Numerical modeling of transient two-dimensional viscoelastic waves

Abstract : This paper deals with the numerical modeling of transient mechanical waves in linear viscoelastic solids. Dissipation mechanisms are described using the generalized Zener model. No time convolutions are required thanks to the introduction of memory variables that satisfy local-in-time differential equations. By appropriately choosing the relaxation parameters, it is possible to accurately describe a large range of materials, such as solids with constant quality factors. The evolution equations satisfied by the velocity, the stress, and the memory variables are written in the form of a first-order system of PDEs with a source term. This system is solved by splitting it into two parts: the propagative part is discretized explicitly, using a fourth-order ADER scheme on a Cartesian grid, and the diffusive part is then solved exactly. Jump conditions along the interfaces are discretized by applying an immersed interface method. Numerical experiments of wave propagation in viscoelastic and fluid media show the efficiency of this numerical modeling for dealing with challenging problems, such as multiple scattering configurations.
Type de document :
Article dans une revue
Journal of Computational Physics, Elsevier, 2011, 230, pp.6099-6114
Liste complète des métadonnées
Contributeur : Bruno Lombard <>
Soumis le : jeudi 31 mars 2011 - 15:13:54
Dernière modification le : mercredi 11 mai 2016 - 09:08:00
Document(s) archivé(s) le : vendredi 1 juillet 2011 - 02:54:19


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00545843, version 2
  • ARXIV : 1012.2669


Bruno Lombard, Joël Piraux. Numerical modeling of transient two-dimensional viscoelastic waves. Journal of Computational Physics, Elsevier, 2011, 230, pp.6099-6114. 〈hal-00545843v2〉



Consultations de
la notice


Téléchargements du document