered as a network of operators.Although very close in its syntax to the synchronized data-
ow modeladvocated by the Signal language, it constitutes a model for the semanticintegration of Signal, Lustre, Esterel and Statecharts speci�cations.The semantical basis of the DC+ format is that of Symbolic TransitionSystems 21. This model includes in particular scheduling speci�cations, whichare used to represent causality relations, schedulings, and communications 8.islip99: submitted to World Scienti�c on September 9, 1999 2



2.1 A brief overview of DC+DC+ allows to handle behavioural as well as structural or mixed descriptions.The basic object in DC+ is the 
ow (also called signal in some contexts).A 
ow is a sequence of values synchronized with a clock: it is a typed objectwhich holds a value at each instant of its clock. A program receives input
ows and computes output 
ows, possibly using local 
ows which are notvisible from the environment.Flows can be related via de�nitions and dependencies.Flow de�nitions. A DC+ equation equ: x y at: w de�nes the 
owx to be equal to the expression y, when the boolean activation condition w istrue. Such an equation relates both the values and the clocks of the 
ows x,y and w: in particular, x, y and w must have the same clock (when w is false,x keeps its preceding value, at the instants at which it is de�ned).A special kind of de�nition, called a memorization, de�nes the value ofits left-hand 
ow at the next instant of its clock: memo: x y at: w.Flow expressions are built from basic terms and operators. A number ofoperators are available via prede�ned functions which are standard operatorson prede�ned types, or polychronous operators to relate 
ows with di�erentclocks.A system of 
ow de�nitions can also be seen as a network of operators,or as a generalized circuit, the \wires" of which can carry values of arbitrarytypes.Dependencies. Basically, the 
ow de�nitions must be evaluated accord-ing to their dependency order. These dependencies can be conditional.A 
ow x depends on a 
ow y \at" a boolean condition w (noted y w! x)if, at each instant for which w is present and true, the event setting a value tox cannot precede the event setting a value to y.The dependencies can be those induced by the de�nitions, or explicitlyadded ones.Assertions. Through the assertions, DC+ o�ers a way of expressingproperties stating that a boolean 
ow is invariantly true. This allows to ex-press either known properties of the environment | for optimization purposes|, or desired properties of the program | to be proved by veri�cation tools,or dynamically checked by the target code.Nodes, clocks. DC+ allows complex systems of 
ow de�nitions to bestructured into nodes. A node is an encapsulated system of de�nitions, as-sertions and dependencies, relating input 
ows and output 
ows of the node,possibly using its own local 
ows. In a node, the 
ows can be associated withtheir clocks through a table of clocks. Clocks are represented by boolean 
owsislip99: submitted to World Scienti�c on September 9, 1999 3



which are true if and only if the clock is present, otherwise they can be false orabsent (a particular case is the representation of a clock by a pure 
ow, whichis always true when it is present). A node can be instantiated (in anothernode) by a special kind of de�nition (node call), by providing it with actualinput parameters. The de�nitions of a given node can be composed of 
owequations, or of 
ow equations together with node calls, or exclusively of nodecalls (so giving a structural description of the node).For a DC+ code to be used as input of a code generator, every output orlocal 
ow of a node has to be de�ned. However, when a DC+ code is used, forinstance, to express and check properties, some of them can be unde�ned, orpartially de�ned. To this purpose, two tables of de�nitions are distinguishedin a node:{ the de�nition table contains explicit de�nitions;{ the de�nitions of the assertion de�nition table are considered as an implic-it equational system de�ning a relation (with possible non determinism)on the concerned 
ows.Pragmas. DC+ o�ers the notion of pragma: a pragma is an \executablecomment", used to represent any sort of speci�c information which is notdirectly representable in the syntax. This information is considered as \doc-umentation" by the parser. However, speci�c tools are able to handle someof these speci�c informations (which can have a particular syntax). Pragmascan be associated with any object.2.2 Modularity in DC+External and imported objects; packages. Some objects are de�nedwithin the format, while others are \external", i.e., possibly de�ned in an-other language, and used in a DC+ program. Types, constants, functions,procedures and nodes can be external. For example, an external node doesnot contain a de�nition table; however, it may contain an assertion de�ni-tion table and a table of dependencies, allowing to specify properties (clockrelations, dependency relations, etc.) on input and output 
ows of the node.Besides this possibility, a DC+ program can consist of several packages,and a package may explicitly import objects from other packages.2.3 The DC+ architectureDi�erent levels of DC+, or sub-formats, have been identi�ed (see �gure 1).The objective of the characterization of these di�erent levels, and of the inter-level (or inter-format) transformations, is to adapt a given representation toislip99: submitted to World Scienti�c on September 9, 1999 4
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Figure 1. The DC+ architecturethe functions that can be applied to it.DC+ itself is the most general level.In the bDC+ (for \boolean DC+") sub-format, all the 
ows have anexplicit clock, which is represented by a boolean 
ow. The clocks are organizedin a hierarchy for which there exists a master clock, tick (tick is the singleclock represented by a boolean 
ow which is always true when it is present).The bDC+ sub-format is the right entry point for tools based on the clockhierarchy, such as for example, code generators.The STS (for \Symbolic Transition Systems") sub-format of bDC+, inwhich the hierarchy of clocks is 
at (the present/absent status of any 
ow isde�ned at any instant by some Boolean which is present at tick), is used asan input for veri�cation tools.islip99: submitted to World Scienti�c on September 9, 1999 5



The DC sub-format is the single-clocked sub-format of DC+: all the
ows are always present, no clock is used. The control is totally encoded viaBooleans and dependencies.Inter-format transformations, DC+! bDC+, bDC+! STS, STS! DC,are de�ned between the di�erent levels of DC+ 22.2.4 Translations of languages to DC+A translator from Signal to DC+ is available in the Signal compiler. Be-sides that, the Signal compiler has been restructured so that the internalgraph representation is now the same one for Signal programs and for D-C+ ones (however, windows and arrays are not yet implemented in this DC+version). This gives access to the same functionalities for DC+ and for Sig-nal programs: clock calculus, graph calculus, inter-format transformations,interface calculus, code generation, access to proof systems, etc.A �rst version of the Lustre-V5 front-end, called lus2dc, is available.It performs static veri�cations (types, clocks, unique de�nition, absence of de-pendence loops) and translates a Lustre program into DC (this �rst versiondoes not deal with arrays).The Esterel translation to DC goes �rst through an intermediate pro-prietary format called SC. Esterel, which is a control-dominated imperativelanguage, has an interpretation in boolean equation system for its control part.In the SC format, there are speci�c instructions so that other data operationsare triggered exactly when the control demands. So, the Esterel translationto DC via SC requires a scdc translator, which reintroduces data variablesand values in the equation system.There exists also translations to DC or DC+ for other formalisms: mode-automata for example have a translation to DC, and in the SACRES project, atranslation from Statecharts to DC+ has been de�ned 1;2. In another context,the DC+ representation of languages of the IEC 1131 standard concerningindustrial automatisms is under study.3 A case study: climatic chamberThe case study we consider consists of a climatic chamber with a controlsystem which regulates and monitors the 
ow and the temperature of airwhich is circulating in the chamber. This is a demo system which exhibitssome of the problems typically appearing in system development for aircraftair control systems e.g. JAS Gripen.islip99: submitted to World Scienti�c on September 9, 1999 6
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ow(reference values), as well as warning signals in terms of a light and a sound.It also includes lights for showing some of its internal modes of operation.The controller has three modes while it is on. It has an initialising \wait"mode in which the heater and the fan are used to bring the chamber tempera-ture and 
ow within a given scope. It also has an \active" mode in which moreaccurate regulation is achieved. This mode in itself consists of two modes, the\solution" mode in which the actual temperature and 
ow values are broughtto levels close to the reference values, and the \work" mode in which the ac-tual values are maintained in the required region (within � of the referencevalues). The shut-down mode, denoted as \block" mode, is devoted to abnor-mal situations. It is brought about when the earlier sound and light warningshave not led to changes in the reference values by the operator, or when theactual values fall outside the allowed scope despite manual intervention (forexample due to unforeseen changes in unmodelled inputs, e.g. the incomingair temperature).The overall requirement of the system is to keep the chamber's temper-ature and 
ow within given values, and to warn the operators if this goal isislip99: submitted to World Scienti�c on September 9, 1999 7



not achievable due to problems encountered.The functional speci�cation can be described as follows.Temperature control:{ At start up, a requested temperature optreq is selected and the heater is turnedon. It is possible to choose optreq in the interval [treqmin ; treqmax ], wheretreqmin is greater than the (lowest) outside air temperature envtemp. Anyother chosen values outside the above interval are automatically adjusted up(down) to the lower (upper) limit respectively.{ Let Tmin = optreq � 2�temp and Tmax = optreq + 2�temp . Then the system isconsidered to be in the wait mode while the actual temperature (chamtact) isnot within those limits.{ The system will be in the sol mode (read solution mode) from the timethe temperature hits the region Tmin � chamtact � Tmax until it leavesthe mode. The system makes a transition to the work mode whenj chamtact � optreq j � �temp is full�lled. The time taken for the systemto enter and leave the sol mode is expected to be within a given �xed boundcalled solution time.Ventilation control:{ The ventilation or the mass 
ow rate is measured by the time it takes toexchange one volume of air.{ At start up, a requested 
ow time optvent is selected and the fan is turnedon. This chosen time for the rate of air change should be in the interval[tventmin ; tventmax ]. Other chosen values are automatically adjusted upwards(downwards) to these limits respectively.{ Ventilation is regulated so that the air in the chamber is changed at least onceevery optvent.{ The observed rate of change 
owtime is based on a measure of the air 
owcham
ow delivered by the sensor.Monitoring:{ The continuously measured values of chamtact and cham
ow are to be dis-played on the control panel.{ Three lamps indicate being in the system modes wait, work and block re-spectively.{ A warning by light and sound shall be activated wheneverj chamtact � optreq j > �temp after being in the sol mode for a dura-tion of solution time.{ The warning light is activated if 
owtime > X optvent for some �xed ratio X.{ When in work mode, if j chamtact � optreq j > 2�temp , or the derivative ofthe temperature, based on chamtact exceeds a maximum value tgrad , then themode shall change to the block mode.{ When in block mode, the heater is immediately turned o�, the warning lightislip99: submitted to World Scienti�c on September 9, 1999 8



and the light indicating the block mode are activated, and the fan is activefor another tblock seconds before it is turned o�. It shall not be possible toin
uence the system by changing optreq or optvent. The system must be turnedo� before restart.{ If optreq is changed such that optreq > chamtact +�temp the system makes atransition to the wait mode, and the heater is turned on.{ If optreq is changed such that optreq < chamtact��temp, the system is changedto wait mode, the heater is turned o� and the fan will continue to work.Goals of veri�cation:The functional description above has a prescriptive nature. It describeshow a controller should be implemented, giving some details about whatshould happen in each mode. However, both to help programming and tofocus the formal veri�cation work, we had to deduce the overall goals of thecontrol system: those requirements which are to be enforced by the suggesteddesign.We have identi�ed the following global requirements:{ Keeping the reference values constant, the work light will be lit withina time bound from the start of the system, and the system will be stablein the work mode.{ Chamber temperature never exceeds a given (hazardous) limit TH .{ Whenever the reference values are (re)set, the system will (re)stabilizewithin a time bound or warnings are issued.Note that these are not properties of the controller on its own. Rather theyarise as an interaction with the physical environment not modelled here. How-ever, to prove these it is necessary to prove certain subsidiary requirementson the controller, for example:{ the system is deterministic (can be at most in one mode at a time forany combination of variable values),{ treqmax + 2� < TH ,{ when the system is in wait, sol, or work mode, chambtact < TH .3.2 Multi-formalism programmingThe application is split in three sub-parts, plus a main calling them:1. One component computes the current mode of the system according tovarious temporal conditions. Each time a mode is reached, a lamp (Pan-wait, Panoper or Panblock) is highlighted on the control panel. There isalso a Panaudio warning to be emitted when the temperature overpass-es its allowed boundaries. This component (modeselect) will be detailedislip99: submitted to World Scienti�c on September 9, 1999 9



below.2. A second component regulates the actual temperature of the chamber(Conheat signal) inside the prescribed interval.3. A third component similarly regulates the ventilation of the chamber asrequired from the sensors of the air
ow (Confan signal).The main module will be presented below too.The three parts above can be viewed as �nite state machines and theirbehavourial steps form the control part of the application.Since multi-formalism design was the main purpose of the study, it hasbeen decided to use the three synchronous languages Esterel, Lustre andSignal, to describe the application. The control part has been encoded us-ing Esterel, while the data-
ow computation of boundary conditions fromsensor values, which is purely combinational, was encoded in Lustre. Inaddition, the main module was described using the Signal graphical envi-ronment to take advantage of this environment for code distribution.Note that other design choices could have been made. In particular,although they are often naively associated, an imperative style is not alwaysthe best way to describe control parts. Especially when it is combined withthe notion of clock, the data-
ow style is a valuable alternative.To illustrate the combination of formalisms, we consider the part 1 above,the purpose of which is to compute the current mode of the system. The de-sired mode automaton is shown in �gure 3. The following data are neededto update 
ow and temperature: constants deltatemp (temperature variationallowed), solution time (maximal time to stay in sol mode), and tgrad (limitfor temperature derivative); and variable parameters chamtact (actual cham-ber temperature), pantreq (requested chamber temperature|computed fromoperator request and temperature upper and lower bounds), and con ono�(on-o� switch). The conditions useful to determine the next mode use thefollowing boolean conditions:{ In2DeltaTemp = jchamtact � pantreq j � 2 ? deltatemp{ OutDeltaTemp = jchamtact � pantreq j > deltatemp{ TempLess5Tgrad = true while the two last values of chamtact di�er from lessthan 5 ? tgrad{ newpanreq = true when a new pantreq occurs{ ten solution time con ono� = true each 10 ? solution time of con ono�The Lustre and Esterel code corresponding to this part are given inan extended version of this paper 7. The Esterel module, which describesthe �nite state machine, is called as an imported node from the Lustre node.islip99: submitted to World Scienti�c on September 9, 1999 10
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Figure 3. Climatic chamber modes computationThe main module of the application is described as a Signal programwhich mainly computes pantreq and pantvent (respectively the requestedchamber temperature|computed from operator request and temperature up-per and lower bounds|and the requested chamber ventilation|also comput-ed from operator request and upper and lower bounds), and calls the threesub-parts described above. Each sub-part is de�ned just like the modeselectcomponent, as a Lustre node calling itself an Esterel module. In theSignal program, they are represented as external processes. The Signalprogram is given in the appendix. A graphical view of this program is shownin �gure 4.3.3 Compilation and simulationThe integration of the di�erent parts of the application is obtained throughthe common DC+ format. First, each one of the Lustre nodes and Esterelmodules is translated in a DC node, thanks to the corresponding translators.The Signal part could be translated as well in DC+, but this is in fact notislip99: submitted to World Scienti�c on September 9, 1999 11



Figure 4. Signal graphical view of the main programstrictly necessary since there exists a common Signal/DC+ compiler, whichallows to manipulate both formalisms.Then, the DC codes from Lustre and Esterel corresponding to one ofthe three sub-parts presented above are linked together in order to obtain onesingle DC code for each sub-part. Each one of the three resulting DC codesis then separately compiled with the DC+ compiler, with two results:1. an abstraction of the corresponding DC node giving the existing clockrelations and dependencies between the inputs and outputs of the node(in the case of a DC node, clock relations are simply equality, but thesame algorithms apply to more general DC+ nodes);2. a C code corresponding to the DC node.An example of clock and dependency relations calculated in this way is givenin the extended version of the paper 7 for the modeselect component (it shouldbe noticed that some internal 
ows, used for example as boolean conditionsat which the dependencies are valid, can be made visible at the interface ofthe abstracted node).islip99: submitted to World Scienti�c on September 9, 1999 12



The abstractions of the separately compiled modules are included in themain Signal program so as to get a \complete" view of the application.This program can then be compiled, cycles can be detected, C code can begenerated.Then, the C codes corresponding to the separately compiled modules arelinked together and an executable is obtained. An example of simulation isgiven in �gure 5 (the simulation environment has been described in Signal).

Figure 5. Simulation panel4 Applying the distribution methodology provided by theSignal/DC+ environmentAlthough relatively small, the climatic chamber case study was used to illus-trate di�erent steps of the general distribution methodology provided by theSignal/DC+ graphical environment.The purpose is to obtain automatic distributed code generation from:{ the software architecture of the application,islip99: submitted to World Scienti�c on September 9, 1999 13



{ a representation of the distributed target architecture,{ a manual mapping of the software modules onto the hardware compo-nents.It is not our purpose to detail here the formal principles of the method: thishas been done elsewhere 3;5;8;13. Instead, we want to illustrate the method onour multi-formalism example.4.1 Virtual mappingHere, the software architecture of the application is that of �gure 4, whereexternal processes have been replaced by their abstraction. Then we considera target architecture roughly composed of, say, two processors, representedby two boxes in the graphical editor. Thanks to the graphical environment,each one of the software components is mapped on a processor by simple click-and-point. Note that the idempotence property of the composition allows toduplicate some of the components.The required connections are automatically established. This is shown in�gure 6, where the two main boxes represent the two processors, on whichsoftware components have been mapped.4.2 Traceable compilationAfter the virtual mapping, the next step is a global compilation that willpreserve the new structure of the application, so that each sub-graph (cor-responding here to one processor) will be executed on one location. In thegeneral case, it will be necessary to add some boolean clock de�nitions to becommunicated between the di�erent locations to ensure that the semantics ofsynchronous communication will be preserved even though an asynchronouscommunication medium is used. This refers to properties of endocrony andisochrony 8. In particular, each processor will have a local tree of booleanclocks (it can be represented by a bDC+ endochronous program).This is obtained automatically through the global compiling by using someheuristics (to complete the clock hierarchy and to transmit the Booleans usedfor communication).The result of this global compiling is made available to the user, by replac-ing the contents of each box corresponding to one location by the compilationresult viewed as a new Signal or DC+ program. In each box, the equationsrepresenting clock relations are separated from the de�nitions of signals; thesede�nitions themselves are partitioned between boolean ones and non booleanones; invariant equations are separated from the state evolution ones, etc.islip99: submitted to World Scienti�c on September 9, 1999 14



Figure 6. The result of the mapping4.3 Generating schedulings for separate modulesThe actual implementation of a module has to conform to the dependenciesresulting from the causality analysis. In general, further sequentialization hasstill to be performed to generate code. Of course, this additional sequentializa-tion can be the source of potential, otherwise unjusti�ed, deadlock when theconsidered module is reused in the form of object code in some environment.Thus, the purpose is to be able to structure the code into pieces of sequentialcode and a scheduler, aiming at guaranteeing separate compilation and reuse.In addition, the cost of dynamic execution leads to reduce as much as possibledynamism. To do that, the nodes of a sub-graph will be gathered in such away that they can be considered as atomic. In this case, the scheduler onlyhas to manage sets of nodes instead of nodes themselves.The �rst level of atomicity which is automatically provided is obtainedby building the classes of nodes transitively depending on the same subsets ofinput 
ows. For the sake of scheduling, such a class can be seen as a procedurecall: it can be executed as an atomic action depending upon its set of inputs.islip99: submitted to World Scienti�c on September 9, 1999 15



The abstraction of a class is thus a black box abstraction. Then to ensurea correct read-write sequencing of the classes of a module from the point ofview of the environment of that module, the internal communications havealso to be abstracted as dependency relations. We obtain what we call a greybox abstraction of a module (in the sense that we know more than just itsinterface: we have to know the internal classes|black box abstractions|andtheir dependencies).On the example, we have to calculate the grey box abstractions of thetwo modules corresponding to the two processors.4.4 Adding communicationsCommunication features, such as a shared memory, a �fo, etc., can be de-scribed as some process abstraction. In �gure 7, communications have beenadded between the two processors. Other ones should be added also betweenthe processors and their environment. From this complete representation of

Figure 7. Adding communicationsthe application, including its virtual distribution on a targeted architecture, itislip99: submitted to World Scienti�c on September 9, 1999 16



is possible to make a global compilation to be able to simulate the applicationon the considered architecture. It is also possible to study the cost of theimplementation, to evaluate time consumption, etc. 6;17.On the other hand, each module corresponding to one processor can becompiled separately for embedded code generation. In this case, only the\send or receive" part of the communication channels is considered, and com-munications are generated by making calls to the corresponding OS primitives,provided by the user (for example).5 ConclusionAlthough relatively small, the experiment we have presented can be consideredin several aspects as representative of multi-formalism designs using semanti-cally well-founded languages, such as synchronous languages. Co-simulationof these languages has been experimented through the use of a common for-mat and tools developed around this format. In particular, in this work thereis evidence for possibility of mixing data-
ow styles and control-
ow styles.Moreover, a distribution methodology and tools for that are provided in theframework of the graphical Signal environment. The approach can be com-pared with the implementation of synchronous programs in POLIS 10, andwith other distributed implementations 11;12.Other experiments, not described here, have been applied on the samecase study: veri�cation of some safety properties, for example (see section3.1). On the other hand, a mathematical model of the physical environmenthas been given, so that we can handle some hybrid system, composed of acombination of discrete and continuous speci�cations 20.Finally, the same sort of experiments have been made, using Lustre andmode automata on one hand, and Signal and Statecharts on the other hand.AcknowledgmentsThis work was supported by the Esprit LTR project SYRF (EP 22703). Part of theresults have been obtained from the Esprit R&D project SACRES (EP 20897).Appendix: Signal main processprocess clim_cham_sys =( ? boolean on_off; integer optreq, optvent, chamtact, chamflow;! boolean Chambonoff; integer Conheat;boolean Panwarn, Panaudio, Panwait, Panoper, Panblock; integer Confan; )(| Chambonoff := if alpha then false else on_offislip99: submitted to World Scienti�c on September 9, 1999 17
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