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Abstract—In this paper, we propose a method for state
estimation of nonlinear systems represented by Takagi-
Sugeno (T-S) models with unmeasurable premise variables.
The main result is established using the differential mean
value theorem which provides a T-S representation of the
differential equation generating the state estimation error.
This allows to extend some results obtained in the case of
measurable premise variables to the unmeasurable one. Using
the Lyapunov theory, stability conditions are obtained and
expressed in term of linear matrix inequalities. Furthermore,
an extension for observer design with disturbance attenuation
performance is proposed. Finally, this approach is illustrated
on a DC series motor and compared to the existing approaches.

Index Terms—Takagi-Sugeno systems, state estimation, dif-
ferential mean value theorem, Lyapunov stability analysis,
linear matrix inequality.

I. INTRODUCTION AND PROBLEM STATEMENT

The control and diagnosis of physical systems often re-

quire the knowledge of internal variables of the system (state

variables). These last are often not accessible to measurement

due to economic or technical reasons. In this situation, state

observers are used to provide an estimation of these variables

from input-output data and a mathematical model describing

the behavior of the system. Therefore, the estimation quality

necessarily depends on the precision of the model of nonlin-

ear behaviors, leading to complex nonlinear models.

Early work on the state estimation of nonlinear systems

dates back to the work of Thau [24] when he proposed

an extension of the Luenberger observer [13] to systems

with Lipschitz nonlinearities. Sufficient conditions are then

obtained for the convergence of the state estimation error

toward zero. Thereafter, in [19], an iterative approach is pro-

posed for observer gain design. In [20], Rajamani obtained

necessary and sufficient conditions on the observer matrix

that ensure asymptotic stability of the observer and proposed

a design procedure, grounded on the use of a gradient based

optimization method. In [20] is discussed the equivalence

between the stability condition and the H∞ minimization in

the standard form, and pointed out that this design method

was not solvable since the regularity assumptions are not

satisfied. Based on the result of Rajamani [20], [18] proposed

a dynamic observer. The problem of regularity assumptions

pointed out in [20] is solved by modifying the H∞ problem.

Other classes of nonlinear systems are also studied in the
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literature to design observers for nonlinear systems, for

Linear Parameter Varying systems (LPV) [3] and for bilinear

systems.

In [22], a new structure for nonlinear representation has

been introduced. It is based on the decomposition of the

operating space of the system in several zones. To each zone

is associated a linear model. Thanks to nonlinear functions

satisfying the convex sum property, the overall behavior of

the nonlinear system can be represented by the following

so-called T-S model






ẋ(t) =
r
∑

i=1

µi(ξ(t))(Aix(t) + Biu(t))

y(t) = Cx(t)
(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the input

vector and y(t) ∈ R
p represents the output vector. Ai ∈

R
n×n, Bi ∈ R

n×m, C ∈ R
p×n are known matrices. The

functions µi(ξ(t)) are the weighting functions depending on
the variables ξ(t) which can be measurable (as the input or
the output of the system) or unmeasurable variables (as the

state of the system). These functions verify the following

properties






r
∑

i=1

µi(ξ(t)) = 1

0 ≤ µi(ξ(t)) ≤ 1 ∀i ∈ {1, ..., r}
(2)

Obtaining a T-S model can be performed from different

methods such as linearization of an available nonlinear model

around some operating points and using adequate weighting

functions. It can also be obtained by black-box approaches

allowing to identify the parameters of the model from input-

output data [7]. Finally, an interesting approach to obtain a T-

S model is the well-known nonlinear sector transformations

[23], [15]. Indeed, this transformation allows to obtain an

exact T-S representation of a general nonlinear model with

no information loss, in a compact state space.

Takagi-Sugeno model has proved its effectiveness in the

study of nonlinear systems. Indeed, it gives a simpler formu-

lation from the mathematical point of view to represent the

behavior of nonlinear systems [22]. Thanks to the convex

sum property of the weighing functions, it is possible to

generalize some tools developed in the linear domain to the

nonlinear systems. This representation is very interesting in

the sense that it simplifies the stability study of nonlinear

systems and the controller/observer design. In [8], [10], [11],

the stability and stabilization tools inspired from the study of

linear systems are proposed. In [2], [14], the authors worked

on the problem of state estimation and diagnosis of T-S



systems. The proposed approaches in these last papers rely

on the generalization of the classical observers (Luenberger

Observer [13] and Unknown Input Observer (UIO) [9]) to the

nonlinear domain. Recently, some works are dedicated to the

relaxation of the conservatism of the stability condition. For

example, in [21], the Polya’s theorem is used in order to

reduce the conservatism related to the negativity of a sum

matrices inequalities. In [12], the authors proposed a new

approach for discrete time T-S systems, it is based on the

evaluation of the variation of the Lyapunov function between

two samples taken at times k and k + m with m > 1.
In this work the considered premise variable ξ(t) depends

on the state of the system which is not totally measurable.

The problems of state estimation and diagnosis of nonlinear

systems using T-S model approach have been addressed with

different methods, but most of the published works have

considered T-S models with measurable premise variables

[1], [17], [14], [2]. It is clear that the choice of measurable

premise variables offers a good simplicity to generalize the

methods already developed for linear systems. Contrarily, the

problem becomes harder when the premise variables are not

measurable. However, this formalism is very important in

both the exact representation of nonlinear behaviors by T-S

model and in observer based diagnosis for sensor/actuator

fault detection and isolation. Indeed in this case, the use

of measurable premise variables requires to develop two

different models. The first one uses the input u(t) as a
premise variable and allows to detect and isolate sensor

faults. The second one, using the output y(t) of the system as
a premise variable, is dedicated to the detection and isolation

of actuator faults. Diagnosis based on a single T-S model

with unmeasurable premise variables allows to detect and

isolate both actuator and sensor faults using observer banks.

Furthermore, the T-S models with unmeasurable premise

variables may represent a larger class of nonlinear systems

compared to the T-S model with measurable premise vari-

ables [25]. Only a few works are devoted to the case of

unmeasurable premise variables, nevertheless, we can cite

[6], [16], [5] where the authors proposed the fuzzy Thau-

Luenberger observer which is an extension of the classical

Luenberger observer and, in [25], a filter estimating the state

and minimizing the effect of disturbances is proposed.

In this paper a new method is proposed for state estimation

of nonlinear systems. It is based on the use of the Takagi-

Sugeno model representing the behavior of the nonlinear

system. The contribution of this work concerns T-S model

with unmeasurable premise variables (e.g. the state of the

system), such a model is commonly encountered when using

the sector nonlinearity approach [23]. The main results on

observer design are given in sections II and III. The first

result is devoted to the problem of state estimation and the

second one concerns the observer design with disturbance

attenuation by minimizing the L2-gain from energy bounded

unknown exogenous disturbances to the state estimation

error. Finally, in section IV, an application for state estimation

of DC series motor is proposed to illustrate the performances

of the proposed methodology.

II. OBSERVER DESIGN

Let us consider the T-S system with unmeasurable premise

variable, given by

ẋ(t) =
r

∑

i=1

µi(x(t)) (Aix(t) + Biu(t)) (3)

y(t) = Cx(t) (4)

The following observer is proposed

˙̂x(t) =

r
∑

i=1

µi(x̂(t)) (Aix̂(t) + Biu(t) + L(y(t) − ŷ(t)))

(5)

ŷ(t) = Cx̂(t) (6)

Let us remark that the comparison between the state x(t)
of the system and the state x̂(t) of the observer seems to be
difficult. In order to cope with this difficulty, let us introduce

the following matrices

A0 =
1

r

r
∑

i=1

Ai, B0 =
1

r

r
∑

i=1

Bi (7)

Āi = Ai − A0, B̄i = Bi − B0 (8)

Then, it is easy to rewrite the system (3) in the following

form

ẋ(t) = A0x(t) + B0u(t)

+

r
∑

i=1

µi(x(t))
(

Āix(t) + B̄iu(t)
)

(9)

y(t) = Cx(t) (10)

where it appears that the matrices A0 and B0 play the role of

nominal values of the system and Āi and B̄i are variations

around these values.

The state equation of the observer (5) can also be presented

in the following form

˙̂x(t) = A0x̂(t) + B0u(t) + L(y(t) − ŷ(t))

+

r
∑

i=1

µi(x̂)
(

Āix̂(t) + B̄iu(t)
)

(11)

ŷ(t) = Cx̂(t) (12)

which allows a simpler comparison with the state equation

(9)-(10). For that purpose, let us define the state estimation

error e(t) by

e(t) = x(t) − x̂(t) (13)

Using (9)-(10) and (11)-(12), the dynamic of the state

estimation error is obtained as follows

ė(t) = (A0 −LC)e(t) + f(x(t), u(t))− f(x̂(t), u(t)) (14)

where f(x(t), u(t)) is denoted f(z) with z = [xT (t) uT (t)]T

and defined by

f(z) =

r
∑

i=1

µi(x(t))(Āix(t) + B̄iu(t)) (15)



Note that the stability analysis of (14) cannot be directly

achieved with the help of the tools developed for T-S systems

with measurable premise variables. Indeed, the fact that the

premise variable is the state of the system leads to a more

complex form of the state estimation error (see equation

(14)). The key point of the proposed observer design is to

obtain a suitable form of the state estimation error in order

to re-use the tools proposed for stability and relaxed stability

analysis of T-S systems with measurable premise variables.

In conclusion, the objective is to find the gain L of the

observer (11)-(12) that stabilize (14).

The n different entries of the nonlinear vector function

f(z) : R
n+m → R

n are denoted fi(z). It follows

f(z) =
[

f1(z) . . . fn(z)
]T

(16)

where fi(z) : R
n+m → R, i = 1, ..., n + m.

Let us denote es(i) the vector of R
s with all entries being

null, except the ith being equal to 1 as given below

es(i) =
(

0
1

· · · 0
i−1

1
i

0
i+1

· · · 0
s

)T

(17)

The function f(z) can be written as follows

f(z) =
n

∑

i=1

en(i)fi(z) (18)

Theorem 1: Consider fi(z) : R
n+m → R. Let a, b ∈

R
n+m. If fi(z) is differentiable on [a, b] then there exists

a constant vector zi ∈ R
n+m, satisfying zi ∈]a, b[ (i.e.

zi
j ∈]aj , bj[, for j = 1, . . . , n + m), such that

fi(a) − fi(b) =
∂fi(z

i)

∂z
(a − b) (19)

Applying the theorem 1 on (18), it is obtained for a, b ∈
R

n+m

f(a) − f(b) =

n
∑

i=1

n+m
∑

j=1

en(i)eT
n+m(j)

∂fi(z
i)

∂zj

(a − b) (20)

Using (20), the dynamic of the state estimation error (14)

can be then transformed into

ė(t) =

n
∑

i=1

n+m
∑

j=1

en(i)eT
n+m(j)

∂fi(z
i)

∂zj

((

x(t)
u(t)

)

−

(

x̂(t)
u(t)

))

+ (A0 − LC)e(t) (21)

Since zj = xj , for 1 ≤ j ≤ n, then it follows

ė(t) =

n
∑

i=1

n
∑

j=1

(

en(i)eT
n (j)

∂fi(z
i)

∂xj

+ A0 − LC

)

e(t)

(22)

Assumption 1: Assume that f(zi) is a differentiable func-
tion satisfying, for i = 1, ..., n and j = 1, ..., n

aij ≤
∂fi

∂xj

(zi) ≤ bij (23)

Each nonlinearity ∂fi

∂xj
(zi) can be represented by

∂fi

∂xj

(zi) =

2
∑

l=1

vl
ij(z

i)ãijl (24)

where ãij1 = aij and ãij2 = bij and

v1
ij(z

i) =

∂fi

∂xj
(zi) − aij

bij − aij

(25)

v2
ij(z

i) =
bij −

∂fi

∂xj
(zi)

bij − aij

(26)

2
∑

l=1

vl
ij(z

i) = 1, 0 ≤ vl
ij(z

i) ≤ 1, l = 1, 2 (27)

Using (22) and (24), the dynamic of the state estimation error

is represented by

ė(t) =
n

∑

i=1

n
∑

j=1

2
∑

l=1

vl
ij(z

i)(en(i)eT
n (j)ãijl + A0 − LC)e(t)

(28)

Using the sector nonlinear transformation method proposed

in ([23], chap. 2), it follows

n
∑

i=1

n
∑

j=1

2
∑

l=1

vl
ij(z

i(t))en(i)eT
n (j)ãijl =

q
∑

i=1

hi(z̃(t))Ai

(29)

where z̃(t) depends on the zi(t), Ai depends on the ãijl and

where q = 2n2

. Then, the dynamic of the state estimation

error is written as

ė(t) =

q
∑

i=1

hi(z̃(t))Ψie(t) (30)

with Ψi = Ai + A0 − LC.
The stability of this kind of models is largely studied in

the literature. Hence, interesting results exist such as the

quadratic stability established by using a quadratic Lyapunov

function candidate. Relaxed stability conditions are proposed

by using the well-known fuzzy Lyapunov functions in the

continuous time case and the Lyapunov function proposed

in [11] for the discrete time case.

In this paper, the stability analysis of the system (30) is

studied in order to find the gain L. This analysis is performed
by using the Lyapunov theorem and a quadratic Lyapunov

function, defined by

V (e(t)) = e(t)T Pe(t), P = PT > 0 (31)

Theorem 2: The state estimation error asymptotically con-

verges toward zero if there exist a symmetric positive definite

matrix P ∈ R
n×n and a matrix M ∈ R

n×ny such that the

following linear matrix inequalities hold ∀i = 1, ..., q

AT
0 P + PA0 + AT

i P + PAi − MC − CT MT < 0 (32)

The gain of the observer is derived from

L = P−1M (33)

Proof: Considering Lyapunov function candidate (31)

and definition (30), it is straightforward to obtain

V̇ (e(t)) =

q
∑

i=1

hi(z̃(t))eT (t)
(

ΨT
i P + PΨi

)

e(t) < 0 (34)

Then, using the definition of Ψi, with properties (2), the

proof of the theorem is obvious (see [23] for more details).



III. EXTENSION TO H∞ PERFORMANCES

The system (3) is now affected by a disturbance input ω(t)






ẋ(t) =
r

∑

i=1

µi(x(t)) (Aix(t) + Biu(t) + Eiω(t))

y(t) = Cx(t) + Wω(t)
(35)

where Ei and W are the incidence matrices defining the

influences of ω(t) on the dynamics and the output of the
system. The disturbance vector is assumed to be energy

bounded, i.e. ω(t) ∈ L2. As previously, the introduction of

the matrices A0, B0, Āi and B̄i, allows to write the state

estimation error as

ė(t) = (A0 − LC)e(t) +
r

∑

i=1

µi(x(t))(Ei − LW )ω(t)

+

r
∑

i=1

(µi(x(t)) − µi(x̂(t)))
(

Āix(t) + B̄iu(t)
)

(36)

The application of the previously described method leads to

write the state estimation error as a T-S system

ė(t) =

q
∑

i=1

r
∑

j=1

hi(z(t))µj(x̂(t)) (Ψie(t) + (Ej − LW )ω(t))

(37)

where

Ψi = A0 + Ai − LC (38)

Given the system (37), the problem of designing a robust

observer (5) is to find the gain L such that

lim
t→∞

e(t) = 0 if ω(t) = 0 (39)

‖e(t)‖
2

< γ ‖ω(t)‖
2

if ω(t) '= 0 (40)

where γ > 0 is a positive scalar representing the attenuation
level of the disturbance. To satisfy the constraints (39) and

(40), it is sufficient to find a Lyapunov function V (e(t)) such
that

V̇ (e(t)) + e(t)T e(t) − γ2ω(t)T ω(t) < 0 (41)

The following theorem provides sufficient conditions un-

der LMI formulation, for the synthesis of an observer robust

to the disturbance ω(t).
Theorem 3: Given γ > 0, the robust observer (5) for the

system (35) exists, if there exists a matrix P = PT > 0 ∈
R

n×n and a matrix M ∈ R
n×ny such that the following

LMIs hold
(

Γi PEj − MW
ET

j P − WT MT −γ2I

)

< 0 (42)

i = 1, . . . , q /j = 1, . . . , r

where

Γi = AT
0 P +PA0+AT

i P +PAi−MC−CT MT +I (43)

The observer gain is given by the equation L = P−1M .

Proof: The condition (41) expressed with the Lyapunov

function V (e(t)) = eT (t)Pe(t) (with P = PT > 0) and the

convex property of the weighting functions lead to the LMIs

(42).

Remark 1: Note that the observer minimizing the L2

gain of the transfer from the disturbances ω(t) to the state
estimation error e(t) is obtained by introducing the LMI
variable γ̄ = γ2 and by minimizing γ̄ under the LMI

constraints (42), where γ̄ is substituted to γ2 in (42).

IV. SIMULATION EXAMPLE: DC SERIES MOTOR

In this section, the proposed observer design is applied to

a series DC motor in order to estimate its current I(t) and
its angular velocity ω(t). This kind of motors is generally
used in electrical traction due to their high torque and their

power autoregulation. The inductor and the armature of this

type of motor are connected in series, as shown in Figure 1,

hence the term ”DC series motor”. The parameteres r and

r

l
U(t)

I(t)

Cr(t)
J, F

R,L

Fig. 1. DC series motor

l respectively represent the resistance and the inductance of
the inductor (stator), while R and L respectively represent

the armature (rotor) resistance and inductance. The voltage

U of the motor must be between 0 and 1000 V and the

current I is limited to 1000 A. The nonlinear model is given
by the following equations

ẋ1(t) = −
F

J
x1(t) + Km

L

J
x2(t)

2 −
Cr(t)

J
(44)

ẋ2(t) = −
R

Lt

x2(t) + Km

L

Lt

x1(t)x2(t) +
U(t)

Lt

(45)

the state vector is given by x(t) = [ω(t) I(t)]T where

ω(t) represents the speed of the motor and I(t) the armature
current. We define Rt = R + r and Lt = L + l. The motor
is powered by a variable voltage which is given by U(t) =
−70 exp(− t

35
) + 70. The resisting torque Cr(t) is usually

unknown, but for this example, we consider it as a known

input. Both inputs U and Cr are illustrated in Figure 2. The

numerical values of the motor parameters are given by R =
0.001485Ω, r = 0.00989Ω, L = 0.06H , Km = 0.04329,
J = 30.1N/rad.s−1, F = 0.1N/rad.s−1. The inductance

of the rotor is very large compared to the stator one, so we

have

L >> l ⇒ Lt = L = 0.06H (46)

The method based on nonlinear sector transformation allows

to exactly transform the system (44)-(45) into the T-S model

ẋ(t) =

2
∑

i=1

µi(x)(Aix(t) + Bu(t)) (47)

defined by
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Fig. 2. Inputs of the DC series motor

A1 =

[

−0.003 0.035
−17.317 −0.412

]

A2 =

[

−0.003 0
0 −0.412

]

B =

[

−0.033 0
0 16.667

]

The input vector is u(t) = [Cr(t) U(t)]T . The weighting
functions are given by the following equations















µ1(x2(t)) =
KmLx2(t)

1.039

µ2(x2(t)) =
1.039− KmLx2(t)

1.039

(48)

Suppose that only the current I is measured, which gives the
output equation

y(t) = [0 1]x(t) (49)

The state observer is constructed, applying the proposed

method using the differential mean value theorem, and the

obtained matrices Ai, i = 1, . . . , 8 are defined as follows

A1 =

[

0 −0.016
−8.661 −3.637

]

A2 =

[

0 0.052
−8.661 −3.637

]

A3 =

[

0 −0.016
8.658 −3.637

]

A4 =

[

0 0.052
8.658 −3.637

]

A5 =

[

0 −0.016
−8.661 0.476

]

A6 =

[

0 0.052
−8.661 0.476

]

A7 =

[

0 −0.016
8.658 0.476

]

A8 =

[

0 0.052
8.658 0.476

]

The pairs (A0 + Ai) are observable, then the LMIs

conditions in the theorem 2 result in the gain L of the

observer

L =

[

−0.3891
51.3786

]

(50)

A first simulation is performed without measurement noises

to show the convergence of the observer states to the real

states, simulation results are depicted in the figure 3.
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Fig. 3. State of the motor and their estimation

A second simulation is performed by introducing a mea-

surement noise bounded by 20. The goal of this second
application is to show that even if the premise variable z(t) =
x2(t) can be measured, using the estimated state in the
weighting functions gives better state estimation compared

to that obtained when using the noisy measurement y(t) as
premise variable. In order to compare the two approaches,

two observers are designed. For the first observer design,

it is supposed that the weighting functions depend on the

measured output y(t) = x2(t). This observer is constructed
using the approach proposed in [17] and the estimation

results are displayed on the figure 4. For the design of the

second one, it is considered that the weighting functions

depend on the state variable x2(t), then the weighting

functions of the observer depend on x̂2(t). The observer is
synthesized by the proposed method using the differential

mean value theorem and nonlinear sector transformation and

the estimation results are displayed on the figure 5. In figure

4 (resp. 5) the estimated states obtained with the first (resp.

second) observer are represented by the red continuous lines

while the real growths are depicted by green dashed lines. As

a conclusion, the observer using x̂2(t) as a premise variable
gives a better state estimation then the second observer using

y(t) as a premise variable. In addition, using the approach
developed in [4], the LMIs have no solution because of the

high value of the considered Lipschitz constant.

V. CONCLUSION

In the present article is proposed a new method to de-

sign observers for nonlinear systems described by the well-

known Takagi-Sugeno systems with unmeasurable premise

variables. The method is based on the writing of the system

generating the state estimation error in the form of a T-S

system. To do that, the differential mean value theorem and
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Fig. 4. Observer with measurable premise variable ξ(t) = y(t)
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Fig. 5. Observer with estimated premise variable ξ(t) = x̂2(t)

the nonlinear sector transformations are used. After, conver-

gence conditions are obtained by using the Lyapunov theory

and a quadratic Lyapunov function. An extension to robust

observer design with disturbance attenuation is proposed by

minimizing the L2 gain of the transfer from disturbances

to the state estimation error. The stability conditions are

expressed in terms of Linear Matrix Inequalities. In order

to illustrate the proposed method, an example is devoted to

the state estimation of a DC series motor. For future works,

we plan to address the problem of relaxed stability condition

for observer and controller design for T-S systems with

unmeasurable premise variables by using Polya’s theorem

for example.

REFERENCES

[1] A. Akhenak, M. Chadli, J. Ragot, and D. Maquin. Design of sliding
mode unknown input observer for uncertain Takagi-Sugeno model. In
15th Mediterranean Conference on Control and Automation, MED’07,
Athens, Greece, 2007.

[2] A. Akhenak, M. Chadli, J. Ragot, and D. Maquin. Fault detection and
isolation using sliding mode observer for uncertain Takagi-Sugeno
fuzzy model. In 16th Mediterranean Conference on Control and

Automation Congress Centre, Ajaccio, France, June 25-27 2008.
[3] G. I. Bara, J. Daafouz, F. Kratz, and J. Ragot. Parameter dependent

state observer design for affine LPV systems. International Journal
of Control, 74(16):1601–1611, November 2001.

[4] P. Bergsten and R. Palm. Thau-Luenberger observers for TS fuzzy
systems. In 9th IEEE International Conference on Fuzzy Systems,

FUZZ IEEE, San Antonio, TX, USA, 2000.
[5] P. Bergsten, R. Palm, and D. Driankov. Fuzzy observers. In IEEE

International Fuzzy Systems Conference, Melbourne, Australia, 2001.
[6] P. Bergsten, R. Palm, and D. Driankov. Observers for Takagi-Sugeno

fuzzy systems. IEEE Transactions on Systems, Man, and Cybernetics

- Part B: Cybernetics, 32(1):114–121, 2002.
[7] A. Boukhris, D. Mourot, and J. Ragot. Non-linear dynamic system

identification : a multi-model approach. International Journal of

Control, 72(7-8):591–604, 1999.
[8] M. Chadli, D. Maquin, and J. Ragot. Non quadratic stability analysis

of Takagi-Sugeno systems. In 39th IEEE Conference on Decision and
Control, CDC’2002, Las Vegas, Nevada, USA, 2002.

[9] M. Darouach, M. Zasadzinski, and S.J. Xu. Full-order observers for
linear systems with unknown inputs. IEEE Transactions on Automatic
Control, 39(3):606–609, March 1994.

[10] T-M. Guerra, A. Kruszewski, L. Vermeiren, and H. Tirmant. Con-
ditions of output stabilization for nonlinear models in the Takagi-
Sugeno’s form. Fuzzy Sets and Systems, 157(9):1248–1259, May 2006.

[11] A. Kruszewski, R. Wang, and T.M. Guerra. Nonquadratic stabilization
conditions for a class of uncertain nonlinear discrete time TS fuzzy
models: A new approach. IEEE Transactions on Automatic Control,
53(2):606 – 611, March 2008.

[12] A. Kruzewski, R. Wang, and T.M. Guerra. Non-quadratic stabilization
conditions for a class of uncertain non linear discrete-time T-S fuzzy
models: a new approach. IEEE Transactions on Automatic Control,
53(2):606–611, 2008.

[13] D.G. Luenberger. An introduction to observers. IEEE Transactions

on Automatic Control, 16:596–602, 1971.
[14] B. Marx, D. Koenig, and J. Ragot. Design of observers for Takagi

Sugeno descriptor systems with unknown inputs and application to
fault diagnosis. IET Control Theory and Application, 1:1487–1495,
2007.

[15] A.M. Nagy, G. Mourot, B. Marx, G. Schutz, and J. Ragot. Model
structure simplification of a biological reactor. In 15th IFAC Sympo-

sium on System Identification, SYSID’09, Saint Malo, France, 2009.
[16] R. Palm and P. Bergsten. Sliding mode observers for Takagi-Sugeno

fuzzy systems. In 9th IEEE International Conference on Fuzzy

Systems, FUZZ IEEE, San Antonio, TX, USA, 2000.
[17] R.J. Patton, J. Chen, and C.J. Lopez-Toribio. Fuzzy observers for non-

linear dynamic systems fault diagnosis. In 37th IEEE Conference on

Decision and Control, Tampa, Florida USA, 1998.
[18] A.M. Pertew, H.J. Marquez, and Q. Zhao. H∞ observer design for

lipschitz nonlinear systems. IEEE Transactions on Automatic Control,
51:1211–1216, 2006.

[19] S. Raghavan and J. K. Hedrick. Observer design for a class of
nonlinear systems. International Journal of Control, 59(2):515–528,
1994.

[20] R. Rajamani. Observers for Lipschitz nonlinear systems. IEEE

Transactions on Automatic Control, 43:397–401, March 1998.
[21] Antonio Sala and Carlos Ario. Asymptotically necessary and sufficient

conditions for stability and performance in fuzzy control: Applications
of Polya’s theorem. Fuzzy Sets and Systems, 158(24):2671–2686,
December 2007.

[22] T. Takagi and M. Sugeno. Fuzzy identification of systems and its
applications to modeling and control. IEEE Transactions on Systems,

Man, and Cybernetics, 15:116–132, 1985.
[23] K. Tanaka and H.O. Wang. Fuzzy Control Systems Design and

Analysis: A Linear Matrix Inequality Approach. John Wiley and Sons,
2001.

[24] F.E. Thau. Observing the state of non-linear dynamic systems.
International Journal of Control, 18:471–479, 1973.

[25] J. Yoneyama. H∞ filtering for fuzzy systems with immeasurable
premise variables: an uncertain system approach. Fuzzy Sets and
Systems, 160(12):1738–1748, 2009.


