Comparing Results of 31 Algorithms from the Black-Box Optimization Benchmarking BBOB-2009
Nikolaus Hansen, Anne Auger, Raymond Ros, Steffen Finck, Petr Posik

To cite this version:
Nikolaus Hansen, Anne Auger, Raymond Ros, Steffen Finck, Petr Posik. Comparing Results of 31 Algorithms from the Black-Box Optimization Benchmarking BBOB-2009. ACM-GECCO Genetic and Evolutionary Computation Conference, Jul 2010, Portland, United States. hal-00545727

HAL Id: hal-00545727
https://hal.archives-ouvertes.fr/hal-00545727
Submitted on 11 Dec 2010
Comparing Results of 31 Algorithms from the Black-Box Optimization Benchmarking BBOB-2009

Nikolaus Hansen
INRIA Saclay, TAO team
LRI, Bat 490 Univ. Paris-Sud
91405 Orsay Cedex France

Anne Auger
INRIA Saclay, TAO team
LRI, Bat 490 Univ. Paris-Sud
91405 Orsay Cedex France

Raymond Ros
INRIA Saclay, TAO team
LRI, Bat 490 Univ. Paris-Sud
91405 Orsay Cedex France

Steffen Finck
Research Center PPE, Univ. of Applied Science Vorarlberg
Hochschulstrasse 1
6850 Dornbirn, Austria

Petr Pošík
Czech Technical University in Prague, Dept. of Cybernetics
Technická 2
166 27 Prague 6, Czech Rep.

ABSTRACT
This paper presents results of the BBOB-2009 benchmarking of 31 search algorithms on 24 noiseless functions in a black-box optimization scenario in continuous domain. The runtime of the algorithms, measured in number of function evaluations, is investigated and a connection between a single convergence graph and the runtime distribution is uncovered. Performance is investigated for different dimensions up to 40-D, for different target precision values, and in different subgroups of functions. Searching in larger dimension and multi-modal functions appears to be more difficult. The choice of the best algorithm also depends remarkably on the available budget of function evaluations.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—global optimization, unconstrained optimization; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

General Terms
Algorithms, performance

Keywords
Benchmarking, black-box optimization

1. INTRODUCTION AND METHODS
This paper presents running time results from BBOB-2009—the Black-Box Optimization Benchmarking workshop at the Genetic and Evolutionary Computation Conference (GECCO) 2009. 31 real-parameter optimization algorithms (see Appendix) have been tested in a black-box scenario on 24 noiseless benchmark functions. The experimental procedure is detailed in [16], the functions are presented in [10, 17]. Performance results for each algorithm on each function can be found in the original publications. Tables with results of all algorithms on each single function are available at http://coco.gforge.inria.fr/doku.php?id=bbob-2009-results. In the following, we present summarizing results and results on function groups.

The performance measure adopted in this paper is the runtime (RT). For measuring a runtime, a target precision value \(\Delta f_t = f_{\text{target}} - f_{\text{opt}} \) is defined. In a single run, an algorithm can either succeed or fail to reach precision \(\Delta f_t \). In case of a success, the runtime is the number of function evaluations until \(\Delta f_t \) was reached. In case of a failure we can restart the algorithm. Assuming a positive success probability in a single run (a mild assumption for a stochastic search algorithm) the repeatedly restarted algorithm (that terminates, if \(\Delta f_t \) is reached) has a success probability of one! Its running time is the number function evaluations until \(\Delta f_t \) was reached.

In this paper, simulated runtime instances of the virtually restarted algorithm are displayed. We obtain a simulated runtime instance from a set of given trials (from the BBOB-2009 data) of the algorithm on a given function: if not a single trial in the set reached \(\Delta f_t \), we set RT to infinity; otherwise, we draw trials uniformly at random with replacement until a trial is found that reached the target precision \(\Delta f_t \). The runtime instance is then computed as the sum of function evaluations from all trials drawn. For the last trial only those function evaluations are taken into account that were executed until \(\Delta f_t \) was reached.

The expected value of (the simulated) RT obeys

\[
E(\text{RT}(\Delta f_t)) = \bar{E}(N_{\text{eval}}^u) + \frac{1 - \hat{p}_u}{\hat{p}_u} \bar{E}(N_{\text{eval}}^u),
\]

where \(\bar{E}(N_{\text{eval}}^u) \) denotes the average number of function evaluations until \(\Delta f_t \) is reached from those trials that reached \(\Delta f_t \); \(\bar{E}(N_{\text{eval}}^u) \) denotes the average number of function evaluation in the remaining (the unsuccessful) trials; \(\hat{p}_u \) denotes the fraction of trials that reached \(\Delta f_t \). In fact, the true expected runtime of the (truly) restarted algorithm obeys the same formula [2], where \(\bar{E}(N_{\text{eval}}^u) \) and \(\bar{E}(N_{\text{eval}}^u) \) are the ex-
expected number of evaluations for successful runs (terminated when Δf_t is reached) and unsuccessful runs respectively, and p_s is the probability of success.

2. RESULTS

In general, summarizing results never tell the full story: even if one algorithm solves more functions much faster than others, it does not necessarily perform superior on each and every function.

How to read the figures. Each graph in Figure 1 depicts the empirical cumulative distribution of RT of the annotated algorithm on all functions f_1–f_{24}, in dimension 10. For each function, each Δf_t-value in $\{10^{-8}, 10^{-6}, 10^{-4}, \ldots, 10^{-8}\}$ is used. We write $\Delta f_t \in [10^{-2}, 10^{-8}]$ for this case and use an analogous notation for other cases. Here and in the following 100 instances of RT are generated (using the method described in Section 1) for each function-Δf_t-pair. For convenience, we refer to a function-Δf_t-pair also as a problem.

The x-value in the figure shows a given budget, that is, a given number of function evaluations, divided by dimension. The y-value gives the proportion of problems (function-Δf_t-pairs), where the Δf_t-value was reached within the given budget. The graphs are monotonous by definition. Crosses indicate the maximum number of function evaluations observed for the respective algorithm. Results to the right of a cross are only comparable between algorithms with similar maximum number of function evaluations. The limit value to the right indicates the ratio of solved problems.

For any given budget (x-value), the proportion of solved problems (y-value) is a useful performance criterion. Even more useful is the horizontal distance between graphs, revealing a difference in runtime for solving the same proportion of problems. The area between two graphs, up to a given y-value, is the average runtime difference (averaged on the log scale), arguably the most useful aggregated performance measure. The best algorithm covers the largest area under its graph.

Discussion of Figure 1. Overall, the functions are not easy to solve. Within a budget of $100 \times D$ function evaluations, even the best algorithms can only solve 25% of the problems (20% of the problems have a target precision of ≥ 1). The worst algorithms need 100 times larger a budget to solve 25% of the problems and the diversity of results becomes more pronounced for larger budgets.
For budgets below $500D$ function evaluations, the best performance achieve NEWUOA, MCS and GLOBAL. For larger budgets, BIPOP-CMA-ES and IPOP-SEP-CMA-ES become superior. The latter sample in each iteration step several solutions from a multivariate Gaussian distribution like all algorithms with a final success ratio ≥ 0.8.

2.1 Search Space Dimensionality

Figure 2 shows the empirical cumulative distribution of RT from all functions f_1–f_{24} in 2-D, 10-D and 40-D. The right column uses Δf_t-values in $[10^{-1}, 10^{-7}]$.

The overall problem difficulty strongly increases with increasing dimension. In 2-D, pure Monte Carlo search (the
worst algorithm) can solve about 40% of the problems (function-
function pairs) in about $10^6 \times D$ function evaluations. In 10-D, the fraction of solved problems becomes invisible for Monte Carlo and half of all algorithms drop below 40%. The spread between the best and the worst algorithms widens remarkably with increasing dimension.

- In 2-D, NELDER (Doe) is overall clearly the best algorithm. Only for tiny budgets of less than $20D = 40$ function evaluations, it does not solve the most problems. In 3-D, it still performs very well (not shown), while in 5-D other algorithms take over (cp. Fig. 5).

- In larger dimension, the picture is more diverse. The best performance depends more significantly on the given budget, as already discussed in Fig. 1.

The left column of Fig. 2 shows data with the more easy target precision values $\Delta f_t = 10^{-1}$. The algorithms perform overall better. Nevertheless, more often than not, their individual performance coincides with the one for the more difficult targets.

When the Δf_t-values are set to the Δf-values reached by the best algorithm within D function evaluations, MCS clearly performs best in 20-D, suggesting that MCS has implemented its initial procedures most carefully (not shown).

2.2 Essentially Unimodal Functions

Figure 3 shows results on 12 functions, most of which are unimodal, or they have otherwise an attraction region of the global optimum $\geq 50\%$ (i.e., f_3 and f_6). For target precision 10^{-6} the performance spread is quite pronounced. The above-mentioned set of well-performing algorithms is complemented by BFGS (5-D), full NEWUOA (target precision 1). Rosenbrock (5-D, target precision 10^{-9}), NELDER (Doe) (20-D, target precision 1), and LSminbnd (20-D).

Figure 4 shows results on three single functions:

- f_6 **Attractive Sector** function, a highly asymmetric function, where the optimum lies at the tip of a cone. 15 algorithms show acceptable performance with a performance loss of mostly less than a factor of hundred (horizontal distance) compared to the best algorithm.

- f_8 **Rosenbrock** function, a classical test function which has one non-global optimum with an attraction region of smaller than 50%. 15 algorithms show acceptable performance.

- f_{10} **Ellipsoid** function, a globally quadratic, ill-conditioned function (condition number 10^6) which is smoothly locally deformed. 12 algorithms show acceptable performance.
more than 10% of the left envelope of the set of graphs: on
individual maximum number of function evaluations, forming
following algorithms perform particularly well up to their in-
2.4 Function Subgroups
4 SEP-CMA-ES, which becomes incomparable for budgets
BIPOP-CMA-ES clearly outperforms all algorithms but IPOP-
decline with increasing dimension.
pose a considerably stronger challenge also with a stronger
unimodal functions (left column). The multimodal functions
2.3 Multimodal Functions
y-value of 0.8.
of ten (horizontal distance) to the best algorithm up to a
Figure 6 shows results for six subgroups of functions. The
from the three functions. The first nine algorithms listed
2.3 Multimodal Functions
y−2) ∈ [0, 1] is the annotated y-value. The lower right figure combines the three other figures
3. CONCLUSIONS
The lower right subfigure combines the convergence data
from the three functions. The first nine algorithms listed
top (down to BFGS) stay within a performance loss factor
of ten (horizontal distance) to the best algorithm up to a
y-value of 0.8.
2.3 Multimodal Functions
Figure 5 shows running times on the 12 multimodal functions
in dimension 5 and 20 (right column) compared to the
unimodal functions (left column). The multimodal functions
pose a considerably stronger challenge also with a stronger
decline with increasing dimension.
On multimodal functions in 20-D with larger budgets,
BIPOP-CMA-ES clearly outperforms all algorithms but IPOP-
CMA-ES, which becomes incomparable for budgets \(\geq 10^4D \).
AMaLGaM IDEA outperforms the remaining algorithms for budgets larger than \(10^4D \).
2.4 Function Subgroups
Figure 6 shows results for six subgroups of functions. The
following algorithms perform particularly well up to their in-
dividual maximum number of function evaluations, forming
more than 10% of the left envelope of the set of graphs: on
separable functions NEWUOA, LSfminbnd and LStep; on
moderate functions NEWUOA and IPOP-SEP-CMA-ES; on
ill-conditioned functions GLOBAL, iAMaLGaM and BIPOP-
CMA-ES; on the multi-modal structured functions IPOP-
SEP-CMA-ES and BIPOP-CMA-ES; on the multi-modal weakly
structured functions GLOBAL and BIPOP-CMA-ES; on non-
smooth functions iAMaLGaM and BIPOP-CMA-ES.
The IDEA and *POP*-CMA variants show a quite similar
performance characteristics over the subgroups.

3. CONCLUSIONS
We draw some summarizing conclusions on the BBOB-
2009 data set.

Benchmarks. The benchmark function tested is comparatively
difficult. In dimension 20, within \(10^5D \) function evaluations,
the best algorithm can solve about 75% of the functions
up to a precision of \(10^{-6} \), the median algorithm solves
about 30%. For the multimodal functions the rate is about
50% (median below 20%).

Empirical run time distributions (cf. Fig. 4). A single
convergence graph—plotting the best achieved f-value
against time—can be interpreted, when plotted upside down,
as a cumulative runtime distribution for the set of all f-

Figure 4: Empirical runtime distributions on single functions with \(\Delta f_i \in [10^{-2}, 10^{-6}] \) in dimension 20. For a
single trial, the graphs would show a single convergence graph, upside down, with \(\Delta f = 10^{-10y^2+2} \), where
y = −0.1(\log_{10}(\Delta f) − 2) ∈ [0, 1] is the annotated y-value. The lower right figure combines the three other figures
values. Exploiting this interpretation, convergence data from several trials can be combined into a single graph. Even data from various functions can be merged into a single graph. During this integration only the labels of single data points to individual trials and functions are lost.

Impact on performance. A strong impact on the function difficulty can be found from dimensionality, multi-modality, and non-smoothness. Also different constraints for the time budget (number of function evaluations) have a great impact on which algorithms perform best.

Algorithms. For very low dimension, NELDER (Doe) was superior. For lower budgets NEWUOA, MCS and GLOBAL were the best algorithms. For difficult functions and larger budgets, variants of CMA-ES performed best, followed by the AMaLGaM-IDEA variants. The results can provide a clear guideline for the choice of an algorithm or of an ensemble of algorithms in an appropriate way to solve an unknown black-box optimization problem.

4. REFERENCES

