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Abstract

The careful introduction of cut inferences can be used to structure and possibly compress
formal sequent calculus proofs. This paper presents CIRes, an algorithm for the introduction
of atomic cuts based on various modifications and improvements of the CERes method,
which was originally devised for efficient cut-elimination. It is also demonstrated that
CIRes is capable of compressing proofs, and the amount of compression is shown to be
exponential in the length of proofs.

1 Introduction

It is well-known that eliminating cuts frequently increases the size and length of proofs. In
the worst case, cut-elimination can produce non-elementarily larger and longer proofs [16, 15].
Given this fact, it is natural to attempt to a desire to devise methods that could introduce cuts and
compress sequent calculus1 proofs. However, this has been a notoriously difficult task. Indeed,
the problem of answering, given a proof φ and a number l such that l ≤ length(φ), whether there
is a proof ψ of the same theorem and such that length(ψ) < l is known to be undecidable [6].
Nevertheless, a lower bound for compressibility based on specific cut-introduction methods
that are inverse of reductive cut-elimination methods is known [10]2, and some ad-hoc methods
to introduce cuts of restricted forms have been proposed. They are based on techniques
from automated theorem proving, such as conflict-driven formula learning [9], and from logic
programming, such as tabling [14, 13].

Besides compression, cut-introduction can also be used for structuring and extracting in-
teresting concepts from proofs. In [8], for example, it is shown that many translation and
pre-processing techniques of automated deduction can be seen as introduction of cuts, from
a proof-theoretical point of view. Furthermore, in the formalization of mathematical proofs,
lemmas correspond to cuts, and hence the automatic introduction of cuts is, in a formal level,
the automatic discovery of lemmas that are potentially useful for structuring mathematical
knowledge. Naturally, the use of cut-introduction techniques could in principle also be applied
to the structuring of knowledge in other fields of Science, as argued in [18, 19].

This paper presents a new method for the introduction of atomic cuts: CIRes. The method
is described in a simplified and self-contained manner3 in Section 2, and a proof that it is able
to provide an exponential compression in the length of proofs is given in Section 3.

1The sequent calculus used in this paper is the purely multiplicative version of LK. Its Inference rules are shown
in Appendix A .

2A cut-introduction method g is inverse of a reductive cut-elimination method if and only if, for any cut-free
proof φ, the proof with cuts g(φ) rewrites to φ according to the rewriting rules in Appendix B .

3A more general and technically more detailed definition of the CIRes method is available in [18].
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2 The CIRes Method

Curiously, even though CIRes aims at introducing cuts, it makes use of the CERes method
[3], which was originally developed for efficient cut-elimination [4]. The essential idea behind
CIRes is based on two simple observations:

• In a naive attempt to introduce cuts by applying the proof rewriting rules of reductive
cut-elimination methods (i.e. gentzen-style cut-elimination methods) shown in Appendix
B in an inverse direction, the first step, which is the introduction of atomic cuts on the
top of cut-free proofs, is trivial. However, pushing the cuts down (by applying inverse
rank reduction rules), combining the cuts to make more complex cuts (i.e. increasing the
grade), and exploiting redundancies in the form of contractions is highly non-trivial.

• If applied to a proof ψ containing only atomic cuts in the top, CERes outputs a proof ψ′

containing atomic cuts in the bottom. This is so because ψ′ is constructed by composing
several cut-free parts of ψ, called projections, on top of a resolution refutation. The
refutation occurs in the bottom of ψ′, and hence the atomic cuts of ψ′, which are nothing
else but the resolution inferences of the refutation, also occur in the bottom of ψ′.

The CIRes method exploits these observations in a conceptually simple way: it trivially
adds atomic cuts to every leaf of the cut-free proof; and then it applies CERes to push these cuts
down.

Compression can be achieved mainly due to two ways by which CERes is able to reduce or
avoid redundancies:

• It is possible that the refutation uses only some clauses of the clause set of ψ. The effect is
that large parts ofψ (i.e. the projections with respect to the unused clauses) can be deleted
and replaced by weakening, thus resulting in a smaller proof.

• If the refutation contains factoring inferences, ψ′ will contain constractions operating
on ancestors of cut-formulas (note that, in the construction of ψ′, resolution inferences
become atomic cuts, and factoring inferences become contractions). Since the presence of
contractions operating on ancestors of cut-formulas is a major reason for the increase of
size and length during cut-elimination, adding such contractions (via factoring) can lead
to compression.

However, the original (standard) CERes method [3] also introduces other kinds of redundan-
cies, in the form of unnecessary duplications that occur during the construction of (standard)
clause sets and (S-)projections. Therefore, it would be hopeless to expect proof compression by
CIRes if it used the standard CERes method. Fortunately, these redundancies can be avoided
by using the improved concepts of swapped clause sets and O-projections that are presented in
this paper.

The following subsections define and illustrate all steps of the CIRes method.

2.1 Step 1: Introduction of Atomic Cuts on Top

The first step is the introduction of atomic cuts on the top of the cut-free proof, and it can easily
be done according to Definition 2.1.

Definition 2.1 (Introduction of Atomic Cuts). Let φ be a cut-free proof. Then φa denotes the
proof obtained from φ by replacing every axiom inference with conclusion sequent of the form
A ⊢ A by a subproof of the form:
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A ⊢ A A ⊢ A cutA ⊢ A

Example 2.1. Let φ be the cut-free proof below, whose end-sequent was adapted from an instance of a
sequence of clause sets used in [7] to show that the resolution calculus can produce significantly shorter
proofs than the analytic tableaux calculus.

P1 ⊢ P1 ¬l
P1,¬P1 ⊢

P1 ⊢ P1 ¬l
P1,¬P1 ⊢

P2
− ⊢ P2

− ¬l
P2
−,¬P2

− ⊢ ∨l
P2
−,P

1,¬P1∨¬P2
− ⊢ ∨l

P1,P1,¬P1∨P2
−,¬P1∨¬P2

− ⊢ cl
P1,¬P1∨P2

−,¬P1∨¬P2
− ⊢

P1 ⊢ P1 ¬l
P1,¬P1 ⊢

P1 ⊢ P1 ¬l
P1,¬P1 ⊢

P2
− ⊢ P2

− ¬l
P2
−,¬P2

− ⊢ ∨l
P2
−,P

1,¬P1∨¬P2
− ⊢ ∨l

P1,P1,¬P1∨P2
−,¬P1∨¬P2

− ⊢ cl
P1,¬P1∨P2

−,¬P1∨¬P2
− ⊢

P2
+ ⊢ P2

+ ¬l
P2
+,¬P2

+ ⊢ ∨l
P2
+,P

1∨¬P2
+,¬P1∨P2

−,¬P1∨¬P2
− ⊢ ∨l

P1∨P2
+,¬P1∨P2

−,¬P1∨¬P2
−,P

1∨¬P2
+,¬P1∨P2

−,¬P1∨¬P2
− ⊢ cl

P1∨P2
+,¬P1∨P2

−,¬P1∨¬P2
−,P

1∨¬P2
+,¬P1∨¬P2

− ⊢ cl
P1∨P2

+,¬P1∨P2
−,P

1∨¬P2
+,¬P1∨¬P2

− ⊢

Following the first step of the CIRes method, φa is obtained by adding atomic cuts to the leaves of φ:

φa
l φa

r ∨1
lP1∨P2

+,¬P1∨P2
−,¬P1∨¬P2

−,P
1∨¬P2

+,¬P1∨P2
−,¬P1∨¬P2

− ⊢ cl
P1∨P2

+,¬P1∨P2
−,¬P1∨¬P2

−,P
1∨¬P2

+,¬P1∨¬P2
− ⊢ cl

P1∨P2
+,¬P1∨P2

−,P
1∨¬P2

+,¬P1∨¬P2
− ⊢

where φa
l is:

P1 ⊢ P1 P1 ⊢ P1
cut

P1 ⊢ P1 ¬l
P1,¬P1 ⊢

P1 ⊢ P1 P1 ⊢ P1
cut

P1 ⊢ P1 ¬l
P1,¬P1 ⊢

P2
− ⊢ P2

− P2
− ⊢ P2

− cut
P2
− ⊢ P2

− ¬l
P2
−,¬P2

− ⊢ ∨3
lP2

−,P
1,¬P1∨¬P2

− ⊢ ∨2
lP1,P1,¬P1∨P2

−,¬P1∨¬P2
− ⊢ cl

P1,¬P1∨P2
−,¬P1∨¬P2

− ⊢

and φa
r is:

P1 ⊢ P1 P1 ⊢ P1
cut

P1 ⊢ P1 ¬l
P1,¬P1 ⊢

P1 ⊢ P1 P1 ⊢ P1
cut

P1 ⊢ P1 ¬l
P1,¬P1 ⊢

P2
− ⊢ P2

− P2
− ⊢ P2

− cut
P2
− ⊢ P2

− ¬l
P2
−,¬P2

− ⊢ ∨6
lP2

−,P
1,¬P1∨¬P2

− ⊢ ∨5
lP1,P1,¬P1∨P2

−,¬P1∨¬P2
− ⊢ cl

P1,¬P1∨P2
−,¬P1∨¬P2

− ⊢

P2
+ ⊢ P2

+ P2
+ ⊢ P2

+ cut
P2
+ ⊢ P2

+ ¬l
P2
+,¬P2

+ ⊢ ∨4
lP2

+,P
1∨¬P2

+,¬P1∨P2
−,¬P1∨¬P2

− ⊢

In φa above, each axiom sequent was highlighted with a different color. Other atomic formulas were
highlighted with the same color of the axiom from which they descend. Atomic formulas that descend
from more than one axiom, in case of contractions, were kept in black color. Each of the six ∨l inferences
was marked with a distinct label from 1 to 6 so that they can be conveniently referred.
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2.2 Step 2: Extraction of the Sruct

The second step is the extraction of the struct Sφa of φa. The struct of φa contains information
about all the relevant atomic sub-formulas (and their polarities) of all cut-formulas of φa as well
as information about the branching structure of φa. A branching inference in φa corresponds
to either a ⊕ or a ⊗ connective in Sφa , depending on whether it operates on ancestors of cut-
formulas or not. The struct is a compact representation of all information pertinent to cuts in a
proof.

Definition 2.2 (Struct). The struct Sψ of a proof ψ is defined inductively, as follows:

• If ψ consists of an axiom inference ρwith axiom sequent A ⊢ A only, then:

– If only the formula in the succedent is a cut-ancestor, then Sψ � A.

– If only the formula in the antecedent is a cut-ancestor, then Sψ � ¬A.

– If both formulas of the axiom sequent are cut-ancestors, then Sψ � ¬A⊗A.

– If none of the formulas are cut ancestors, then Sψ � ϵ⊗.

• If ψ ends with a unary inference ρ, then Sψ � Sψ′ , where ψ′ is the immediate subproof of
ψ (i.e. the subproof whose end-sequent is the premise sequent of ρ).

• If ψ ends with a binary inference ρ that operates on cut-ancestors: Let ψ1 and ψ2 be the
immediate subproofs of ψ. Then:

Sψ � Sψ1 ⊕ρSψ2

• If ψ ends with a binary inference ρ that does not operate on cut-ancestors: Let ψ1 and ψ2
be the immediate subproofs of ψ. Then:

Sψ � Sψ1 ⊗ρSψ2

The subscript of a connective may be ommitted, if it is clear or unimportant to which inference
it corresponds.

Example 2.2. The struct Sφa of φa is:

Sφa ≡ ((P1⊕¬P1)
∗∗
⊗2 ((P1⊕¬P1)

∗∗
⊗3 (P2

−⊕¬P2
−)))

∗∗∗
⊗1 (((P1⊕¬P1)

∗∗
⊗5 ((P1⊕¬P1)

∗∗
⊗6 (P2

−⊕¬P2
−)))

∗∗∗
⊗4 (P2

+⊕¬P2
+))

It is easy to verify that the connective ⊗i indeed corresponds to the ∨l inference marked with label i.
The⊕ connectives correspond to the atomic cuts on the top ofφa and their subscripts have been ommitted.
Each ⊗i connective has been additionally marked with ∗ labels, whose colors are all the colors of ancestors
of formulas on which ∨i

l operates. Although not strictly necessary, these labels are convenient, as shown
in Example 2.3.

2.3 Step 3: Construction of the Swapped Clause Set

The connectives ⊗ and ⊕ can be interpreted as disjunction and conjunction, respectively. In
this case, it is possible to prove that the struct is always unsatisfiable [18, 3]. Informally and
Intuitively, this fact is also not so hard to see, since the struct contains (the atomic components
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of) all cut-formulas, which always occur in pairs of opposite polarity. Consequently, the struct
contains pairs of dual substructs that cannot be simultaneously satisfied.

In order to refute the unsatisfiable struct by resolution, first it has to be transformed into
clause normal form. This could be done by a standard conjunctive normal form transformation,
as shown in Definition 2.3. This is essentially what is done in the standard CERes method.

Definition 2.3 ({
s

). The standard struct normalization is defined by the following struct rewrit-
ing rules:

S⊗ (S1⊕ . . .⊕Sn){
s

(S⊗S1)⊕ . . .⊕ (S⊗Sn)

(S1⊕ . . .⊕Sn)⊗S{
s

(S1⊗S)⊕ . . .⊕ (Sn⊗S)

However, {
s

causes several duplications as ⊗ is distributed over ⊕, which can make the
normalized struct exponentially bigger [1]. These duplications must be avoided, if proof
compression is intended. One possible solution to reduce the duplications would be a pre-
processing ofφa that swaps4 independent inferences that correspond to⊗upward. The resulting
pre-processed proof would have a struct where ⊗ connectives already appear more deeply
nested and do not need to be distributed over so many ⊕ connectives. This pre-processing of
proofs would be computationally expensive, though. Fortunately, there is a better alternative,
which involves normalizing the struct while implicitly taking into account the possibility of
swapping inferences in the corresponding proof, as shown in the struct rewriting system of
Definition 2.4.

Definition 2.4 ({
w

). LetΩρ(φ) be the set of atomic formula occurrences ofφ that are descendants
of axioms that contain ancestors of active formulas of ρ. The rewriting rules below distribute ⊗
only to those ⊕-juncts that contain an occurrence in Ωρ(φ). More precisely,, Sn+1, . . . , Sn+m and
S must contain at least one occurrence from Ωρ(φ) each (i.e. there is an atomic substruct S′n+k
of Sn+k such that S′n+k ∈Ωρ(φ)), and S1, . . . ,Sn and Sl and Sr should not contain any occurrence
from Ωρ(φ). Moreover, an innermost rewriting strategy is enforced: only minimal reducible
substructs (i.e. structs having no reducible proper substruct) can be rewritten5.

S⊗ρ(S1⊕ . . .⊕Sn⊕Sn+1⊕ . . .⊕Sn+m){
w

S1⊕ . . .⊕Sn⊕ (S⊗ρSn+1)⊕ . . .⊕ (S⊗ρSn+m)

(S1⊕ . . .⊕Sn⊕Sn+1⊕ . . .⊕Sn+m)⊗ρS{w S1⊕ . . .⊕Sn⊕ (Sn+1⊗ρS)⊕ . . .⊕ (Sn+m⊗ρS)

Sl⊗ρSr{w Sl Sl⊗ρSr{w Sr Sl⊕ρSr{w Sl Sl⊕ρSr{w Sr

S⊕ρSr{w Sr Sl⊕ρS{w Sl

The fact that normalization of the struct according to{
w

corresponds to inference swapping
taking into account the independence of inferences is stated in Lemma 2.1. This complements
the rather technical Definition 2.4 with a more intuitive understanding of the reason why it
works.

4The proof rewriting system for swapping inferences is shown in Appendix C and defines the relation≫.
5Note that m can be equal to zero, in which case the first two rewriting rules simply degenerate to:

S⊗ρ(S1⊕ . . .⊕Sn){
w

S1⊕ . . .⊕Sn (S1⊕ . . .⊕Sn)⊗ρS{w S1⊕ . . .⊕Sn

5
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Lemma 2.1 (Correspondence between {
w

and ≫). If φ is skolemized and Sφ{w S, then there

exists a proof ψ such that φ≫∗ ψ and Sψ = S.

Proof. The proof and example of the correspondence are available in [18]. �

Example 2.3. Sφa can be normalized as follows:
By inspecting φa, note that ∨3

l operates on formulas highlighted in grey and orange. Hence,Ω∨3
l
(φa)

contains all formulas highlighted in grey and orange in φa (and also some of the formulas in black).
Consequently, ⊗3 should only be distributed to substructs that contain formulas highlighted in these
colors, and that is why, for convenience, the color label ∗∗ was added on top of ⊗3. The first rewriting
step is shown below:

Sφa ≡ ((P1⊕¬P1)
∗∗
⊗2 ((P1⊕¬P1)

∗∗
⊗3 (P2

−⊕¬P2
−)))

∗∗∗
⊗ 1 (((P1⊕¬P1)

∗∗
⊗5 ((P1⊕¬P1)

∗∗
⊗6 (P2

−⊕¬P2
−)))

∗∗∗
⊗ 4 (P2

+⊕¬P2
+))

{
w

((P1⊕¬P1)
∗∗
⊗2 (P2

−⊕ ((P1⊕¬P1)
∗∗
⊗3¬P2

−)))
∗∗∗
⊗ 1 (((P1⊕¬P1)

∗∗
⊗5 ((P1⊕¬P1)

∗∗
⊗6 (P2

−⊕¬P2
−)))

∗∗∗
⊗ 4 (P2

+⊕¬P2
+))

Note that (P1⊕¬P1) (which contains something highlighted in grey) was distributed only to ¬P2
−

(which is highlighted in orange) but not to P2
− (which is highlighted in neither of those colors but rather

in red− orange). Analogously, in the next rewriting step, ¬P2
− is distributed only to ¬P1, but not to P1:

. . . {
w

((P1⊕¬P1)
∗∗
⊗2 (P2

−⊕ ((P1⊕¬P1)
∗∗
⊗3¬P2

−)))
∗∗∗
⊗ 1 (((P1⊕¬P1)

∗∗
⊗5 ((P1⊕¬P1)

∗∗
⊗6 (P2

−⊕¬P2
−)))

∗∗∗
⊗ 4 (P2

+⊕¬P2
+))

{
w

((P1⊕¬P1)
∗∗
⊗2 (P1⊕P2

−⊕ (¬P1 ∗∗⊗3¬P2
−)))

∗∗∗
⊗ 1 (((P1⊕¬P1)

∗∗
⊗5 ((P1⊕¬P1)

∗∗
⊗6 (P2

−⊕¬P2
−)))

∗∗∗
⊗ 4 (P2

+⊕¬P2
+))

The rest of the normalization procedure is analogous, as shown below:

. . . {
w
∗ (P1⊕P1⊕ (¬P1 ∗∗⊗P2

−)⊕ (¬P1 ∗∗⊗¬P2
−))
∗∗∗
⊗ (((P1⊕¬P1)

∗∗
⊗ ((P1⊕¬P1)

∗∗
⊗ (P2

−⊕¬P2
−)))

∗∗∗
⊗ (P2

+⊕¬P2
+))

{
w
∗ (P1⊕P1⊕ (¬P1 ∗∗⊗P2

−)⊕ (¬P1 ∗∗⊗¬P2
−))
∗∗∗
⊗ (((P1⊕¬P1)

∗∗
⊗ (P1⊕P2

−⊕ (¬P1 ∗∗⊗¬P2
−)))

∗∗∗
⊗ (P2

+⊕¬P2
+))

{
w
∗ (P1⊕P1⊕ (¬P1 ∗∗⊗P2

−)⊕ (¬P1 ∗∗⊗¬P2
−))
∗∗∗
⊗ ((P1⊕P1⊕ (¬P1 ∗∗⊗P2

−)⊕ (¬P1 ∗∗⊗¬P2
−))
∗∗∗
⊗ (P2

+⊕¬P2
+))

{
w
∗ (P1⊕P1⊕ (¬P1 ∗∗⊗P2

−)⊕ (¬P1 ∗∗⊗¬P2
−))
∗∗∗
⊗ ((P1 ∗∗∗⊗ ¬P2

+)⊕ (P1 ∗∗∗⊗ ¬P2
+)⊕ (¬P1 ∗∗⊗P2

−)⊕ (¬P1 ∗∗⊗¬P2
−)⊕P2

+)

{
w
∗ ((P1 ∗∗∗⊗ P2

+)⊕ (P1 ∗∗∗⊗ P2
+)⊕ (¬P1 ∗∗⊗P2

−)⊕ (¬P1 ∗∗⊗¬P2
−))⊕ ((P1 ∗∗∗⊗ ¬P2

+)⊕ (P1 ∗∗∗⊗ ¬P2
+)⊕ (¬P1 ∗∗⊗P2

−)⊕ (¬P1 ∗∗⊗¬P2
−))

≡ (P1 ∗∗∗⊗ P2
+)⊕ (P1 ∗∗∗⊗ P2

+)⊕ (¬P1 ∗∗⊗P2
−)⊕ (¬P1 ∗∗⊗¬P2

−)⊕ (P1 ∗∗∗⊗ ¬P2
+)⊕ (P1 ∗∗∗⊗ ¬P2

+)⊕ (¬P1 ∗∗⊗P2
−)⊕ (¬P1 ∗∗⊗¬P2

−)

Definition 2.5 (Swapped Clause Set). A swapped clause set6 CW
φ|S of a proofφwith respect to a{

w
-

normal-form S of Sφ is the set of clauses (in sequent notation) obtained from S by interpreting
⊗ as ∨ and ⊕ as ∧. In cases where a proof φ has only one cut-pertinent swapped clause set, it
can be denoted simply as CW

φ .

Example 2.4. The swapped clause set CW
φa is shown below. Note how each ⊕-junct of the normal form

of Sφa shown in Example 2.3 corresponds to a clause in CW
φa .

CW
φa ≡ { ⊢ P1,P2

+ ; ⊢ P1,P2
+ ; P1 ⊢ P2

− ; P1,P2
− ⊢ ; P2

+ ⊢ P1 ; P2
+ ⊢ P1 ; P1 ⊢ P2

− ; P1,P2
− ⊢ }

2.4 Step 4: Refutation of the Swapped Clause Set by Resolution

The fourth step is the search for a resolution refutation of the swapped clause set.

Example 2.5. CW
φa can be refuted by the refutation δ below:

6Historically, swapped clause sets were developed during an attempt to give a more intuitive definition for
profile clause sets [11]. The deeper understanding acquired during this attempt allowed the development of swapped
clause sets, which are technically better than profile clause sets in handling proofs with weakening inferences [18].
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⊢ P1,P2
+ P2

+ ⊢ P1
r

⊢ P1,P1
fr⊢ P1

P1 ⊢ P2
− P1,P2

− ⊢ r
P1,P1 ⊢ fr

P1 ⊢ r⊢

2.5 Step 5: Construction of O-Projections

A projection’s purpose is to replace a leaf in a refutation of the clause set. Therefore, its
end-sequent must contain the leaf’s clause as a subsequent. Moreover, if we consider the
composition of projections on the refutation described in Subsection 2.6, it is clear that any
other formula F in the end-sequent of a projection will also appear in the end-sequent of the
proof with atomic cuts produced by CIRes. Since the end-sequent of the proof produced by
CIRes should be the same as the end-sequent of the original proof without cuts, it must not be
the case that the end-sequent of a projection contains a formula F that does not already appear
in the end-sequent of the original proof without cuts. These conditions are formally expressed
in Definition 2.6.

Definition 2.6 (Projection). Let φ be a proof with end-sequent Γ ⊢ ∆ and c ≡ Γc ⊢ ∆c ∈ Cφ. Any
cut-free proof of (Γ′,Γc ⊢ ∆′,∆c)σ, where Γ′ ⊆ Γ, ∆′ ⊆ ∆ and σ is a substitution, is a projection of φ
with respect to c.

The standard method for the construction of projections is usually presented together with
descriptions of the CERes method [2, 5, 3, 12]. It can be easily described, but unfortunately
results in redundant projections, because parts of φ tend to appear several times in different
projections of φ, even though it would suffice if they appeared in only one of these projections.
Projections of this standard but redundant kind are here called S-projections. This paper de-
scribes an alternative method that constructs so-called O-projections (Definition 2.9). They are
less redundant and thus essential for compressing proofs via CIRes. Their construction relies
on the auxiliary Y rule (Definition 2.7) and on the concept of axiom-linkage (Definition 2.8).

Definition 2.7 (Y Rule). The Y rule of inference is shown below:

φ1

Γ1 ⊢ ∆1 . . .

φn

Γn ⊢ ∆n Y
Γ1, . . . ,Γn ⊢ ∆1 . . . ,∆n

Definition 2.8 (Axiom Linkage). Two atomic (sub)formulas A1 and A2 in a proof φ are axiom-
linked7 if and only if they have ancestors in the same axiom sequent.

Definition 2.9 (O-Projection). The O-projection8 ⌊φ⌋Oc of the proof φ with respect to the clause c
is constructed according to the following steps:

1. replace inferences that operate on cut-ancestors by Y-inferences.

2. replace by Y-inferences also those inferences such that none of its active formulas is
axiom-linked to a formula of φ appearing in c.

3. delete formulas that are not axiom-linked to the formulas appearing in c.

7By definition of axiom-linkage, it is clear that formulas highlighted with the same color in Example 2.1 are
axiom-linked to each other.

8A technically more detailed definition of O-projection is available in [18].
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4. if the previous step deleted an auxiliary formula of an inference, fix the inference by
adding a weakening inference that re-introduces the auxiliary formula.

5. eliminate the Y-inferences, according to Definition 2.10.

Definition 2.10 (Y-Elimination). The elimination of Y inferences follows the proof rewriting
rule shown below. For the rewriting rule to be applicable, φ j is required to be a correct proof
containing no Y-inferences.

φ1

Γ1 ⊢ ∆1 . . .

φn

Γn ⊢ ∆n Y
Γ1, . . . ,Γn ⊢ ∆1 . . . ,∆n

⇓

φ j

Γ j ⊢ ∆ j
w∗

Γ1, . . . ,Γn ⊢ ∆1 . . . ,∆n

Theorem 2.1 (Correctness of O-Projections). If φ is a skolemized proof, then ⌊φ⌋Oc is a projection
of φ with respect to c.

Proof. In order to prove this theorem, it is necessary to show that the algorithm for construction
of O-projections described in Definition 2.9 outputs a proof that satisfies the requirements
expressed in Definition 2.6. A detailed technical proof is available in [18], and only a few
informal remarks are presented here. Note that ⌊φ⌋Oc is obviously cut-free, because of step 1 in
Definition 2.9. Step 1 also guarantees that c appears as a subsequent of the end-sequent of ⌊φ⌋Oc :
the atoms of c originate from atomic formulas that occur in axiom sequents and are ancestors of
cut-formulas, and since all inferences that operate on ancestors of cut-formulas are replaced by
Y-inferences, these atoms are free to propagate down to the end-sequent of ⌊φ⌋Oc (i.e. they will
not be used by propositional or quantifier inferences to compose more complex formulas and
they will not be consumed by cut inferences, because all these inferences are replaced). Step 3
guarantees that propagated atoms of other clauses of Cφ are deleted from the end-sequent of
⌊φ⌋Oc , so that only the propagated atoms of c remain. Moreover, note that ⌊φ⌋Oc will still contain
those inferences of φ that operate on formulas that are axiom-linked to formulas of c and are
not ancestors of cut-formulas. If these formulas are not ancestors of cut-formulas, they have
(also axiom-linked) descendants occurring in the end-sequent of φ, which were not deleted
by any step in the construction of the projection. Therefore, the end-sequent of ⌊φ⌋Oc is of the
form Γ′,Γc ⊢ ∆′,∆c, where Γ′ ⊢ ∆′ is the subsequent of the end-sequent of φ whose formulas are
axiom-linked to formulas that appear in c, and Γc ⊢ ∆c = c, since other propagated atoms are
deleted by step 3. φ is required to be skolemized in order to prevent violations of eigen-variable
conditions by the atoms that are propagated down after step 1. �

Example 2.6. In the construction of the projection ⌊φa⌋O⊢P1,P2
+

, the first four steps result in the (partial)
proof with Y inferences shown below. Note that the only remaining formulas are those axiom linked to
P1 and P2

+. All other were deleted. And the only remaining non-Y inference is ∨1
l , because it is the only

one that operates on formulas that are axiom-linked to P1 and P2
+.
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P1 ⊢ P1 ⊢
Y

P1 ⊢ P1
Y

P1 ⊢ P1

⊢ ⊢
Y⊢

Y⊢

⊢ ⊢
Y⊢

Y⊢
Y⊢

Y
P1 ⊢ P1

Y
P1 ⊢ P1

⊢ ⊢
Y⊢

Y⊢

⊢ ⊢
Y⊢

Y⊢

⊢ ⊢
Y⊢

Y⊢
Y⊢

Y⊢
Y⊢

P2
+ ⊢ P2

+ ⊢
Y

P2
+ ⊢ P2

+
Y

P2
+ ⊢ P2

+
Y

P2
+ ⊢ P2

+ ∨1
lP1∨P2

+ ⊢ P1,P2
+

Y
P1∨P2

+ ⊢ P1,P2
+

Y
P1∨P2

+ ⊢ P1,P2
+

The last step in the construction of O-projections is the elimination of Y-inferences, and it gives the
O-projection ⌊φa⌋O⊢P1,P2

+

shown below. The projections with respect to the other three clauses that appear
in the leaves of the refutation are also shown below:

⌊φa⌋O⊢P1,P2
+

:

P1 ⊢ P1 P2
+ ⊢ P2

+ ∨l
P1∨P2

+ ⊢ P1,P2
+

⌊φa⌋O
P2
+⊢P1 :

P1 ⊢ P1

P2
+ ⊢ P2

+ ¬l
P2
+,¬P2

+ ⊢ ∨l
P2
+,P

1∨¬P2
+ ⊢ P1

⌊φa⌋O
P1⊢P2

−
:

P1 ⊢ P1 ¬l
P1,¬P1 ⊢ P2

− ⊢ P2
− ∨l

P1,¬P1∨P2
− ⊢ P2

−

⌊φa⌋O
P1,P2

−⊢
:

P1 ⊢ P1 ¬l
P1,¬P1 ⊢

P2
− ⊢ P2

− ¬l
P2
−,¬P2

− ⊢ ∨l
P1,P2

−,¬P1∨¬P2
− ⊢

2.6 Step 6: Composing the O-Projections on top of the Refutation

The last step is the replacement of each leaf of the ground9 refutation by its corresponding
projection, and the renaming of resolution inferences to cuts and of factoring inferences to
contractions.

Example 2.7. The final proof with atomic cuts, obtained by composing the refutation and the projections,
is CIResO

W(φ,δ) shown below:

P1 ⊢ P1 P2
+ ⊢ P2

+ ∨l
P1∨P2

+ ⊢ P1,P2
+

P1 ⊢ P1

P2
+ ⊢ P2

+ ¬l
P2
+,¬P2

+ ⊢ ∨l
P2
+,P

1∨¬P2
+ ⊢ P1

cut
P1∨P2

+,P
1∨¬P2

+ ⊢ P1,P1
cr

P1∨P2
+,P

1∨¬P2
+ ⊢ P1

P1 ⊢ P1 ¬l
P1,¬P1 ⊢ P2

− ⊢ P2
− ∨l

P1,¬P1∨P2
− ⊢ P2

−

P1 ⊢ P1 ¬l
P1,¬P1 ⊢

P2
− ⊢ P2

− ¬l
P2
−,¬P2

− ⊢ ∨l
P1,P2

−,¬P1∨¬P2
− ⊢ cut

P1,P1,¬P1∨P2
−,¬P1∨¬P2

− ⊢ cr
P1,¬P1∨P2

−,¬P1∨¬P2
− ⊢ cut

P1∨P2
+,P

1∨¬P2
+,¬P1∨P2

−,¬P1∨¬P2
− ⊢

9Although the example shown here is purely propositional, CIRes works in predicate logic too. In this case, it is
necessary to ground the resolution refutation by applying a substitution that is the composition of all most general
unifiers used in the refutation. Only then the resolution inferences can be converted to atomic cuts. The grounding
substitution must be applied to the projections too.
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Table 1 compares the sizes of φ and CIResO
W(φ,δ), and thus shows that CIRes is indeed able to

compress proofs. Three different measures are used: proof length, which is the number of inferences
in the proof; symbolic proof size, which counts the total number of symbols in formulas occurring in
the proof; and atomic proof size, which counts only the total number of predicate symbols in formulas
occurring in the proof.

Table 1: Compression by CIRes
φ CIResO

W(φ,δ)
Proof Length (number of inferences) 17 13

Symbolic Proof Size (number of formula symbols) 169 105
Atomic Proof Size (number of atoms) 97 70

3 Exponential Proof Compression

The following lemmas and theorems use a set of disjunctions Dm that is associated with the
complete binary tree of depth m, as described in [7, 17]. Dm contains 2m disjunctions of the
form10 ◦P1∨◦P2

±∨◦P3
±±∨ . . .∨◦Pm

±...±, where ◦ is either empty or¬ and the i-th± is either+, if the
◦ preceding Pi

±...± is empty, or −, if the ◦ preceding Pi
±...± is ¬. For example, D2 = {P1∨P2

+,¬P1∨
P2
−,P

1∨¬P2
+,¬P1∨¬P2

−}. Cm is defined as the set of clauses corresponding to the disjunctions
of Dm (e.g. D2 = {⊢ P1,P2

+ ; P1 ⊢ P2
− ; P2

+ ⊢ P1 ; P1,P2
− ⊢}). And Tm is defined as the sequent having

all the disjunctions of Cm in its antecedent (e.g. T2 = P1∨P2
+,¬P1∨P2

−,P
1∨¬P2

+,¬P1∨¬P2
− ⊢).

P1

P2
+ ¬P2

+

¬P1

P2
− ¬P2

−
Note that T2 is exactly the end-sequent of the proofs considered in the examples of the

previous section. The assymptotic results about the compression achievable by CIRes are
obtained by quantitatively analyzing what happens in the general case, when CIRes is applied
to Tm. The general phenomenon is essentially the same as what has been observed for T2, and
hence the examples of the previous section are helpful for the comprehension of the lemmas in
this section.

Lemma 3.1. Let ψm be a shortest analytic tableaux refutation of Dm. Then length(ψm) > 2k12m
,

for some positive rational constant k1.

Proof. This lemma was mentioned in [7] and then proved in [17]. �

Lemma 3.2. Let φm be the shortest cut-free sequent calculus proof of Tm corresponding to ψm.
Then length(φm) > 2k22m

,for some positive rational constant k2.

10Parentheses have been ommited from these disjunctions, and the∨ connective is assumed to be left-associative.
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Proof. This lemma follows immediately from Lemma 3.1 and from the fact that cut-free sequent
calculus p-simulates analytic tableaux [17]. �

Lemma 3.3. Let δm be the shortest resolution refutation of Cm. Then length(δm) < 2k3m, for some
positive rational constant k3.

Proof. This lemma is mentioned without proof in [7]. Its proof is easy, though. δm can be
constructed by resolving first the literals that correspond to the deepest nodes in the complete
binary tree that generates Dm and Cm, then resolving the literals that correspond to the nodes
on the level immediately above, and so on, until all literals have been resolved. In this way,
it is clear that the number of resolution and factoring inferences in δm is linearly related to the
number of nodes in the binary tree, which is exponential in m. �

Lemma 3.4. Cm ⊆ CW
φa

m
.

Proof. Let cd ∈ Cm. By definition of Cm, Dm and Tm, there is a disjunction d � L1∨1 . . .∨m−1 Lm
in the antecedent of the end-sequent Tm of the proof φa

m such that cd is the clause form of d in
sequent notation. Let Ai be one of the atomic ancestors of Li occurring in an axiom sequent si of
φa

m. Let A′i be the formula occurring in the other cedent of si. Note that:

• Ai and A′i are syntactically equal, by definition of axiom sequents.

• A′i is a cut-ancestor.

• A′i occurs in the succedent of si, if Li is a positive literal, and in the antecedent, otherwise.

Let Si be the substruct of Sφa
m

corresponding to the axiom rule having conclusion sequent si.
By definition, Si = A′i = Li, if A′i occurs in the succedent of si, and Si = ¬A′i = Li, otherwise. Let
ρ j be the ∨l inference in φa

m which operates on descendents of A1, . . . , Am and introduces the
connective ∨ j in the disjunction d. Let ⊗ j be the connective in Sφa

m
that corresponds to ρ j. By

Definition 2.4, the normalization of Sφa
m

is such that ⊗ j is distributed to substructs containing
formulas that are axiom-linked to ancestors of formulas on which ρ j operates (i.e. containing A′1,
. . . , A′m). Consequently, the normal form S of Sφa

m
contains the substruct Sd � S1⊗1 . . .⊗m−1 Sm.

When S is transformed to CW
φa

m
, Sd becomes the clause cd, because Si = Li, for all i, and ⊗ is

interpreted as ∨. Therefore, cd ∈ CW
φa

m
and hence Cm ⊆ CW

φa
m

. �

Lemma 3.5. δm is a refutation of CW
φa

m
.

Proof. This lemma follows immediately from Lemma 3.4. �

Lemma 3.6. Let c ∈ CW
φa

m
. Then length(⌊φa

m⌋Oc ) < k4m, for some positive constant k4.

Proof. By definition, the O-projection ⌊φa
m⌋Oc contains only those inferences of φa

m that operate
on descendants of axiom sequents that contain occurences of c. These are the inferences
that construct one of the disjunctions in the end-sequent Tm of φa

m, namely the disjunction
whose clause form in sequent notation is equal to c. c has exactly m literals, and thus ⌊φa

m⌋Oc
contains exactly m− 1 inferences of ∨l kind. Since literals can appear negated, ⌊φa

m⌋Oc can
contain at most m inferences of ¬l kind. No other inferences appear in ⌊φa

m⌋Oc . Therefore,
length(⌊φa

m⌋Oc ) < 2m−1. �

Theorem 3.1 (Exponential Proof Compression via CIRes). There exists a sequence of sequents
Tm such that:

11



Atomic Cut Introduction by Resolution Woltzenlogel Paleo

• if φm is a sequence of shorthest cut-free proofs of Tm,
then length(φm) > 2k52m

(for some positive constant k5).

• there exists δm such that length(CIRes(φm,δm)) <m.2k6m (for some positive constant k6).

Proof. The first item of this theorem is just Lemma 3.2. For the second item, let δm be the shortest
refutation of Cm, as in Lemma 3.3. By lemma 3.5, δm is also a refutation of CW

φa
m

, and hence it can
be used in the construction of the proof with atomic cuts by CIRes. Then note that CIRes(φm,δm)
is the composition of δm, whose length is exponentially upperbounded (Lemma 3.3), and 2m

O-projections of linear size (as in Lemma 3.6). Therefore:

length(CIRes(φm,δm)) < 2k3m+2m(2m−1) <m.2k6m

for some constant k6. �

4 Conclusions

This paper has introduced the CIRes method of cut-introduction and shown that it can compress
proofs exponentially. This was only possible with the development of swapped clause sets
and O-projections, which are less redundant than the standard clause sets and projections
traditionally used by CERes. These new concepts could be employed for cut-elimination as
well.

The further development of CIRes can proceed in various directions. Firstly, similarly to
what has already been done for cut-elimination [18], the swapped clause set could be enriched
with additional information from the proof, and this information could then be used to de-
fine refinements of the resolution calculus in order to facilitate the search for refutations and,
consequently, the introduction of cuts.

Secondly, O-projections and the method for combining them with the refutation could still
be improved. In the example considered in this paper, the shortest proof with cuts was a proof
whose atomic cuts all occur in the bottom, which is particularly suitable for a method like
CIRes, that outputs proofs with cuts in the bottom. However, in other cases (i.e. when the
optimal proof with atomic cuts is such that the atomic cuts do not occur in the bottom of the
proof), CIRes might produce sub-optimally compressed proofs, because the O-projections will
contain redundancies that are only necessary because CIRes currently requires the atomic cuts
to be in the very bottom and the projections to be on the top. This indicates that CIRes could be
improved by developing different notions of projections and more flexible ways of composing
them with the refutation. However, this is highly non-trivial.

Finally, much more significant (i.e. non-elementary) compression could in principle be
obtained via introduction of quantified cuts. The CIRes method described in this chapter
introduces only atomic cuts and is therefore just a first step toward the harder task of introducing
complex quantified cuts. An intermediary step could be the introduction of propositional cuts,
possibly by using definitional and swapped definitional clause sets [18]. But even then, (sub-
optimal) compressive quantified-cut-introduction would still be a distant goal, and an algorithm
that would generally guarantee optimal compression is forever out of reach; it cannot exist, due
to the undecidability results in [6].
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Appendix A: Sequent Calculus

The inference rules of the sequent calculus used in this paper are shown below. The sequent
below the line of an inference rule is its conclusion, while the sequents above the line are its
premises. The formulas highlighted in red color are called main formulas of the rules, while the
formulas highlighted in blue color are called auxiliary formulas. Main and auxiliary formulas
are called active. An inference is said to operate on its active formulas. Note that CERes and the
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methods described in this paper are robust and work with other kinds of sequent calculi, as
long as weakening and contraction are available in some (possibly implicit) form.

• The Axiom Rule:
A ⊢ A axiom

where A is any atomic formula.

• Propositional Rules:

F1,F2,Γ ⊢ ∆
F1∧F2,Γ ⊢ ∆

∧l
Γ1 ⊢ ∆1,F1 Γ2 ⊢ ∆2,F2

Γ1,Γ2 ⊢ ∆1,∆2,F1∧F2
∧r

F1,Γ1 ⊢ ∆1 F2,Γ2 ⊢ ∆2

F1∨F2,Γ1,Γ2 ⊢ ∆1,∆2
∨l

Γ ⊢ ∆,F
¬F,Γ ⊢ ∆

¬l

Γ1 ⊢ ∆1,F1 F2,Γ2 ⊢ ∆2

F1→ F2,Γ1,Γ2 ⊢ ∆1,∆2
→l

F1,Γ ⊢ ∆,F2

Γ ⊢ ∆,F1→ F2
→r

Γ ⊢ ∆,F1,F2

Γ ⊢ ∆,F1∨F2
∨r

F,Γ ⊢ ∆
Γ ⊢ ∆,¬F

¬r

• Structural Rules (Weakening and Contraction):

Γ ⊢ ∆
F,Γ ⊢ ∆ wl

Γ ⊢ ∆
Γ ⊢ ∆,F wr

F,F,Γ ⊢ ∆
F,Γ ⊢ ∆ cl

Γ ⊢ ∆,F,F
Γ ⊢ ∆,F cr

• The Cut Rule:
Γ1 ⊢ ∆1,F F,Γ2 ⊢ Γ2
Γ1,Γ2 ⊢ ∆1,∆2

cut

• Quantifier Rules:

F{x← t},Γ ⊢ ∆
(∀x)F,Γ ⊢ ∆ ∀l

Γ ⊢ ∆,F{x← α}
Γ ⊢ ∆, (∀x)F

∀r
F{x← α},Γ ⊢ ∆

(∃x)F,Γ ⊢ ∆ ∃l
Γ ⊢ ∆,F{x← t}
Γ ⊢ ∆, (∃x)F

∃r

For the ∀r and the ∃l rules, the variable αmust not occur in Γ nor in ∆ nor in F. This is the
eigenvariable condition. For the ∀l and the ∃r rules the term t must not contain a variable
that is bound in F.

Appendix B: Reductive Cut-Elimination Proof Rewriting Rules

Reductive cut-elimination methods were introduced by Gentzen and can be described as a
proof rewriting system. The rewriting rules for the sequent calculus used in this paper are
shown below.

Definition 4.1 (◃a). Cut-elimination over axiom inferences:

A ⊢ A
φr

A,Π ⊢ Λ
cutA,Π ⊢ Λ

⇓

φr

A,Π ⊢ Λ

φl

Γ ⊢ ∆,A A ⊢ A
cut

Γ, ⊢ ∆,A

⇓

φl

Γ ⊢ ∆,A

Definition 4.2 (◃r1). Upward swapping of cuts over unary inferences (unary rank reduction):
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φl

Γ ⊢ ∆,A

φr

A,Π′ ⊢ Λ′
ρ

A,Π ⊢ Λ
cut

Γ,Π ⊢ ∆,Λ

⇓

φl

Γ ⊢ ∆,A
φr

A,Π′ ⊢ Λ′
cut

Γ,Π′ ⊢ ∆,Λ′
ρ

Γ,Π ⊢ ∆,Λ

φl

Γ′ ⊢ ∆′,A
ρ

Γ ⊢ ∆,A
φr

A,Π ⊢ Λ
cut

Γ,Π ⊢ ∆,Λ

⇓

φl

Γ′ ⊢ ∆′,A
φr

A,Π ⊢ Λ
cut

Γ′,Π ⊢ ∆′,Λ
ρ

Γ,Π ⊢ ∆,Λ

Definition 4.3 (◃r2). Upward swapping of cuts over binary inferences (binary rank reduction):

φl

Π ⊢ Λ,A

φ1

A,Γ1 ⊢ ∆1

φ2

Γ2 ⊢ ∆2 ρ
A,Γ ⊢ ∆

cut
Π,Γ ⊢ Λ,∆

⇓

φl

Π ⊢ Λ,A
φ1

A,Γ1 ⊢ ∆1 cut
Π,Γ1 ⊢ Λ,∆1

φ2

Γ2 ⊢ ∆2 ρ
Π,Γ ⊢ Λ,∆

φl

Π ⊢ Λ,A

φ1

Γ1 ⊢ ∆1

φ2

A,Γ2 ⊢ ∆2 ρ
A,Γ ⊢ ∆

cut
Π,Γ ⊢ Λ,∆

⇓

φ1

Γ1 ⊢ ∆1

φl

Π ⊢ Λ,A
φ2

A,Γ2 ⊢ ∆2 cut
Π,Γ2 ⊢ Λ,∆2 ρ

Π,Γ ⊢ Λ,∆
φ1

Γ1 ⊢ ∆1,A
φ2

Γ2 ⊢ ∆2 ρ
Γ ⊢ ∆,A

φr

A,Π ⊢ Λ
cut

Γ,Π ⊢ ∆,Λ

⇓

φ1

Γ1 ⊢ ∆1,A
φr

A,Π ⊢ Λ
cut

Γ1,Π ⊢ ∆1,Λ

φ2

Γ2 ⊢ ∆2 ρ
Γ,Π ⊢ ∆,Λ

φ1

Γ1 ⊢ ∆1

φ2

Γ2 ⊢ ∆2,A ρ
Γ ⊢ ∆,A

φr

A,Π ⊢ Λ
cut

Γ,Π ⊢ ∆,Λ

⇓

φ1

Γ1 ⊢ ∆1

φ2

Γ2 ⊢ ∆2,A
φr

A,Π ⊢ Λ
cut

Γ2,Π ⊢ ∆2,Λ ρ
Γ,Π ⊢ ∆,Λ

Definition 4.4 (◃p∧). Reduction of complexity of a cut-formula having ∧ as shallowest connec-
tive (grade reduction):

φ1

Γ1 ⊢ ∆1,B
φ2

Γ2 ⊢ ∆2,C ∧r
Γ1,Γ2 ⊢ ∆1,∆2,B∧C

φr

B,C,Π ⊢ Λ ∧lB∧C,Π ⊢ Λ
cut

Γ1,Γ2,Π ⊢ ∆1,∆2,Λ

⇓

φ2

Γ2 ⊢ ∆2,C

φ1

Γ1 ⊢ ∆1,B
φr

B,C,Π ⊢ Λ
cutC,Γ1,Π ⊢ ∆1,Λ cut

Γ1,Γ2,Π ⊢ ∆1,∆2,Λ
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Definition 4.5 (◃p∨). Reduction of complexity of a cut-formula having ∨ as shallowest connec-
tive (grade reduction):

φl

Π ⊢ Λ,B,C ∨r
Π ⊢ Λ,B∨C

φ1

B,Γ1 ⊢ ∆1

φ2

C,Γ2 ⊢ ∆2 ∨lB∨C,Γ1,Γ2 ⊢ ∆1,∆2 cut
Γ1,Γ2,Π ⊢ ∆1,∆2,Λ

⇓

φl

Π ⊢ Λ,B,C
φ2

C,Γ2 ⊢ ∆2 cut
Π,Γ2 ⊢ ∆2,Λ,B

φ1

B,Γ1 ⊢ ∆1 cut
Γ1,Γ2,Π ⊢ ∆1,∆2,Λ

Definition 4.6 (◃p→). Reduction of complexity of a cut-formula having → as shallowest con-
nective (grade reduction):

φl

B,Π ⊢ Λ,C →r
Π ⊢ Λ,B→ C

φ1

Γ1 ⊢ ∆1,B
φ2

C,Γ2 ⊢ ∆2 →lB→ C,Γ1,Γ2 ⊢ ∆1,∆2 cut
Γ1,Γ2,Π ⊢ ∆1,∆2,Λ

⇓

φ1

Γ1 ⊢ ∆1,B

φl

B,Π ⊢ Λ,C
φ2

C,Γ2 ⊢ ∆2 cutB,Π,Γ2 ⊢ ∆2,Λ cut
Γ1,Γ2,Π ⊢ ∆1,∆2,Λ

Definition 4.7 (◃p¬). Reduction of complexity of a cut-formula having ¬ as shallowest connec-
tive (grade reduction):

φl

B,Γ ⊢ ∆ ¬r
Γ ⊢ ∆,¬B

φr

Π ⊢ Λ,B ¬l¬B,Π ⊢ Λ
cut

Γ,Π ⊢ ∆,Λ

⇓

φr

Π ⊢ Λ,B
φl

B,Γ ⊢ ∆
cut

Γ,Π ⊢ ∆,Λ
Definition 4.8 (◃q∀). Reduction of complexity of a cut-formula having a universal quantifier at
its shallowest level:

φl

Γ ⊢ ∆,B{x← α} ∀rΓ ⊢ ∆,∀xB

φr

B{x← t},Π ⊢ Λ ∀l∀xB,Π ⊢ Λ
cut

Γ,Π ⊢ ∆,Λ
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⇓

φ′l {α← t}
Γ ⊢ ∆,B{x← t}

φr

B{x← t},Π ⊢ Λ
cut

Γ,Π ⊢ ∆,Λ
where φ′l is obtained from φl by renaming all bound variables to globally fresh new ones,

so that they are not equal to any free variable in the term t.

Definition 4.9 (◃q∃). Reduction of complexity of a cut-formula having an existential quantifier
at its shallowest level:

φl

Γ ⊢ ∆,B{x← t} ∃rΓ ⊢ ∆,∃xB

φr

B{x← α},Π ⊢ Λ ∃l∃xB,Π ⊢ Λ
cut

Γ,Π ⊢ ∆,Λ

⇓

φl

Γ ⊢ ∆,B{x← t}
φ′r{α← t}

B{x← t},Π ⊢ Λ
cut

Γ,Π ⊢ ∆,Λ
where φ′r is obtained from φr by renaming all bound variables to globally fresh new ones,

so that they are not equal to any free variable in the term t.

Definition 4.10 (◃w). Cut-elimination over weakening inferences:

φl

Γ ⊢ ∆ wr
Γ ⊢ ∆,A

φr

A,Π ⊢ Λ
cut

Γ,Π ⊢ ∆,Λ

⇓

φl

Γ ⊢ ∆ w∗r,w∗lΓ,Π ⊢ ∆,Λ

φl

Γ ⊢ ∆,A

φr

Π ⊢ Λ wlA,Π ⊢ Λ
cut

Γ,Π ⊢ ∆,Λ

⇓

φr

Π ⊢ Λ w∗r,w∗lΓ,Π ⊢ ∆,Λ
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Definition 4.11 (◃c). Duplication of cuts over contraction inferences11:
φl

Γ ⊢ ∆,A,A cr
Γ ⊢ ∆,A

φr

A,Π ⊢ Λ
cut

Γ,Π ⊢ ∆,Λ

⇓

φl

Γ ⊢ ∆,A,A
φr

A,Π ⊢ Λ
cut

Γ,Π ⊢ ∆,Λ,A
φ′r

A,Π ⊢ Λ
cut

Γ,Π,Π ⊢ ∆,Λ,Λ,
c∗l ,c
∗
r

Γ,Π ⊢ ∆,Λ

φl

Γ ⊢ ∆,A

φr

A,A,Π ⊢ Λ clA,Π ⊢ Λ
cut

Γ,Π ⊢ ∆,Λ

⇓

φ′l
Γ ⊢ ∆,A

φl

Γ ⊢ ∆,A
φr

A,A,Π ⊢ Λ
cut

A,Γ,Π ⊢ ∆,Λ
cut

Γ,Γ,Π ⊢ ∆,∆,Λ
c∗l ,c
∗
r

Γ,Π ⊢ ∆,Λ

where φ′l and φ′r are variants of, respectively, φl and φr, in which the eigenvariables are
renamed to preserve proof regularity.

Appendix C: Inference Swapping

This appendix defines the proof rewriting relations for inference swapping, as needed by
Lemma 2.1.

Definition 4.12 (Inference Dependence). An inference ρ1 is directly dependent on another in-
ference ρ2 if and only if a main occurrence of ρ2 is an ancestor of an auxiliary occurrence of
ρ1.

A strong quantifier inference ρ1 is eigenvariable-dependent on another inference ρ2 occurring
above ρ1 if and only if the substitution term of ρ2 contains an occurrence of the eigenvariable
of ρ1.

An inference ρ1 is indirectly dependent on another inference ρ2 occurring above ρ1 if and only
if it is not directly dependent on ρ2 and the auxiliary occurrences of ρ1 have ancestors in more
than one premise sequent of ρ2.

An inference ρ1 is independent of another inference ρ2 if and only if ρ1 is neither directly
dependent nor eigenvariable-dependent nor indirectly dependent on ρ2.

Definition 4.13 (≫I). Swapping of Independent Inferences:

φ1

Γ
ρ1
1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1

1 ,∆
ρ2
1 ,∆1

ρ1
Γρ1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1 ,∆

ρ2
1 ,∆1

ρ2
Γρ1 ,Γρ2 ,Γ1 ⊢ ∆ρ1 ,∆ρ2 ,∆1

⇓

11The use of a purely multiplicative calculus, in which all contractions occur explicitly via contraction inferences,
allows the isolation of the phenomenon of duplication of subproofs (and the need for renaming of eigenvariables)
to the case of cut-reduction over contractions. Had an additive or mixed calculus been chosen, implicit contractions
would occur, and its treatment would not be as transparent.
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φ1

Γ
ρ1
1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1

1 ,∆
ρ2
1 ,∆1

ρ2
Γ
ρ1
1 ,Γ

ρ2 ,Γ1 ⊢ ∆ρ1
1 ,∆

ρ2 ,∆1
ρ1

Γρ1 ,Γρ2 ,Γ1 ⊢ ∆ρ1 ,∆ρ2 ,∆1

φ1

Γ
ρ1
1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1

1 ,∆
ρ2
1 ,∆1

φ2

Γ
ρ1
2 ,Γ2 ⊢ ∆ρ1

2 ,∆2
ρ1

Γρ1 ,Γ
ρ2
1 ,Γ1,Γ2 ⊢ ∆ρ1 ,∆

ρ2
1 ,∆1,∆2

ρ2
Γρ1 ,Γρ2 ,Γ1,Γ2 ⊢ ∆ρ1 ,∆ρ2 ,∆1,∆2

⇓
φ1

Γ
ρ1
1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1

1 ,∆
ρ2
1 ,∆1

ρ2
Γ
ρ1
1 ,Γ

ρ2 ,Γ1 ⊢ ∆ρ1
1 ,∆

ρ2 ,∆1

φ2

Γ
ρ1
2 ,Γ2 ⊢ ∆ρ1

2 ,∆2
ρ1

Γρ1 ,Γρ2 ,Γ1,Γ2 ⊢ ∆ρ1 ,∆ρ2 ,∆1,∆2

φ2

Γ
ρ1
2 ,Γ2 ⊢ ∆ρ1

2 ,∆2

φ1

Γ
ρ1
1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1

1 ,∆
ρ2
1 ,∆1

ρ1
Γρ1 ,Γ

ρ2
1 ,Γ1,Γ2 ⊢ ∆ρ1 ,∆

ρ2
1 ,∆1,∆2

ρ2
Γρ1 ,Γρ2 ,Γ1,Γ2 ⊢ ∆ρ1 ,∆ρ2 ,∆1,∆2

⇓

φ2

Γ
ρ1
2 ,Γ2 ⊢ ∆ρ1

2 ,∆2

φ1

Γ
ρ1
1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1

1 ,∆
ρ2
1 ,∆1

ρ2
Γ
ρ1
1 ,Γ

ρ2 ,Γ1 ⊢ ∆ρ1
1 ,∆

ρ2 ,∆1
ρ1

Γρ1 ,Γρ2 ,Γ1,Γ2 ⊢ ∆ρ1 ,∆ρ2 ,∆1,∆2

φ1

Γ
ρ1
1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1

1 ,∆
ρ2
1 ,∆1

ρ1
Γρ1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1 ,∆

ρ2
1 ,∆1

φ2

Γ
ρ2
2 ,Γ2 ⊢ ∆ρ2

2 ,∆2
ρ2

Γρ1 ,Γρ2 ,Γ1,Γ2 ⊢ ∆ρ1 ,∆ρ2 ,∆1,∆2

⇓
φ1

Γ
ρ1
1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1

1 ,∆
ρ2
1 ,∆1

φ2

Γ
ρ2
2 ,Γ2 ⊢ ∆ρ2

2 ,∆2
ρ2

Γ
ρ1
1 ,Γ

ρ2 ,Γ1,Γ2 ⊢ ∆ρ1
1 ,∆

ρ2 ,∆1,∆2
ρ1

Γρ1 ,Γρ2 ,Γ1,Γ2 ⊢ ∆ρ1 ,∆ρ2 ,∆1,∆2

φ2

Γ
ρ2
2 ,Γ2 ⊢ ∆ρ2

2 ,∆2

φ1

Γ
ρ1
1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1

1 ,∆
ρ2
1 ,∆1

ρ1
Γρ1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1 ,∆

ρ2
1 ,∆1

ρ2
Γρ1 ,Γρ2 ,Γ1,Γ2 ⊢ ∆ρ1 ,∆ρ2 ,∆1,∆2
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⇓

φ2

Γ
ρ2
2 ,Γ2 ⊢ ∆ρ2

2 ,∆2

φ1

Γ
ρ1
1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1

1 ,∆
ρ2
1 ,∆1

ρ2
Γ
ρ1
1 ,Γ

ρ2 ,Γ1,Γ2 ⊢ ∆ρ1
1 ,∆

ρ2 ,∆1,∆2
ρ1

Γρ1 ,Γρ2 ,Γ1,Γ2 ⊢ ∆ρ1 ,∆ρ2 ,∆1,∆2

φ1

Γ
ρ1
1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1

1 ,∆
ρ2
1 ,∆1

φ2

Γ
ρ1
2 ,Γ2 ⊢ ∆ρ1

2 ,∆2
ρ1

Γρ1 ,Γ
ρ2
1 ,Γ1,Γ2 ⊢ ∆ρ1 ,∆

ρ2
1 ,∆1,∆2

φ3

Γ
ρ2
3 ,Γ3 ⊢ ∆ρ2

3 ,∆3
ρ2

Γρ1 ,Γρ2 ,Γ1,Γ2,Γ3 ⊢ ∆ρ1 ,∆ρ2 ,∆1,∆2,∆3

⇓

φ1

Γ
ρ1
1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1

1 ,∆
ρ2
1 ,∆1

φ3

Γ
ρ2
3 ,Γ3 ⊢ ∆ρ2

3 ,∆3
ρ2

Γ
ρ1
1 ,Γ

ρ2 ,Γ1,Γ3 ⊢ ∆ρ1
1 ,∆

ρ2 ,∆1,∆3

φ2

Γ
ρ1
2 ,Γ2 ⊢ ∆ρ1

2 ,∆2
ρ1

Γρ1 ,Γρ2 ,Γ1,Γ2,Γ3 ⊢ ∆ρ1 ,∆ρ2 ,∆1,∆2,∆3

φ1

Γ
ρ1
1 ,Γ1 ⊢ ∆ρ1

1 ,∆1

φ2

Γ
ρ1
2 ,Γ

ρ2
2 ,Γ2 ⊢ ∆ρ1

2 ,∆
ρ2
2 ,∆2

ρ1
Γρ1 ,Γ

ρ2
2 ,Γ1,Γ2 ⊢ ∆ρ1 ,∆

ρ2
2 ,∆1,∆2

φ3

Γ
ρ2
3 ,Γ3 ⊢ ∆ρ2

3 ,∆3
ρ2

Γρ1 ,Γρ2 ,Γ1,Γ2,Γ3 ⊢ ∆ρ1 ,∆ρ2 ,∆1,∆2,∆3

⇓

φ1

Γ
ρ1
1 ,Γ1 ⊢ ∆ρ1

1 ,∆1

φ2

Γ
ρ1
2 ,Γ

ρ2
2 ,Γ2 ⊢ ∆ρ1

2 ,∆
ρ2
2 ,∆2

φ3

Γ
ρ2
3 ,Γ3 ⊢ ∆ρ2

3 ,∆3
ρ2

Γ
ρ1
2 ,Γ

ρ2 ,Γ2,Γ3 ⊢ ∆ρ1
2 ,∆

ρ2 ,∆2,∆3
ρ1

Γρ1 ,Γρ2 ,Γ1,Γ2,Γ3 ⊢ ∆ρ1 ,∆ρ2 ,∆1,∆2,∆3

φ3

Γ
ρ2
3 ,Γ3 ⊢ ∆ρ2

3 ,∆3

φ1

Γ
ρ1
1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1

1 ,∆
ρ2
1 ,∆1

φ2

Γ
ρ1
2 ,Γ2 ⊢ ∆ρ1

2 ,∆2
ρ1

Γρ1 ,Γ
ρ2
1 ,Γ1,Γ2 ⊢ ∆ρ1 ,∆

ρ2
1 ,∆1,∆2

ρ2
Γρ1 ,Γρ2 ,Γ1,Γ2,Γ3 ⊢ ∆ρ1 ,∆ρ2 ,∆1,∆2,∆3

⇓

φ3

Γ
ρ2
3 ,Γ3 ⊢ ∆ρ2

3 ,∆3

φ1

Γ
ρ1
1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1

1 ,∆
ρ2
1 ,∆1

ρ2
Γ
ρ1
1 ,Γ

ρ2 ,Γ1,Γ3 ⊢ ∆ρ1
1 ,∆

ρ2 ,∆1,∆3

φ2

Γ
ρ1
2 ,Γ2 ⊢ ∆ρ1

2 ,∆2
ρ1

Γρ1 ,Γρ2 ,Γ1,Γ2,Γ3 ⊢ ∆ρ1 ,∆ρ2 ,∆1,∆2,∆3
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φ3

Γ
ρ2
3 ,Γ3 ⊢ ∆ρ2

3 ,∆3

φ1

Γ
ρ1
1 ,Γ1 ⊢ ∆ρ1

1 ,∆1

φ2

Γ
ρ1
2 ,Γ

ρ2
2 ,Γ2 ⊢ ∆ρ1

2 ,∆
ρ2
2 ,∆2

ρ1
Γρ1 ,Γ

ρ2
2 ,Γ1,Γ2 ⊢ ∆ρ1 ,∆

ρ2
2 ,∆1,∆2

ρ2
Γρ1 ,Γρ2 ,Γ1,Γ2,Γ3 ⊢ ∆ρ1 ,∆ρ2 ,∆1,∆2,∆3

⇓

φ1

Γ
ρ1
1 ,Γ1 ⊢ ∆ρ1

1 ,∆1

φ3

Γ
ρ2
3 ,Γ3 ⊢ ∆ρ2

3 ,∆3

φ2

Γ
ρ1
2 ,Γ

ρ2
2 ,Γ2 ⊢ ∆ρ1

2 ,∆
ρ2
2 ,∆2

ρ2
Γ
ρ1
2 ,Γ

ρ2 ,Γ2,Γ3 ⊢ ∆ρ1
2 ,∆

ρ2 ,∆2,∆3
ρ1

Γρ1 ,Γρ2 ,Γ1,Γ2,Γ3 ⊢ ∆ρ1 ,∆ρ2 ,∆1,∆2,∆3

Definition 4.14 (≫ID). Distributional Swapping of Indirectly Dependent Inferences:

φ1

Γ
ρ1
1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1

1 ,∆
ρ2
1 ,∆1

φ2

Γ
ρ1
2 ,Γ

ρ2
2 ,Γ2 ⊢ ∆ρ1

2 ,∆
ρ2
2 ,∆2

ρ1
Γρ1 ,Γ

ρ2
1 ,Γ

ρ2
2 ,Γ1,Γ2 ⊢ ∆ρ1 ,∆

ρ2
1 ,Γ

ρ2
2 ,∆1,∆2

ρ2
Γρ1 ,Γρ2 ,Γ1,Γ2 ⊢ ∆ρ1 ,∆ρ2 ,∆1,∆2

⇓
φ1

Γ
ρ1
1 ,Γ

ρ2
1 ,Γ1 ⊢ ∆ρ1

1 ,∆
ρ2
1 ,∆1

w∗
Γ
ρ1
1 ,Γ

ρ2
1 ,Γ

ρ2
2 ,Γ1 ⊢ ∆ρ1

1 ,∆
ρ2
1 ,∆

ρ2
2 ∆1

ρ2
Γ
ρ1
1 ,Γ

ρ2 ,Γ1 ⊢ ∆ρ1
1 ,∆

ρ2 ,∆1

φ2

Γ
ρ1
2 ,Γ

ρ2
2 ,Γ2 ⊢ ∆ρ1

2 ,∆
ρ2
2 ,∆2

w∗
Γ
ρ1
2 ,Γ

ρ2
1 ,Γ

ρ2
2 ,Γ2 ⊢ ∆ρ1

2 ,∆
ρ2
1 ,∆

ρ2
2 ,∆2

ρ2
Γ
ρ1
2 ,Γ

ρ2 ,Γ2 ⊢ ∆ρ1
2 ,∆

ρ2 ,∆2
ρ1

Γρ1 ,Γρ2 ,Γρ2 ,Γ1,Γ2 ⊢ ∆ρ1 ,∆ρ2 ,∆ρ2 ,∆1,∆2
c∗

Γρ1 ,Γρ2 ,Γ1,Γ2 ⊢ ∆ρ1 ,∆ρ2 ,∆1,∆2

Definition 4.15 (≫IDC). Swapping of indirectly dependent contractions:

φ1

Γ1,Γρ,Γρ ⊢ ∆1,∆ρ,∆ρ
ρ

Γ1,Γρ,Πρ ⊢ ∆1,∆ρ,Λρ
ρ

Γ1,Πρ,Πρ ⊢ ∆1,Λρ,Λρ
c∗

Γ1,Πρ ⊢ ∆1,Λρ

⇓
φ1

Γ1,Γρ,Γρ ⊢ ∆1,∆ρ,∆ρ
c∗

Γ1,Γρ ⊢ ∆1,∆ρ
ρ

Γ1,Πρ ⊢ ∆1,Λρ

φ1

Γ1,Γ
ρ

1 ,Γ
ρ

1 ⊢ ∆1,∆ρ,∆ρ

φ2

Γ2,Γ
ρ

2 ⊢ ∆2,∆
ρ

2 ρ
Γ1,Γρ,Πρ ⊢ ∆1,∆ρ,Λρ

φ2

Γ2,Γ
ρ

2 ⊢ ∆2,∆
ρ

2 ρ
Γ1,Πρ,Πρ ⊢ ∆1,Λρ,Λρ

c∗
Γ1,Πρ ⊢ ∆1,Λρ
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⇓

φ1

Γ1,Γ
ρ

1 ,Γ
ρ

1 ⊢ ∆1,∆
ρ

1 ,∆
ρ

1
c∗

Γ1,Γρ ⊢ ∆1,∆ρ

φ2

Γ2,Γ
ρ

2 ⊢ ∆2,∆
ρ

2 ρ
Γ1,Πρ ⊢ ∆1,Λρ

φ2

Γ2,Γ
ρ

2 ⊢ ∆2,∆
ρ

2

φ2

Γ2,Γ
ρ

2 ⊢ ∆2,∆
ρ

2

φ1

Γ1,Γ
ρ

1 ,Γ
ρ

1 ⊢ ∆1,∆ρ,∆ρ
ρ

Γ1,Γρ,Πρ ⊢ ∆1,∆ρ,Λρ
ρ

Γ1,Πρ,Πρ ⊢ ∆1,Λρ,Λρ
c∗

Γ1,Πρ ⊢ ∆1,Λρ

⇓

φ2

Γ2,Γ
ρ

2 ⊢ ∆2,∆
ρ

2

φ1

Γ1,Γ
ρ

1 ,Γ
ρ

1 ⊢ ∆1,∆
ρ

1 ,∆
ρ

1
c∗

Γ1,Γρ ⊢ ∆1,∆ρ
ρ

Γ1,Πρ ⊢ ∆1,Λρ

Definition 4.16 (≫C). Distributional Swapping over contractions:

φ1

Γ1,Γρ,Γ′ρ ⊢ ∆1,∆ρ,∆′ρ
c∗

Γ1,Γρ ⊢ ∆1,∆ρ
ρ

Γ1,Πρ ⊢ ∆1,Λρ

⇓

φ1

Γ1,Γρ,Γ′ρ ⊢ ∆1,∆ρ,∆′ρ
w∗

Γ1,Γρ,Γρ ⊢ ∆1,∆ρ,∆ρ
ρ

Γ1,Γρ,Πρ ⊢ ∆1,∆ρ,Λρ
ρ

Γ1,Πρ,Πρ ⊢ ∆1,Λρ,Λρ
c∗

Γ1,Πρ ⊢ ∆1,Λρ

φ1

Γ1,Γ
ρ

1 ,Γ1ρ
′ ⊢ ∆1,∆

ρ

1 ,∆
ρ′

1
c∗

Γ1,Γρ ⊢ ∆1,∆ρ

φ2

Γ2,Γ
ρ

2 ⊢ ∆2,∆
ρ

2 ρ
Γ1,Πρ ⊢ ∆1,Λρ

⇓
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φ1

Γ1,Γ
ρ

1 ,Γ
ρ′

1 ⊢ ∆1,∆
ρ

1 ,∆
ρ′

1
w∗

Γ1,Γ
ρ

1 ,Γ
ρ

1 ⊢ ∆1,∆ρ,∆ρ

φ2

Γ2,Γ
ρ

2 ⊢ ∆2,∆
ρ

2 ρ
Γ1,Γρ,Πρ ⊢ ∆1,∆ρ,Λρ

φ2

Γ2,Γ
ρ

2 ⊢ ∆2,∆
ρ

2 ρ
Γ1,Πρ,Πρ ⊢ ∆1,Λρ,Λρ

c∗
Γ1,Πρ ⊢ ∆1,Λρ

φ2

Γ2,Γ
ρ

2 ⊢ ∆2,∆
ρ

2

φ1

Γ1,Γ
ρ

1 ,Γ
ρ′

1 ⊢ ∆1,∆
ρ

1 ,∆
ρ′

1
c∗

Γ1,Γρ ⊢ ∆1,∆ρ
ρ

Γ1,Πρ ⊢ ∆1,Λρ

⇓

φ2

Γ2,Γ
ρ

2 ⊢ ∆2,∆
ρ

2

φ2

Γ2,Γ
ρ

2 ⊢ ∆2,∆
ρ

2

φ1

Γ1,Γ
ρ

1 ,Γ
ρ′

1 ⊢ ∆1,∆
ρ

1 ,∆
ρ′

1
w∗

Γ1,Γ
ρ

1 ,Γ
ρ

1 ⊢ ∆1,∆ρ,∆ρ
ρ

Γ1,Γρ,Πρ ⊢ ∆1,∆ρ,Λρ
ρ

Γ1,Πρ,Πρ ⊢ ∆1,Λρ,Λρ
c∗

Γ1,Πρ ⊢ ∆1,Λρ

Definition 4.17 (≫WI). Downward swapping of weakening inferences over independent infer-
ences.

φ1

Γ
ρ

1 ,Γ ⊢ ∆
ρ

1 ,∆ wl
F,Γρ1 ,Γ ⊢ ∆

ρ

1 ,∆ ρ
F,Γρ,Γ ⊢ ∆ρ,∆

⇓

φ1

Γ
ρ

1 ,Γ ⊢ ∆
ρ

1 ,∆ ρ
Γρ,Γ ⊢ ∆ρ,∆ wlF,Γρ,Γ ⊢ ∆ρ,∆

φ1

Γ
ρ

1 ,Γ ⊢ ∆
ρ

1 ,∆ wr
Γ
ρ

1 ,Γ ⊢ ∆
ρ

1 ,∆,F ρ
F,Γρ,Γ ⊢ ∆ρ,∆,F

⇓

φ1

Γ
ρ

1 ,Γ ⊢ ∆
ρ

1 ,∆ ρ
Γρ,Γ ⊢ ∆ρ,∆ wl
Γρ,Γ ⊢ ∆ρ,∆,F

φ1

Γ
ρ

1 ,Γ1 ⊢ ∆ρ1 ,∆1 wl
F,Γρ1 ,Γ1 ⊢ ∆ρ1 ,∆1

φ2

Γ
ρ

2 ,Γ2 ⊢ ∆ρ2 ,∆2
ρ

F,Γρ,Γ1,Γ2 ⊢ ∆ρ,∆1,∆2

⇓

φ1

Γ
ρ

1 ,Γ1 ⊢ ∆ρ1 ,∆1

φ2

Γ
ρ

2 ,Γ2 ⊢ ∆ρ2 ,∆2
ρ

Γρ,Γ1,Γ2 ⊢ ∆ρ,∆1,∆2 wlF,Γρ,Γ1,Γ2 ⊢ ∆ρ,∆1,∆2

φ1

Γ
ρ

1 ,Γ1 ⊢ ∆ρ1 ,∆1
wr

Γ
ρ

1 ,Γ1 ⊢ ∆ρ1 ,∆1,F

φ2

Γ
ρ

2 ,Γ2 ⊢ ∆ρ2 ,∆2
ρ

Γρ,Γ1,Γ2 ⊢ ∆ρ,∆1,F,∆2
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⇓ φ1

Γ
ρ

1 ,Γ1 ⊢ ∆ρ1 ,∆1

φ2

Γ
ρ

2 ,Γ2 ⊢ ∆ρ2 ,∆2
ρ

Γρ,Γ1,Γ2 ⊢ ∆ρ,∆1,∆2 wr
Γρ,Γ1,Γ2 ⊢ ∆ρ,∆1,F,∆2

φ1

Γ
ρ

1 ,Γ1 ⊢ ∆ρ1 ,∆1

φ2

Γ
ρ

2 ,Γ2 ⊢ ∆ρ2 ,∆2 wl
F,Γρ2 ,Γ2 ⊢ ∆ρ2 ,∆2

ρ
F,Γρ,Γ1,Γ2 ⊢ ∆ρ,∆1,∆2

⇓

φ1

Γ
ρ

1 ,Γ1 ⊢ ∆ρ1 ,∆1

φ2

Γ
ρ

2 ,Γ2 ⊢ ∆ρ2 ,∆2
ρ

Γρ,Γ1,Γ2 ⊢ ∆ρ,∆1,∆2 wlF,Γρ,Γ1,Γ2 ⊢ ∆ρ,∆1,∆2

φ1

Γ
ρ

1 ,Γ1 ⊢ ∆ρ1 ,∆1

φ2

Γ
ρ

2 ,Γ2 ⊢ ∆ρ2 ,∆2
wr

Γ
ρ

2 ,Γ2 ⊢ ∆ρ2 ,∆2,F
ρ

Γρ,Γ1,Γ2 ⊢ ∆ρ,∆1,F,∆2

⇓

φ1

Γ
ρ

1 ,Γ1 ⊢ ∆ρ1 ,∆1

φ2

Γ
ρ

2 ,Γ2 ⊢ ∆ρ2 ,∆2
ρ

Γρ,Γ1,Γ2 ⊢ ∆ρ,∆1,∆2 wr
Γρ,Γ1,Γ2 ⊢ ∆ρ,∆1,F,∆2

Definition 4.18 (≫WD). Downward swapping of weakening inferences over directly dependent
inferences.

φ1

Γ ⊢ ∆
w∗

Γ
ρ

1 ,Γ ⊢ ∆
ρ

1 ,∆ ρ
Γρ,Γ ⊢ ∆ρ,∆

⇓

φ1

Γ ⊢ ∆
w∗

Γρ,Γ ⊢ ∆ρ,∆
φ1

Γ1 ⊢ ∆1
w∗

Γ
ρ

1 ,Γ1 ⊢ ∆ρ1 ,∆1

φ2

Γ
ρ

2 ,Γ2 ⊢ ∆ρ2 ,∆2
ρ

Γρ,Γ1,Γ2 ⊢ ∆ρ,∆1,∆2

⇓

φ1

Γ1 ⊢ ∆1
w∗

Γρ,Γ1,Γ2 ⊢ ∆ρ,∆1,∆2

φ2

Γ
ρ

2 ,Γ2 ⊢ ∆ρ2 ,∆2

φ1

Γ1 ⊢ ∆1
w∗

Γ
ρ

1 ,Γ1 ⊢ ∆ρ1 ,∆1
ρ

Γρ,Γ2,Γ1 ⊢ ∆ρ,∆2,∆1

⇓

φ1

Γ1 ⊢ ∆1
w∗

Γρ,Γ2,Γ1 ⊢ ∆ρ,∆2,∆1

Definition 4.19 (≫W). The proof rewriting relation for downward swapping of weakening is:

≫W � (≫WI ∪≫WD)

Definition 4.20 (≫). The proof rewriting relation for inference swapping is:

≫ � (≫I ∪≫ID ∪≫IDC ∪≫C ∪≫W)
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