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ABSTRACT

We implement a weighted negative update of the covariance
matrix in the CMA-ES—weighted active CMA-ES or, in
short, aCMA-ES. We benchmark the IPOP-aCMA-ES and
compare the performance with the IPOP-CMA-ES on the
BBOB-2010 noiseless testbed in dimensions between 2 and
40. On nine out of 12 essentially unimodal functions, the
aCMA is faster than CMA, in particular in larger dimen-
sion. On at least three functions it also leads to a (slightly)
better scaling with the dimension. In none of the 24 bench-
mark functions aCMA appears to be significantly worse in
any dimension. On two and five functions, IPOP-CMA-
ES and TPOP-aCMA-ES respectively exceed the record ob-
served during BBOB-2009.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, unconstrained optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems

General Terms

Algorithms, performance, comparison

Keywords

CMA-ES, IPOP-CMA-ES, active CMA-ES, Benchmarking,
Black-box optimization

1. INTRODUCTION

The Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [12, 11, 10] is a stochastic search procedure that
samples new candidate solutions from a multivariate nor-
mal distribution thereof mean and covariance matrix are
adapted after each iteration. The (u/py, A)-CMA-ES sam-
ples A new candidate solutions and selects the p best among
them. They contribute in a weighted manner to the update
of the distribution parameters. The algorithm is non-elitist
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by nature, but a practical implementation will preserve the
best-ever evaluated solution. Elitist variants of the CMA-ES
[13] are often slightly faster but more susceptible of getting
stuck in a suboptimal local optimum.

The IPOP-CMA-ES [1] implements a restart procedure.
Before each restart, A is doubled. In most cases, doubling A
increases the length of single runs, but it often improves the
quality of the best found solution. The BIPOP-CMA-ES [6],
proposed recently, maintains two budgets. Under the first
budget, an IPOP-CMA-ES is executed. Under the second
budget, a multi-start (u/pw, A)-CMA-ES with various small
population sizes is entertained.

Previous Benchmarking of CMA-ES. The (u/fpiy,\)-
CMA-ES has been quite successful in several elaborate bench-
marking exercises. Notably, the IPOP-CMA-ES [1] in the
special session on real parameter optimization CEC-05' and
the BIPOP-CMA-ES [6] in the black-box optimization bench-
marking BBOB-20092 have shown excellent performance 5,
8] on respectively 25 and 24 uni- and multi-modal bench-
mark functions in search space dimension up to 50.

A comparison of two Estimation of Distribution Algo-
rithms and three Evolution Strategies is presented in [15]
on 14 functions. The CMA-ES performed best on 11 func-
tions with a median speed-up by a factor of at least 30 com-
pared to any other algorithm. On the remaining functions
the maximum loss factor was 1.4.

A comparison on a small collection of multi-modal func-
tion with three other algorithms is presented in [10]. The
CMA-ES with optimal population size performs clearly best
on the non-separable functions and is clearly outperformed
on additively decomposable functions by Differential Evolu-
tion (DE).

A comparison of derivative-free optimization methods and
BFGS on smooth unimodal functions is presented in [2]. On
these functions, PSO and DE are in general significantly
slower than CMA-ES. Only PSO performs similar on separa-
ble problems. NEWUOA and BFGS remarkably outperform
CMA-ES, if the problem is convex and has a moderate con-
ditioning. On non-convex problems with at least moderate
condition number (i.e. 10*) and on non-separable problems
with higher condition number (i.e. 10%), the CMA-ES breaks
even and becomes advantageous with increasing condition
number, tested up to 10°.

In [3]® the CMA-ES is recognized as state-of-the-art in

"http://www.ntu.edu.sg/home/EPNSugan/index_files/
CEC-05/CEC05.htm
2http://coco.gforge.inria.fr/doku.php?id=bbob-2009
3http://www.scholarpedia.org/article/Evolution_
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Figure 1: Update equations for the state variables in the (u/u,\)-aCMA-ES with iteration index ¢ =0,1,2,...
and a Abc+d = min(a,bc+d). The chosen ordering of equations allows to remove the time index in all variables
but m’. The symbol x;., is the i-th best of the solutions x1,...,x\

real-valued evolutionary optimization. Partly due to the fact
that the algorithm is quasi-parameter-free, the CMA-ES is
widely applied and has become a quasi-standard.

A Further Improvement. The active CMA-ES proposed
in [14] introduces a negative update of the covariance ma-
trix in the (u/pp, A)-CMA-ES. The authors investigate es-
sentially unimodal functions. They observe a significant
speed-up in particular on the discus function. The speed-up
reaches almost a factor of three in dimension 20 (compared
to the (u/pr, A)-CMA-ES) and it increases with increasing
dimension (i.e. the update leads to an improved scaling with
increasing search space dimension). The negative update
can in particular speed-up the adaptation of small variances
in a small number of directions. The speed-up is less pro-
nounced with a larger population size A.

This Paper. We combine the technique of negative updates
with the (u/pw, A)-CMA-ES and implement a weighted neg-
ative update procedure for the covariance matrix. The up-
date also improves compared to [14], in that it remains feasi-
ble with a large population size. Consequently, the objective
of this paper is threefold. 1) Specify a weighted negative up-
date scheme with a parameter setting suited also for a very
large population size. 2) Reproduce the effects from [14], ob-
serving significant improvements on functions, where a small
number of directions need a small variance (here, we want

strategies#Covariance_Matrix_Adaptation_Evolution_
Strategies_CMA-ESs

to improve over the (p/ iy, A)-CMA-ES). 3) Survey the per-
formance of a negative update on a larger number of diverse
functions to possibly detect failures of the method. For this
survey the BBOB-2010" test environment is used.

2. THEALGORITHM

The (1/ptw, A)-aCMA-ES is summarized in Figure 1. The
initial values m‘=% € R? and ¢'=° > 0 are user defined and
given in the next section. Modifications compared to [10, 6]
are the addition of (7) and otherwise highlighted in pink
(mainly the supplement to (8)).

The default parameter values are shown in Table 1. For
¢~ =0, the (u/pw, A)-CMA-ES is recovered.

Restarts. We apply nine restarts each with maximal 100 +
50(D + 3)2/+v/\ iterations. The default termination meth-
ods are used, besides that we have set TolHistFun=1e-12,
TolX=2e-12, StopOnStagnation=’on’ and MaxFunEvals=inf,
following [6]. The population size A is doubled for each
restart, the first value is given in Table 1.

3. PARAMETER TUNING AND SETUP

The new parameter(s) for aCMA have been identified with
experiments on the sphere function f; with various initial
covariance matrices. In particular ¢™ is chosen such that (a)
decreasing ¢~ from the default value does not improve the

“http://coco.gforge.inria.fr/doku.php?id=bbob-2010



Table 1: Default parameter values of (11/iy,A\)-aCMA-ES, where by definition >/ | |w;| =1 and pg,' = 3% | w?
and a —b A ¢+ d:=min(a — b,c+ d). Only population size )\ is possibly left to the users choice (see also [1, 6])

A = 44 [3InD|

wo= 13

In (%)*lni

population size, number of newly sampled candidate solutions in each iteration
parent number, number of candidate solution used to update the distribution parameters

w; = recombination weights for i = 1,..., 0 < \/2

‘.‘_1 (ln ( /\;1 ) 7111]')

i=
cm = 1 learning rate for the mean, sometimes interpreted as rescaled mutation with kK = % >1
Coe = D*‘#tig cumulation constant for step-size

w—1
de = 1+cg+2max(0, ‘/HD+1 —1)

step-size damping, is usually close to one. This formula might be replaced
by 2pw/A 4+ 0.3 + ¢» in the near future

Ce = % cumulation constant for pc, the 0 X might be removed in near future

a1 = %‘m covariance matrix learning rate for the rank one update using pc

cp = l—ca A ozcov% covariance matrix learning rate for rank-u update

¢ = cpn N (11— CM)%m remark that ¢~ becomes small, if ¢, gets close to one
Qcov = 2 could be chosen < 2, e.g. acov = 0.5 for noisy problems

(=061 —ep)(1- ) with o, = 00, Amintarget = 0.66 and Amax(.) is the largest eigenvalue; the
Coin = Omin Ama:(l cff T3 C,mc‘“ttffj‘;t) coefficient ¢,  depends in general on the iteration index, but here, due to
# the setting of o, , no upper bound on ¢ is enforced
agy = 0.5 isin [0,1] and is chosen in the domain middle without deep motives, because it seems quite irrelevant
AF? = oo might become 1 in near future, which has only a negligible effect under neutral selection, because the term

to the right of the A in (9) is approximately $=A(0,1/2D) under neutral selection

performance, (b) increasing ¢~ by a factor of two never leads
to a failure, and (c) the condition number of C’ remains
below 10 in the stationary limit. The remaining parameters
are used in their default settings as found in the source code
on the WWW or in [6]. No special attempt has been made
to further tune the parameters to the BBOB testbed. The
crafting-effort [7] of both algorithms is equal to CrE = 0.

Experiments were conducted according to BBOB-2010 [7]
on the 24 benchmark functions given in [4, 9]. On each
function, 15 trials are executed (on the first 15 instances)
with m® uniformly random in [—4,4]” and ¢° = 2.

Source code to reproduce the experiment is provided at®.

CPU Timing Experiment. The complete algorithm was
run on fg for at least 30 seconds on a Intel Core 2 6700 pro-
cessor (2.66 GHz) with Linux 2.6.28-18 and Matlab R2008a.
Results for the IPOP-aCMA-ES are 2.0; 1.7; 1.4; 1.2; 1.1;
1.4 and 3.6 x10™* seconds per function evaluation for di-
mension 2; 3; 5; 10; 20; 40 and 80.

4. RESULTS

We show results for two algorithms: the IPOP-aCMA-ES
as presented above and denoted as aCMA, and the IPOP-
CMA-ES, the same algorithm where ¢~ is set to zero, de-
noted as CMA. In exploratory experiments comparing both
(1/ tw, A)-CMA-ES and (p/ppw, A)-aCMA-ES with the result
of the (u/py, A)-variants from [14], the (u/py,\)-variants
perform at least as good and usually better: as a rule,
(/ tw, A)-aCMA-ES outperforms (u/ur, A)-aCMA-ES that
outperforms (p/pty, A)-CMA-ES that outperforms (u/ iy, A)-
CMA-ES.

Runtime results comparing aCMA with CMA and with
the respective best algorithm from BBOB-2009 are presented

5h‘l:tp ://coco.gforge.inria.fr/doku.php?id=
bbob-2010-results
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Figure 2: Box-Whisker plots of the ERT ratio to
the respective best algorithm from BBOB-2009 for
all functions in dimension 20

in Figures 2-5 and in Table 2. The expected running
time (ERT), used in the figures and table, depends on a
given target function value, fi = fopt +Af, and is computed
over all relevant trials as the number of function evaluations
executed during each trial while the best function value did
not reach fi, summed over all trials and divided by the num-
ber of trials that actually reached f; [7, 16]. Statistical
significance is tested with the rank-sum test for a given
target Af; (107® in Figure 5) up to the smallest number
of function evaluations, by ;,, executed in any unsuccessful
trial under consideration. The datum from each trial is ei-
ther the best achieved A f-value, or if f; was reached within
the budget by, the number of needed function evaluations
to reach Af; (inverted and multiplied by —1),

In the following, when a performance difference is high-
lighted on an individual function, the difference is statisti-
cally significant.

Figure 2. The figure shows Box-Whisker plots of the ERT
ratio compared to the respective best algorith from BBOB-



2009 for all functions. Both algorithms show a very similar
characteristic. Besides for very small budgets, the median
(horizontal red line) and average (connected line) ERT ratio
are somewhat below ten. In the final stage, aCMA improves
in about 25% of the functions compared to the best algo-
rithm from 2009 (ratio smaller than one).

Figure 3. The figure shows empirical cumulative distribu-
tions (a) of the runtime in number of function evaluations
and (b) of the runtime ratio between the two algorithms
aCMA/CMA. Both algorithms perform very similar while
aCMA appears to be slightly faster. Clearly, the strongest
effect in Fig. 3 is observed for the ill-conditioned functions
in dimension 20. The runtime is consistently shorter for
aCMA, almost uniformly by a factor of close to two. The
improvement is statistically significant on all functions (see
Table 2).

On the weak structure functions, the observed differences
are probably caused by stochastic deviations and not sig-
nificant. The remaining subgroups show almost identical
behavior.

Figure 4. The scatter plots in Fig. 4 visualize the ratio
of expected runtime aCMA /CMA for each measurement on
each function and each dimension. A slightly improved scal-
ing with aCMA can be observed on f2, fio and fi1. On the
Discus function fi1 the effect is most pronounced and the
speed-up comes close to a factor of three in dimension 40.

The advantage of CMA on f23 in dimension 10 is far be-
yond the maximum number of function evaluations, based
on two successes (see Fig. 5) and not statistically significant.

Additionally, on functions f7, fia—fi4, and fis an advan-
tage by aCMA, in particular for larger dimension, could be
conjectured. On fis an advantage of CMA could be con-
jectured. According to Table 2, in dimension 20, statistical
significance is established for f7 and fia—fi4.

Figure 5. The questions of a significant performance dif-
ference can be pursued in Fig. 5 which plots the ERT ratio
versus the target function value. The figure reveals more
statistically significant (but sometimes small) differences in
performance. A non-negligible and statistically significant
performance advantage of aCMA in some dimensions larger
than 3 can be found on f2, and f7—f14. No such advantage
is detected for CMA.

Table 2. Finally, Table 2 presents the ERT numbers for
dimension 5 and 20 in comparison with the respective best
algorithm of BBOB-2009. Again, aCMA is significantly bet-
ter than CMA on fa, and fr—fi4 in dimension 20 as well as
in dimension 5 apart from f7 and fi2.

Compared to the best algorithm from BBOB-2009, cho-
sen for each function respectively, the aCMA can improve
the record in dimension 20 on fio, fi1, fi4, fis and fio.
On further four functions aCMA is visibly better, but the
results appear not to be statistically significant. The CMA
improves the record on fi5 and fio.

5. SUMMARY AND CONCLUSION

We have introduced the weighted negative update of the
covariance matrix into the (u/py, A)-CMA-ES with weighted
recombination, denoted as (u/py, A\)-aCMA-ES. The nega-
tive update is based in the idea of [14]. It provides a similar
effect for the (u/pw, \)-CMA-ES as [14] for the (u/pp, A)-
CMA-ES. The benchmarking of the new IPOP-aCMA-ES

with BBOB-2010 reveals no deficiencies or failures compared
to the IPOP-CMA-ES on the testbed of 24 functions in any
dimension between 2 and 40.

The most prominent effect from aCMA is observed on
ill-conditioned functions. In dimension 20, the average run-
time advantage on the ill-conditioned functions is about 1.7
(CMA is 1.7 times slower than aCMA). On three ill-condi-
tioned functions the scaling behavior compared to the CMA
improves notably. In no case CMA outperformed aCMA
with statistical significance.

Overall, the aCMA improves the performance over CMA
on nine out of 12 essentially unimodal functions significantly
at least in dimension 20, and the advantages are more pro-
nounced in larger dimension. Finally, IPOP-aCMA-ES im-
proves the record on five functions, where it is faster than the
respective best algorithm from BBOB-2009 in dimension 20
with a sufficient statistical significance. In two of these cases
IPOP-CMA-ES is still slightly faster and the record cannot
be attributed to the negative covariance matrix update.
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are disregarded, pairs where one trial failed are visible in the limits being > 0 or < 1. The legends indicate
the number of functions that were solved in at least one trial (IPOP-aCMA first).
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Figure 4: Expected running time (ERT in logl0 of number of function evaluations) of IPOP-aCMA versus
IPOP-CMA for 46 target values Af € [107%,10] in each dimension for functions fi—f2s. Markers on the upper
or right egde indicate that the target value was never reached by IPOP-aCMA or IPOP-CMA respectively.
Markers represent dimension: 2:-+, 3:V, 5:%, 10:0, 20:00, 40:$. Lines indicate the maximum number of function
evaluations
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Figure 5: ERT ratio of IPOP-aCMA divided by IPOP-CMA versus log,,(Af) for fi—fss in 2, 3, 5, 10, 20,
40-D. Ratios < 10° indicate an advantage of IPOP-aCMA, smaller values are always better. The line gets
dashed when for any algorithm the ERT exceeds thrice the median of the trial-wise overall number of f-
evaluations for the same algorithm on this function. Symbols indicate the best achieved A f-value of one
algorithm (ERT gets undefined to the right). The dashed line continues as the fraction of successful trials of
the other algorithm, where 0 means 0% and the y-axis limits mean 100%, values below zero for IPOP-aCMA.
The line ends when no algorithm reaches Af anymore. The number of successful trials is given, only if it was
in {1...9} for IPOP-aCMA (1st number) and non-zero for IPOP-CMA (2nd number). Results are significant

with p = 0.05 for one star and p = 10~#* otherwise, with Bonferroni correction within each figure.
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Table 2: Expected running time (ERT in number of function evaluations) divided by the best ERT measured
during BBOB-2009 (given in the respective first row) for different Af values for functions fi—f24. The median
number of conducted function evaluations is additionally given in italics, if ERT(1077) o0. Fsucc is the
number of trials that reached the final target fopt + 107°. Bold entries are statistically significantly better
compared to the other algorithm, with p = 0.05 or p = 10~* where k > 1 is the number following the * symbol,
with Bonferroni correction of 48.
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