N

N
N

HAL

open science

A synchronous model of the PLC programming language

ST

Fernando Jiménez-Fraustro, Eric Rutten

» To cite this version:

Fernando Jiménez-Fraustro, Eric Rutten. A synchronous model of the PLC programming language ST.
11th Euromicro Conference on Real-Time Systems, ECRTS 1999, Jun 1999, York, United Kingdom.

pp.21-24. hal-00546127

HAL Id: hal-00546127
https://hal.science/hal-00546127
Submitted on 13 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00546127
https://hal.archives-ouvertes.fr

A synchronous model of the PLC programming language ST

Fernando Jiménez-Fraustro
IRISA / INRIA
F-35042 RENNES, France

Fernando.Jimenez@irisa.fr

Abstract

This paper presents first results in the definition of
a synchronous model of the PLC programming lan-
guage ST. This work s part of the integration of the
IEC 1131 design standard and the synchronous tech-
nology, with the motivation to give access to formal
techniques and tools.

Keywords: programmable logic controllers, for-
mal methods, synchronous languages.

1 The design of industrial controllers

Industrial control systems, e.g. in factory automa-
tion, are complex and safety critical systems. Their
controlling dangerous or safety critical activities calls
for strong requirements regarding the analysis of the
correctness of their design and implementation. Certi-
fication authorities begin advocating the use of formal
and automated methods. They are often implemented
on Programmable Logic Controllers (PLC) architec-
tures. Their design relies on standards like the TEC
1131 norm, and more specially its ITEC 1131-3 part
concerning programming languages [6, 7]. These are
various: ladder diagrams, imperative sequential lan-
guages like Structured Text (ST), Sequential Function
Charts (SFC). This variety reflects that of levels of
design and of cultures involved in the design of large
controllers, where legacy specifications can be very im-
portant. From the point of view of the correctness and
safety of controllers, the problem is in the size and
complexity of designs. A design assistance has to be
provided to designers, giving clear semantics to large
specifications, to the way the interoperability of lan-
guages works, and a formal basis on which the analysis
of specifications can be achieved. The assistance that
can be provided by an environment of practical tools
to a correct design and implementation is essential. In
the area of reactive real-time systems, the emergence
of the synchronous technology [5, 9] provides for de-
sign environments offering automated support tools

Eric Rutten
INRIA Rhéne-Alpes

F-38330 MONTBONNOT SAINT MARTIN, France

Eric.Rutten@inrialpes.fr

for specification, validation (simulation, verification),
performance evaluation, distributed implementation,
execution on different platforms (HW and OS).

The motivation of our work is to connect the in-
dustrial automation design standard TEC 1131 with
the synchronous formal model, technology and tools
The method followed is based on the modeling of the
behavior of the languages of the TEC 1131 norm in
terms of SIGNAL. Its implementation in an automated
translation opens access to the whole design environ-
ment and to its diverse analysis and implementation
functionalities. Compared with other work on formal-
ization of PLC languages (e.g. [8, 3, 11]), we want to
address the complete norm (i.e. have a formal model
of all the languages and their inter-operation), and to
connect it to a formally based technology where not
only analysis and validation, but also compilation, ar-
chitecture dependent implementation, code generation
are considered. In this paper, we present first results
in the definition of a synchronous model of the PLC
programming language Structured Text (ST).

2 The IEC 1131 norm and ST

The IEC 1131-3 norm on programming languages is
divided in two parts : the common elements, and the
four different programming languages. The common
elements concern everything that can be used in all
the languages. Elementary data types and variables,
with default initial values, can be used to build derived
ones. Program Organization Units are the basic struc-
turing units, that can be associated to tasks in the
execution environment. They can be programs, writ-
ten in any of the programming languages defined fur-
ther. Sequential Function Charts (SFC) are a graph-
ical language for modeling the functional and behav-
ioral aspects of discrete-event control systems. Config-
uration elements give ways to describe the implemen-
tation of the controller with the help of global vari-
ables, resources, tasks, and acces paths. The PLC
programs are mainly structured by means of function

LD A
ANDN B C := A AND NOT B
ST C

Instruction List (IL) Structured Text (ST)

i 1 Fe

Ladder Diagrams (LD)

A —

Function Block Diagram (FBD)

Figure 1: The four programming languages of the IEC 1131-3 norm.

block units. Function blocks are instances of func-
tion block types that encapsulate local data and algo-
rithmic behaviour and respect definite communication
interfaces through strongly typed input/output vari-
ables. When a function block is activated, input data
is passed to its input variables and its algorithm is
executed. All the input variables and the local data
are accessible for the algorithm. This local data per-
sists from one activation to the next, therefore can be
used to record relevant information for future use. Af-
ter the activation is finished, the caller can read the
calculated results from the output variables.

The algorithmic behaviour of a function block is de-
fined in one of the four languages of the norm. There
are two graphical languages: Ladder Diagrams (LD),
that are based on the graphical presentation of Relay
Ladder Logic, and Function Block Diagrams (FBD),
which express the behaviour of functions, function
blocks and programs as a set of interconnected blocks
with the flow of variables between them. The two
others are textual languages: Instruction List (IL),
which resembles assembly languages, and Structured
Text (ST), which is a sequential imperative language,
of the family of Pascal, Ada, C, and the like. In Fig-
ure 1, the four programming languages are illustrated
by the description of the same simple program. There
are two input variables A and B, of the Boolean type,
and one output variable C of the same type; the op-
eration consists in making the conjuction of the value
of A and that of the negation of B. All four languages
are interlinked through the programming units, this
means that one can implement a function block in one
language and use i1t in another. The syntax and se-
mantics of all the languages allow the use of program-
ming units described in any other language. The basic
semantics of the languages involves cyclic repetition of
a scan, where inputs are evaluated, a reaction is com-
puted and outputs are emitted.

3 The synchronous technology

The synchronous approach to real-time and reac-
tive systems [5] offers models and practical design as-
sistance tools with a formal basis. The underlying

theory is that of discrete event systems and automata
theory. It provides for a technology concretely avail-
able as design environments (e.g., the SIGNAL one,
or SACRES) with tools for specification (graphical in-
terfaces), simulation, verification, performance evalu-
ation, execution on different platforms (HW and OS).

Some synchronous languages are ESTEREL, LUs-
TRE SIGNAL, ARGOS and STATECHARTS. The syn-
chrony refers to a particular formal model, with a no-
tion of logical instant, where composability of sub-
systems 1s made simpler, and more efficient w.r.t.
automated analysis tools. Recently, exchange for-
malisms, e.g. DC+, allow for the interoperability
of the tools of different origins, widening the poten-
tial support for languages connected to these formats.
Commercial versions of the languages and tools ex-
ist, and have applications in industry (nuclear plant
control, avionics, ...) [1].

SIGNAL is a data-flow language, where programs are
written in the form of systems of equations, composed
in a block-diagrammatic fashion [9]; experiments illus-
trate the ways it can be practically used, and the ac-
tual meaning of the synchrony [10]. The basic objects
are signals, which are series of values. The programs
are equations relating the values of signals at a given
instant. The primitive constructs are as follows: func-
tions: e.g. on Booleans: X := A and not B; selection
(or down-sampling): X := Y when B; merge (or up-
sampling): X := Y default Z; delay (previous value,
with initialization): X := Y$1 init XO.

They are sufficiently expressive to model finite state
machines. They can be composed using the compo-
sition operator noted “|”. There exist derived con-
structs for confort and structuring, and external (e.g.
C) functions. They can be used to express behaviours
in a way reminiscent of sequential circuits, with de-
lays used as registers. A difference is that the down-
and up-samplings allow for not strictly single-clocked
specifications as in circuits, hence enabling less con-
strained clocks, more modularity and reusability.

The SACRES project and programming environ-
ment 1s an industrial instantiation of a design environ-
ment based on that technology [1]. STATEMATE [4] is
integrated to the synchronous technology by providing
a translator to SIGNAL and Do+ [2]. This examplifies

that it is possible to give access to synchronous tech-
nology from languages originally not defined within
the synchronous approach. This potentiality is exten-
sible to languages which show reactivity, and is espe-
cially meaningful when safety of the design is crucial,
and complexity requires automated assistance to its
assessment. This is the case of industrial controllers
programming, hence our approach. In particular, the
language of actions in STATEMATE [4] features imper-
ative sequential constructs quite close to those of ST
[12]; therefore these results could be re-used here.

4 Modeling Structured Text in SIGNAL

General principle. A function block encapsulates
local data that persists from one activation to the next
and an algorithm that is executed during an activa-
tion. So a function block consists of an environment
together with an evaluation function. The first is the
state of all variables accessible to the function block.
The latter is a statement list in the ST language work-
ing on that environment. In imperative languages like
ST, every assignment statement changes the environ-
ment, and several assignments can change the same
variable during the execution.

This section outlines the translation of imperative
ST into equational (data-flow) SIGNAL, representing
basically the data dependencies between instructions.
SIGNAL considers signals which carry only one value
per logical instant. Hence, in order to model in such a
synchronous, single-assignment formalism a language
with multiple-assignment variables, one can define one
signal for each assignment to a variable. This is pos-
sible especially when we have a bounded sequence of
them, 1.e. a ST program with no unbounded loop.
Therefore, we manage an environment Env with a sig-
nal associated to every state variable, passing it along
the sequence of instructions. It can be seen as unfold-
ing the sequence or bounded loop. The case of un-
bounded loops 1s mentioned at the end of the section,
and principles of a solution are sketched.

The general form of the translation function is
tran(Envipput, Envoutput)(stat) whith stat the sta-
tement to translate, Fnv;npy: the input environment
and Enveutpu: the new one, output of the translation
of stat. The resulting SIGNAL code is shown in a box.

Assignment. For a statement X:=expr, a new sig-
nal is created as well as a new environment with this
signal in it (substituting the previous one). The value
carried by the signal will be the result of the transla-
tion to SIGNAL of expr, e.g.:

tran({x1,y1}, {x2,y1})(X:=expr) =
‘x2 := tran({x1,y1},{x1, yl})(expr)‘

Sequence. It is noted “;” in ST. The environment

calculated for the first statement is passed as input
environment to the following statement:
tran(Envipput, EnVoutpus) (stat;statlist) =

tran(Envipput, Envsiar)(stat)
| tran(Envstar, Envourput) (statlist)

At the end of the ST sequence the last environment
is saved into the memory for the next scan, as follows:

| Enveurrent := ENYendpody default Envpyepn,
| Envmem := Enveyprent $1 init Val;ni

where Envepapoay 1s the environment resulting of the
translation of the statement list, Enveyrren: the one
holding the news values and Envpgpenm holding the pre-
vious values.

Conditional statement. The if-then statement
has an input environment and must produce an out-
put environment which can be either the same input
environment when the condition is false or a new one
produced by the statement list when 1t 1s true:
tran(Fsn, Eout)(IF exprC THEN statlist END_IF) =

cond := tran(E;,)(exprC)
| Envpoqyis := Fjn when cond
| tran(Envsedyif, ENVendbodyir) (statlist)
| Eour 1= EnvEndbodyis

default (F;, when not cond)

The conditional expression expr(' is evaluated us-
ing the input environment. If it is true, a new en-
vironment (Enup.qy;¢) is created holding the signals
with the clock when cond. The statement is trans-
lated using this environment, yielding Envendpodyis -
Then, Env,yipur 1s the merging of this one and the in-
put one when the condition is false (and no statement
is executed).

Bounded loop. There 1s a choice of several kinds
of loops in ST: bounded (FOR expr DO inst END_FOR)
and unbounded (WHILE expr DO ¢nst END _WHILE and
REPEAT :nst UNTIL expr END_REPEAT), with an EXIT
statement causing the current level of nested loops to
be exited. As mentioned above, bounded loops can be
unfolded into a sequence, and then treated just like
the sequence presented before. In case of bounded
loops with high bounds (i.e. numerous iterations) this
unfolding or expansion can indeed be costly; one can
discuss whether this is reasonable according the cases
under study. Compared to the other one mentioned
next, this approach can be termed spatial expansion.

Unbounded loop. One can define; alternately,
one instant for each assignment to the variable: this

approach can be named temporal expansion. In this
case, one has to define the control automaton of the
ST program, describing the sequence between slices
with no more that one assignment for each variable
referenced. Then one has to associate equations for
each of the slices, and activate them at the right logi-
cal instant, according to the control automaton. The
memorization of variables has to be managed from one
instant to the other, in an explicit manner (in SIGNAL,
using the $ delay operator).

Given the presence of unbounded loops in ST, this
technique 1s necessary to model this kind of behavior.

The mechanism of SIGNAL called upsampling con-
sists in being able to write SIGNAL programs that up-
sample a signal, 1.e. that perform actions at more
instants than the occurrences of that signal, i.e. at a
relatively faster (or denser) clock (in the sense of sets
of instants, the upsampling includes the upsampled).
It is possible to specify at which instants of the inter-
nal clock (according to the internal state) new inputs
can be acquired. In that sense, SIGNAL is a proactive
language rather that a reactive language.

This corresponds to what we want to model in ST:
unbounded loops can insert an arbitrary number of in-
stants between input acquisition and output emission
(i.e. instants inside a scan). The moment when the
loop is terminated (because of the condition or of an
EXIT statement) is determined by the internal state of
variables and control.

Our model on ST in SIGNAL makes use of these two
approaches. Its modeling benefits from results of the
modeling into SIGNAL of the imperative language of
actions in STATEMATE [2, 12].

5 Conclusion and perspectives

The way we approah the integration of the TEC
1131 norm with the synchronous technology is by
modeling the languages into SIGNAL equations, sup-
ported by an automatic translation. In particular the
imperative sequential language Structured Text (ST)
is modeled using the data-dependencies encoded as
data-flows. The up-sampling of SIGNAL is used to
model time internal to the PLCs execution cycle, il-
lustrating the use of synchronous models to represent
non-instantaneous input-output behavior.

Perspectives are in polishing the modeling of ST
(e.g. integrating complex data types), validating and
implementing it, modeling other IEC 1131 languages,
and taking care of inter-operability questions, making
actual use of the synchronous analysis and compilation

functionalities, adapted to the specifities of the TEC
languages and PLC architectures, and generalizing the
use of upsampling to refine a logical instant into a
sequential implementation.

References

[1] Ph. Baufreton, H. Granier, X. Méhaut, F. Rutten.
The SACRES Approach to Embedded Systems Applied
to Aircraft Engine Controllers. In Proc. of the 22nd
IFAC/IFIP Workshop on Real Time Programming,
WRTP’97, Lyon, France, September 15-17, 1997.

[2] J.-R. Beauvais, R. Houdebine, P. Le Guernic, E. Rut-
ten, T. Gautier. A translation of STATECHARTS into
SIGNAL. In Proc. of the Int. Conf. on Application
of Concurrency to System Design (CSD’98), Aizu-
Wakamatsu, Japan, March 23-26, 1998 (IEEE Publ.).

[3] A. Fett, G. Egger, P. Pepper. Formal specification of
a safe PL.C language and its compiler. In Proc. of the
13th Int. Conf. on Computer Safety, Reliability and
Security, SAFEFCOMP’9}, Anaheim, October 1994.

[4] D. Harel, A. Naamad. The STATEMATE semantics of
STATECHARTS. ACM Trans. on Software Eng. and
Methodology, vol. 5, nr. 4, oct. 1996.

[5] N. Halbwachs. Synchronous programming of reactive
systems. Kluwer, 1993.

[6] TEC International Electrotechnical Commission, In-
ternational Standard for Programmable Controllers,
IEC 1131 parts 1-5, 1993.

[7] TEC International Electrotechnical Commission, In-
ternational Standard for Programmable Controllers:
Programming Languages, IEC 1131 part 3, 1993.

[8] B. Kramer, W. A. Halang. Achieving high integrity of
process control software by graphical design and for-
mal verification. Software Engineering Journal, Jan.
1992.

[9] P. Le Guernic, T. Gautier, M. Le Borgne, C. Le Maire.
Programming Real-Time Applications with SIGNAL.
Another look at real-teme programming, special sec-
tion of Proceedings of the IEEE, 79(9), Sept. 1991.

[10] P. Le Guernic, E. Rutten. Experiments with the syn-
chronous methodology illustrating its support of pre-
dictability. In Proc. of the 21st IFAC/IFIP Workshop
on Real Time Programming, WRTP’96, Gramado,
RS, Brazil, November 4-6, 1996. Elsevier.

[11] L. Marcé, P. Le Parc. Defining the semantics of
languages for programmable controllers with syn-
chronous processes. Control Engineering Practice, vol.
1, nr. 1, february 93.

[12] Mirabelle Nebut. Modélisation de STATEMATE en SIG-

NAL : le langage impératif des actions Rapport de
DEA, IFSIC - Université de Rennes 1, Sept. 1998.

