
HAL Id: hal-00546127
https://hal.science/hal-00546127

Submitted on 13 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A synchronous model of the PLC programming language
ST

Fernando Jiménez-Fraustro, Eric Rutten

To cite this version:
Fernando Jiménez-Fraustro, Eric Rutten. A synchronous model of the PLC programming language ST.
11th Euromicro Conference on Real-Time Systems, ECRTS 1999, Jun 1999, York, United Kingdom.
pp.21-24. �hal-00546127�

https://hal.science/hal-00546127
https://hal.archives-ouvertes.fr

A synchronous model of the PLC programming language STFernando Jim�enez-FraustroIRISA / INRIAF-35042 RENNES, FranceFernando.Jimenez@irisa.fr Eric RuttenINRIA Rhône-AlpesF-38330 MONTBONNOT SAINT MARTIN, FranceEric.Rutten@inrialpes.frAbstractThis paper presents �rst results in the de�nition ofa synchronous model of the PLC programming lan-guage ST. This work is part of the integration of theIEC 1131 design standard and the synchronous tech-nology, with the motivation to give access to formaltechniques and tools.Keywords: programmable logic controllers, for-mal methods, synchronous languages.1 The design of industrial controllersIndustrial control systems, e.g. in factory automa-tion, are complex and safety critical systems. Theircontrolling dangerous or safety critical activities callsfor strong requirements regarding the analysis of thecorrectness of their design and implementation. Certi-�cation authorities begin advocating the use of formaland automated methods. They are often implementedon Programmable Logic Controllers (PLC) architec-tures. Their design relies on standards like the IEC1131 norm, and more specially its IEC 1131-3 partconcerning programming languages [6, 7]. These arevarious: ladder diagrams, imperative sequential lan-guages like Structured Text (ST), Sequential FunctionCharts (SFC). This variety re
ects that of levels ofdesign and of cultures involved in the design of largecontrollers, where legacy speci�cations can be very im-portant. From the point of view of the correctness andsafety of controllers, the problem is in the size andcomplexity of designs. A design assistance has to beprovided to designers, giving clear semantics to largespeci�cations, to the way the interoperability of lan-guages works, and a formal basis on which the analysisof speci�cations can be achieved. The assistance thatcan be provided by an environment of practical toolsto a correct design and implementation is essential. Inthe area of reactive real-time systems, the emergenceof the synchronous technology [5, 9] provides for de-sign environments o�ering automated support tools

for speci�cation, validation (simulation, veri�cation),performance evaluation, distributed implementation,execution on di�erent platforms (HW and OS).The motivation of our work is to connect the in-dustrial automation design standard IEC 1131 withthe synchronous formal model, technology and toolsThe method followed is based on the modeling of thebehavior of the languages of the IEC 1131 norm interms of Signal. Its implementation in an automatedtranslation opens access to the whole design environ-ment and to its diverse analysis and implementationfunctionalities. Compared with other work on formal-ization of PLC languages (e.g. [8, 3, 11]), we want toaddress the complete norm (i.e. have a formal modelof all the languages and their inter-operation), and toconnect it to a formally based technology where notonly analysis and validation, but also compilation, ar-chitecture dependent implementation, code generationare considered. In this paper, we present �rst resultsin the de�nition of a synchronous model of the PLCprogramming language Structured Text (ST).2 The IEC 1131 norm and STThe IEC 1131-3 norm on programming languages isdivided in two parts : the common elements, and thefour di�erent programming languages. The commonelements concern everything that can be used in allthe languages. Elementary data types and variables,with default initial values, can be used to build derivedones. Program Organization Units are the basic struc-turing units, that can be associated to tasks in theexecution environment. They can be programs, writ-ten in any of the programming languages de�ned fur-ther. Sequential Function Charts (SFC) are a graph-ical language for modeling the functional and behav-ioral aspects of discrete-event control systems. Con�g-uration elements give ways to describe the implemen-tation of the controller with the help of global vari-ables, resources, tasks, and acces paths. The PLCprograms are mainly structured by means of function

LD AANDN BST C C := A AND NOT B A B C

B

A
CInstruction List (IL) Structured Text (ST) Ladder Diagrams (LD) Function Block Diagram (FBD)Figure 1: The four programming languages of the IEC 1131-3 norm.block units. Function blocks are instances of func-tion block types that encapsulate local data and algo-rithmic behaviour and respect de�nite communicationinterfaces through strongly typed input/output vari-ables. When a function block is activated, input datais passed to its input variables and its algorithm isexecuted. All the input variables and the local dataare accessible for the algorithm. This local data per-sists from one activation to the next, therefore can beused to record relevant information for future use. Af-ter the activation is �nished, the caller can read thecalculated results from the output variables.The algorithmic behaviour of a function block is de-�ned in one of the four languages of the norm. Thereare two graphical languages: Ladder Diagrams (LD),that are based on the graphical presentation of RelayLadder Logic, and Function Block Diagrams (FBD),which express the behaviour of functions, functionblocks and programs as a set of interconnected blockswith the
ow of variables between them. The twoothers are textual languages: Instruction List (IL),which resembles assembly languages, and StructuredText (ST), which is a sequential imperative language,of the family of Pascal, Ada, C, and the like. In Fig-ure 1, the four programming languages are illustratedby the description of the same simple program. Thereare two input variables A and B, of the Boolean type,and one output variable C of the same type; the op-eration consists in making the conjuction of the valueof A and that of the negation of B. All four languagesare interlinked through the programming units, thismeans that one can implement a function block in onelanguage and use it in another. The syntax and se-mantics of all the languages allow the use of program-ming units described in any other language. The basicsemantics of the languages involves cyclic repetition ofa scan, where inputs are evaluated, a reaction is com-puted and outputs are emitted.3 The synchronous technologyThe synchronous approach to real-time and reac-tive systems [5] o�ers models and practical design as-sistance tools with a formal basis. The underlying

theory is that of discrete event systems and automatatheory. It provides for a technology concretely avail-able as design environments (e.g., the Signal one,or Sacres) with tools for speci�cation (graphical in-terfaces), simulation, veri�cation, performance evalu-ation, execution on di�erent platforms (HW and OS).Some synchronous languages are Esterel, Lus-tre Signal, Argos and StateCharts. The syn-chrony refers to a particular formal model, with a no-tion of logical instant, where composability of sub-systems is made simpler, and more e�cient w.r.t.automated analysis tools. Recently, exchange for-malisms, e.g. DC+, allow for the interoperabilityof the tools of di�erent origins, widening the poten-tial support for languages connected to these formats.Commercial versions of the languages and tools ex-ist, and have applications in industry (nuclear plantcontrol, avionics, ...) [1].Signal is a data-
ow language, where programs arewritten in the form of systems of equations, composedin a block-diagrammatic fashion [9]; experiments illus-trate the ways it can be practically used, and the ac-tual meaning of the synchrony [10]. The basic objectsare signals, which are series of values. The programsare equations relating the values of signals at a giveninstant. The primitive constructs are as follows: func-tions: e.g. on Booleans: X := A and not B; selection(or down-sampling): X := Y when B; merge (or up-sampling): X := Y default Z; delay (previous value,with initialization): X := Y$1 init X0.They are su�ciently expressive to model �nite statemachines. They can be composed using the compo-sition operator noted \|". There exist derived con-structs for confort and structuring, and external (e.g.C) functions. They can be used to express behavioursin a way reminiscent of sequential circuits, with de-lays used as registers. A di�erence is that the down-and up-samplings allow for not strictly single-clockedspeci�cations as in circuits, hence enabling less con-strained clocks, more modularity and reusability.The Sacres project and programming environ-ment is an industrial instantiation of a design environ-ment based on that technology [1]. StateMate [4] isintegrated to the synchronous technology by providinga translator to Signal and Dc+ [2]. This exampli�es

that it is possible to give access to synchronous tech-nology from languages originally not de�ned withinthe synchronous approach. This potentiality is exten-sible to languages which show reactivity, and is espe-cially meaningful when safety of the design is crucial,and complexity requires automated assistance to itsassessment. This is the case of industrial controllersprogramming, hence our approach. In particular, thelanguage of actions in Statemate [4] features imper-ative sequential constructs quite close to those of ST[12] ; therefore these results could be re-used here.4 Modeling Structured Text in SignalGeneral principle. A function block encapsulateslocal data that persists from one activation to the nextand an algorithm that is executed during an activa-tion. So a function block consists of an environmenttogether with an evaluation function. The �rst is thestate of all variables accessible to the function block.The latter is a statement list in the ST language work-ing on that environment. In imperative languages likeST, every assignment statement changes the environ-ment, and several assignments can change the samevariable during the execution.This section outlines the translation of imperativeST into equational (data-
ow) Signal, representingbasically the data dependencies between instructions.Signal considers signals which carry only one valueper logical instant. Hence, in order to model in such asynchronous, single-assignment formalism a languagewith multiple-assignment variables, one can de�ne onesignal for each assignment to a variable. This is pos-sible especially when we have a bounded sequence ofthem, i.e. a ST program with no unbounded loop.Therefore, we manage an environment Env with a sig-nal associated to every state variable, passing it alongthe sequence of instructions. It can be seen as unfold-ing the sequence or bounded loop. The case of un-bounded loops is mentioned at the end of the section,and principles of a solution are sketched.The general form of the translation function istran(Envinput; Envoutput)(stat) whith stat the sta-tement to translate, Envinput the input environmentand Envoutput the new one, output of the translationof stat. The resulting Signal code is shown in a box.Assignment. For a statement X:=expr, a new sig-nal is created as well as a new environment with thissignal in it (substituting the previous one). The valuecarried by the signal will be the result of the transla-tion to Signal of expr, e.g.:

tran(fx1; y1g; fx2;y1g)(X:=expr) =x2 := tran(fx1,y1g,fx1, y1g)(expr)Sequence. It is noted \;" in ST. The environmentcalculated for the �rst statement is passed as inputenvironment to the following statement:tran(Envinput; Envoutput)(stat;statlist) =tran(Envinput; Envstat)(stat)| tran(Envstat; Envoutput)(statlist)At the end of the ST sequence the last environmentis saved into the memory for the next scan, as follows:| Envcurrent := Envendbody default Envmem| Envmem := Envcurrent $1 init V alinitwhere Envendbody is the environment resulting of thetranslation of the statement list, Envcurrent the oneholding the news values and Envmem holding the pre-vious values.Conditional statement. The if-then statementhas an input environment and must produce an out-put environment which can be either the same inputenvironment when the condition is false or a new oneproduced by the statement list when it is true:tran(Ein; Eout)(IF exprC THEN statlist END IF) =cond := tran(Ein)(exprC)| Envbodyif := Ein when cond| tran(Envbodyif ; Envendbodyif)(statlist)| Eout := EnvEndbodyifdefault (Ein when not cond)The conditional expression exprC is evaluated us-ing the input environment. If it is true, a new en-vironment (Envbodyif) is created holding the signalswith the clock when cond. The statement is trans-lated using this environment, yielding Envendbodyif .Then, Envoutput is the merging of this one and the in-put one when the condition is false (and no statementis executed).Bounded loop. There is a choice of several kindsof loops in ST: bounded (FOR expr DO inst END FOR)and unbounded (WHILE expr DO inst END WHILE andREPEAT inst UNTIL expr END REPEAT), with an EXITstatement causing the current level of nested loops tobe exited. As mentioned above, bounded loops can beunfolded into a sequence, and then treated just likethe sequence presented before. In case of boundedloops with high bounds (i.e. numerous iterations) thisunfolding or expansion can indeed be costly; one candiscuss whether this is reasonable according the casesunder study. Compared to the other one mentionednext, this approach can be termed spatial expansion.Unbounded loop. One can de�ne, alternately,one instant for each assignment to the variable: this

approach can be named temporal expansion. In thiscase, one has to de�ne the control automaton of theST program, describing the sequence between sliceswith no more that one assignment for each variablereferenced. Then one has to associate equations foreach of the slices, and activate them at the right logi-cal instant, according to the control automaton. Thememorization of variables has to be managed from oneinstant to the other, in an explicit manner (in Signal,using the $ delay operator).Given the presence of unbounded loops in ST, thistechnique is necessary to model this kind of behavior.The mechanism of Signal called upsampling con-sists in being able to write Signal programs that up-sample a signal, i.e. that perform actions at moreinstants than the occurrences of that signal, i.e. at arelatively faster (or denser) clock (in the sense of setsof instants, the upsampling includes the upsampled).It is possible to specify at which instants of the inter-nal clock (according to the internal state) new inputscan be acquired. In that sense, Signal is a proactivelanguage rather that a reactive language.This corresponds to what we want to model in ST:unbounded loops can insert an arbitrary number of in-stants between input acquisition and output emission(i.e. instants inside a scan). The moment when theloop is terminated (because of the condition or of anEXIT statement) is determined by the internal state ofvariables and control.Our model on ST in Signal makes use of these twoapproaches. Its modeling bene�ts from results of themodeling into Signal of the imperative language ofactions in StateMate [2, 12].5 Conclusion and perspectivesThe way we approah the integration of the IEC1131 norm with the synchronous technology is bymodeling the languages into Signal equations, sup-ported by an automatic translation. In particular theimperative sequential language Structured Text (ST)is modeled using the data-dependencies encoded asdata-
ows. The up-sampling of Signal is used tomodel time internal to the PLCs execution cycle, il-lustrating the use of synchronous models to representnon-instantaneous input-output behavior.Perspectives are in polishing the modeling of ST(e.g. integrating complex data types), validating andimplementing it, modeling other IEC 1131 languages,and taking care of inter-operability questions, makingactual use of the synchronous analysis and compilation

functionalities, adapted to the speci�ties of the IEClanguages and PLC architectures, and generalizing theuse of upsampling to re�ne a logical instant into asequential implementation.References[1] Ph. Baufreton, H. Granier, X. M�ehaut, E. Rutten.The Sacres Approach to Embedded Systems Appliedto Aircraft Engine Controllers. In Proc. of the 22ndIFAC/IFIP Workshop on Real Time Programming,WRTP'97, Lyon, France, September 15{17, 1997.[2] J.-R. Beauvais, R. Houdebine, P. Le Guernic, E. Rut-ten, T. Gautier. A translation of StateCharts intoSignal. In Proc. of the Int. Conf. on Applicationof Concurrency to System Design (CSD'98), Aizu-Wakamatsu, Japan, March 23{26, 1998 (IEEE Publ.).[3] A. Fett, G. Egger, P. Pepper. Formal speci�cation ofa safe PLC language and its compiler. In Proc. of the13th Int. Conf. on Computer Safety, Reliability andSecurity, SAFECOMP'94, Anaheim, October 1994.[4] D. Harel, A. Naamad. The Statemate semantics ofStatecharts. ACM Trans. on Software Eng. andMethodology, vol. 5, nr. 4, oct. 1996.[5] N. Halbwachs. Synchronous programming of reactivesystems. Kluwer, 1993.[6] IEC International Electrotechnical Commission, In-ternational Standard for Programmable Controllers,IEC 1131 parts 1{5, 1993.[7] IEC International Electrotechnical Commission, In-ternational Standard for Programmable Controllers:Programming Languages, IEC 1131 part 3, 1993.[8] B. Kramer, W. A. Halang. Achieving high integrity ofprocess control software by graphical design and for-mal veri�cation. Software Engineering Journal, Jan.1992.[9] P. Le Guernic, T. Gautier, M. Le Borgne, C. Le Maire.Programming Real-Time Applications with Signal.Another look at real-time programming, special sec-tion of Proceedings of the IEEE, 79(9), Sept. 1991.[10] P. Le Guernic, E. Rutten. Experiments with the syn-chronous methodology illustrating its support of pre-dictability. In Proc. of the 21st IFAC/IFIP Workshopon Real Time Programming, WRTP'96, Gramado,RS, Brazil, November 4{6, 1996. Elsevier.[11] L. Marc�e, P. Le Parc. De�ning the semantics oflanguages for programmable controllers with syn-chronous processes. Control Engineering Practice, vol.1, nr. 1, february 93.[12] Mirabelle Nebut.Mod�elisation de Statemate en Sig-nal : le langage imp�eratif des actions Rapport deDEA, IFSIC - Universit�e de Rennes 1, Sept. 1998.

