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ABSTRACT

This paper dealswith the comparison of planar parallel ma-
nipulator architectures based on a multi-objective design opti-
mization approach. The manipulator architectures are compared
with regard to their massin motion and their regular workspace
size, i.e, the objective functions. The optimization problem is
subject to constraints on the manipulator dexterity and stiffness.
For a given external wrench, the displacements of the moving
platform have to be smaller than given values throughout the
obtained maximum regular dexterous workspace. The contri-
butions of the paper are highlighted with the study of 3-PRR,
3-RPR and 3-RRR planar parallel manipulator architectures,
which are compared by means of their Pareto frontiers obtained
with a genetic algorithm.

INTRODUCTION

an iterative process and an efficient design requires a lob ok
putational efforts and capabilities for mapping designapae-
ters into design criteria, and hence turning out with a robjgc-
tive design optimization problem. Indeed, the optimal getm
ric parameters of a PKM can be determined by means of a th
resolution of a multiobjective optimization problem. Thaws
tions of such a problem are non-dominated solutions, alkedca
Pareto-optimal solutions. Therefore, design optimizatibpar-
allel mechanisms is a key issue for their development.

Several researchers have focused on the optimization prol
lem of parallel mechanisms the last few years. They have com
up either with mono- or multi-objective design optimizatio
problems. For instance, Lou et 6ﬂ| [B 4] presented a geagral
proach for the optimal design of parallel manipulators toxima
mize the volume of an effective regular-shaped workspadkewh
subject to constraints on their dexterity. Hay and Snynfiin [1
considered the optimal design of parallel manipulatorshiaio

The design of parallel kinematics machines is a complex a prescribed workspace, whereas Ottaviano and Ceccﬂ,@]i[

subject.

The fundamental problem is that their performance proposed a formulation for the optimum design of 3-Degree:
heavily depends on their geometrﬂ [1] and the mutual depen-

Of-Freedom (DOF) spatial parallel manipulators for given p

dency of almost all the performance measures. This makes thesition and orientation workspaces. They based their stadhe

problem computationally complex and yields the traditism
lution approaches inefficient. As reported[h [2], sincepbéfor-
mance of a parallel manipulator depends on its dimensibes, t
latter depend on the manipulator application(s). Furtloeem
numerous design aspects contribute to the Parallel Kiresnat
Machine (PKM) performance and an efficient design will be one
that takes into account all or most of these design aspekbisisT

static analysis and the singularity loci of a manipulatooider
to optimize the geometric design of the Tsai manipulatorafor
given free-singularity workspace. Hao and Mer@et [7] dissed

a multi-criterion optimal design methodology based onrivae
analysis to determine the possible geometric parametesfysa
ing two compulsory requirements of the workspace and acgura
Similarly, Ceccarelli et al.[}8] dealt with the multi-criien op-

Copyright © 2010 by ASME



timum design of both parallel and serial manipulators wité t
focus on the workspace aspects, singularity and stiffnegs-p

are described in[[2]. Here and throughout this pagerP, R
andP denote revolute, prismatic, actuated revolute and aduate

erties. Gosselin and Angeleﬂ @ 10] analyzed the design of a prismatic joints, respectively. The manipulators undedgtare

3-DOF planar and a 3-DOF spherical parallel manipulators by
maximizing their workspace volume while paying attention t
their dexterity. Pham and CheE[ll] suggested maximizieg th
workspace of a parallel flexible mechanism with the constsai
on a global and uniformity measure of manipulability. Stamegxt

al. [13] used the global conditioning index based on thegirate

of the inverse condition number of the kinematic Jacobiatrisna
over the workspace in order to optimize a spatial 3-DOF trans
lational parallel manipulator. Stock and MiII13] fortated

a weighted sum multi-criterion optimization problem witham
nipulability and workspace as two objective functions. Men
et al. [14] used the maximization of the first natural frequen
as an objective function for the geometrical optimizatidnhe
parallel mechanisms. Similarly, Li et a|:|15] proposed dym

ics and elastodynamics optimization of a 2-DOF planar pelral

composed of a base and a moving platform (MP) connected b
means of three legs. Poirg, A, andAg, (C1, C, andCs, respec-
tively) lie at the corners of a triangle, of which poi@dt(point P,
resp.) is the circumcenter. Each leg of th®@RR PPM is com-
posed of aP, aR and aR joint in sequence. Each leg of the
3-RPR PPM is composed of R, aP and aR joint in sequence.
Likewise, each leg of the BRR PPM is composed of three
joints in sequence. The thré&ejoints of the 3PRR and the 3-
RPR PPMs are actuated while the fiRRtjoint of each leg of the
3-RRR PPM is actuated.

Fp and #, are the base and the moving platform frames
of the manipulator. In the scope of this pap&t, and.%, are
supposed to be orthogonal#, is defined with the orthogonal
dihedron(Ox, Oy), point O being its center an®x parallel to
segmeniAy. Likewise,.# is defined with the orthogonal di-

robot to improve the dynamic accuracy of the mechanism. They hedron(P_X, §Y>’ pomtc being its center ana_x para||e| to seg-

proposed a dynamic index to identify the range of natural fre
quency with different configurations. KrefﬂlG] also foutated

a multi-criterion elastodynamic optimization problem fuaral-

lel mechanisms while considering workspace, velocitydrais-
sion, inertia, stiffness and the first natural frequencypsaza-
tion objectives. Chablat and Weng[l?] proposed an asalyt
approach for the architectural optimization of a 3-DOF s$tan
tional parallel mechanism, named Orthoglide 3-axis, based
prescribed kinetostatic performance to be satisfied in arngiv
Cartesian workspace.

Most of the foregoing research works aimed to improve the
performance of a given manipulator and the comparison &f var
ous architectures for a given application or performancertd
been considered. In this paper, the mechanisms perfornaaace
improved over a regular shaped workspace for given specifica
tions. As a result, we propose a methodology to deal with the
multiobjective design optimization of PKMs. The size of the

mentC;C,. The manipulator MP pose, i.e., its position and its
orientation, is determined by means of the Cartesian coatels
vectorp = [px, py]T of operation poinP expressed in framg/,
and anglep, namely, the angle between framg&g and.# .

The geometric parameters of the manipulators are define
as follows: (i)Ris the circumradius of triangl&; AAz of cir-
cumcentel, i.e.,R= OA;; (ii) r is the circumradius of triangle
C1CoC3 of circumcentelP, i.e.,r = PG, i =1,...,3; (iii) Ly is
the length of the intermediate links, i.d, = B;C; for the 3-
PRR PPM. Ly, is also the maximum displacement of the pris-
matic joints of the 3RPR PPM. Similarly,Ly, is the length of the
two intermediate links of the 8RR PPM, i.e.L, = AB; = B,C;;

(iv) rj is the cross-section radius of the intermediate linksy gv)
the cross-section radius of links of the moving platforne, ldtter
being composed of three links.

regular shaped workspace and the mass in motion of the mech-Stiffness Modeling

anism are the objective functions of the optimization peofol
Its constraints are determined based on the mechanismeagcur
assembly and the conditioning number of its kinematic Jarob
matrix. The proposed approach is applied to the optimalesi
of Planar Parallel Manipulators (PPMs) with the same mbybili
and set of design parameters. The non-dominated solutitsts,
called Pareto-optimal solutions, are obtained by meansge-a
netic algorithm for the three architectures and finally a pariz
son is made between them.

MANIPULATORS UNDER STUDY

Figure[1(d)—(c) illustrate the architectures of the plavear
allel manipulators (PPMs) under study, which are nameR®,
3-RPR and 3RRR PPMs, respectively. Other families of PPMs

2

The stiffness models of the three manipulators under stud
are obtained by means of the refined lumped mass modeling d
scribed in [1B]. Figure§|2 tg 4 illustrate the flexible modets
the legs of the ¥RR, 3-RPR and 3RRR PPMs, respectively.
The actuator control loop compliance is described with afL-d
virtual spring and the mechanical compliance of each linthwi
a 6-dof virtual spring in each flexible model denot@d Be-
sides, the moving platform of the manipulators is supposdxet
composed of three links of lengthconnected to its geometric
centerP.

From Fig. [12 the flexible model of the legs of the 3-
PRR PPM contains sequentially: (i) a rigid link between the
manipulator base and tfi8 actuated joint (part of the base plat-
form) described by the constant homogeneous transformatic
matrix Th,e: (ii) @ 1-dof actuated joint, defined by the homo-
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(@) 3PRR PPM (b) 3-RPR PPM

(c) 3-RRR PPM

FIGURE 1. THE THREE PLANAR PARALLEL MANIPULATORS UNDER STUDY

L r
Rigid body Rigid bod)@

AN
AR

y 6-dof 6-dof 6-dof 1-dof 6-dof
spring Spring spring spring spring spring
FIGURE 2. FLEXIBLE MODEL OF THE 3PRR PPM'S KINE- FIGURE 3. FLEXIBLE MODEL OF THE 3-RPR PPM'S KINE-
MATIC CHAINS MATIC CHAINS

geneous matrix functioa(q) wheredy, is the actuated coor-  trix function Vg (96) where ) is the virtual spring coordinate
dinate; (iii) a 1-dof virtual spring describing the actuatne- corresponding to the translational spring; (iv) a 1-dofspasR-
chanical stiffness, which is defined by the homogeneous ma- joint at the beginning of the leg allowing one rotation angje
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moving platform motions.Jie is the Jacobian matrix related to

Y
7
7 .
f L A L r the virtual springs andj, is the one related to the passive joints.
2 Rigid body Rigid body eG% K‘Q‘X’l describes the compliance of the virtual springs.
7
2 1-dof 6-dof 6-dof 6-dof
Z spring spring spring spring — _
Z. _ 1 Kga leel O1x6
FIGURE 4. FLEXIBLE MODEL OF THE 3RRR PPM'S KINE- Kosprr ~ = | Osx1 Kjik 0_6><6l (3a)
MATIC CHAINS | Osx1 Osxe Kb |
S .

hich is described by the h trix funcHierid)); | M O O
which is described by the homogeneous matrix funcvleriay); Kbarer = | O1cs Kl * Oree (3b)
(v) arigid leg of lengthL linking the foot and the movable plat- = 0 0 Ki L
form, which is described by the constant homogeneous wansf L Y6x6  MEx1 T pf

mation matrixTiL; (vi) a 6-dof virtual spring describing the leg Kgofl O1x6 Oixe Oixe

stiffness, which is defined by the homogeneous matrix foncti i -1

i i . i i i i i i . . i -1 06><1 K|inkl 06><6 06><6
Ve (6)---65), with 6], 65, 6 and 8, 6L, 6} being the virtual Koarrr = 0 0 ki 1o (3¢)
spring coordinates corresponding to the spring translatiand 6x1 6x6  Mlink; .fol
rotational deflections; (vii) a 1-dof passi®ejoint between the | Osx1 Osxe  Osxe Ky

leg and the platform, allowing one rotation ang{@_ which is

d_e_scr_lbed by the homogeneous matrix functip(ds); (vii) a _ whereKl isthe 1x 1 stiffness matrix of theth actuatorK|, . is

rigid link of lengthr from the manipulator leg to the geometric ¢ g 6 stiffness matrix of the intermediate link for thePRR

center of the mobile platform, which is described by the con- .4 3RPR PPMs whileK|, . andKl  are the 6<6 stiffness
— INKq INKy

stant homogeneous transformation maffx (ix) a 6-dof vir- matrices of the first and second intermediate links of théeig
tual spring describing the stiffness of the moving platfowhich of 3-RRR PPM.K| . is the 6x 6 stiffness matrix of theth link

is defined by the homogeneous matrix functiég (6;---6,), of the moving platform. The compliance matrix of each link is

67, 65, 65 and6i, 61y, 61, being the virtual spring coordinates gy yressed by means of the stiffness model of a cantilevenpea
corresponding to translational and rotational deflectioinlink

. , namely,

GiP; (x) a homogeneous transformation matffig, 4 that char-
acterizes the rotation from the 6-dof spring associatel ik ‘Lo 0 0 0 0
CiP and the manipulator base frame. EA 3 2

As a result, the mathematical expression defining the end- Oz O 0 0 o
effector location subject to variations in all above deficedr- Y 0 O % 0 _% 0
dinates of a single kinematic chdinf the 3PRR PPM takes the Ki"'=10o 0o o &0 "o (4)
form: 2 X

0 2 —%,y 0 ELIY 0
T' = ThaseVa (do) Vst (66) Vra (d) TLVe2 (67 -+ 65) | O, O 0 0 g

Vi2(th)TiVes (67~ 612) Ti 1)
R ( ! 12) End L being the length of the corresponding lirk s its the cross-

. . _ 2 . -
Similarly, the mathematical expressions associated \with t sectional area, i.eA = 7y for the links of the manipulators legs

kinematic chains of the ®PR and 3RRR PPMs are obtained. ~ andA= 73 for the links of the moving platformy andl, are the
From [18], the kinetostatic model of thenileg of the X- polar moments of inertia aboyandzaxes, resply =1, = rrrf'/4
PPMs can be reduced to a system of two matrix equations, for the links of the manipulators legs al= 1, = rr /4 for the
namely, links of the moving platformly=1,+ Iy is the polar moment of
inertia about the longitudinal axis of the linkE andG are the
Spx I fi 1 [t 5 Young and shear moduli of the material.
[ J; Ozxz} [5qi} - [oz} (2) Accordingly, the Cartesian stiffness matKx of the ih leg

defining the motion-to-force mapping is obtained from EEh (2

whereX stands for 3PRR, 3-RPR or 3-RRR. The sub-matrix
Spix = Jie‘xKi(,p(l\]ie‘xT describes the spring compliance rela- fi = Kj ot; (5)
tive to the geometric center of the moving platform, and thie s

matrix Jiq takes into account the passive joint influence on the with f; being the wrench exerted on th leg of the manipulator

4 Copyright © 2010 by ASME



and at the geometric center of the moving platform widileis

the small-displacement screw of the moving-platform.
Finally, the Cartesian stiffness mattx of the manipulator

is found with a simple addition of the thrég matrices, namely,

K 3
2

MULTIOBJECTIVE OPTIMIZATION PROBLEM

A multiobjective optimization problem (MOOP) is formu-
lated in this section in order to compareP®R, 3-RPR and
3-RRR PPMs. In scope of this study, the manipulators are
compared with regard to their mass in motion and their regula
workspace size, i.e., the two objective functions of the MDO
defined below. Moreover, the MOOP is subject to constraints o
the manipulator dexterity and stiffness. It means that fgivan
external wrench, the displacements of the moving platfoasreh
to be smaller than given values throughout the obtained maxi
mum regular dexterous workspace.

(6)

Objective Functions

Mass in Motion of the Manipulators The compo-
nents in motion of the manipulators are mainly their moviteg{p
form and the links of their legs. As a consequence, the mass in
motion for the three PPMs under study is expressed as fallows

MpRrR = 3Miink + Mpt (7a)
MRpR = 3Miink + Mpf (7b)
MRRR = 6Myjnk + Mpf (7c)

miink is the mass of links of the legs and are supposed to be the

same whilemy¢ is the mass of the moving platform. The mass of
the prismatic or revolute actuators does not appear in @39— (
(c) as it is supposed to be fixed for thePRR PPM and close to
the base for the RPR PPM.

-
Mpf = TTrgrv

2
Mink = TIryLv

(8a)
(8b)

wherev is the material density.
Finally, the first objective function of the MOOP is ex-
pressed as:

f1(x) = mx — min 9)
x being the vector of design variables, i.e., the geometriama-
ters of the manipulator at hand, akdstands for 3PRR, 3-RPR
or 3RRR.

Regular workspace size  The quality of the manipula-
tor workspace is of prime importance for the design of Parall
Kinematics Machines (PKMs). It is partly characterized tsy i
size and shape. Moreover, the lower the amount of singigsrit
throughout the workspace, the better the workspace foiraont
ous trajectory planning. The workspace optimization objial
manipulators can usually be solved by means of two differen
formulations. The first formulation aims to design a mardpon
whose workspace contains a prescribed workspace and the se
ond one aims to design a manipulator, of which the workspac
is as large as possible. However, maximizing the manipulato
workspace may result in a poor design with regard to the manip
ulator dexterity and manipulabilityf [LP,]J19]. This problesan
be solved by properly defining the constraints of the optamiz
tion problem. Here, the multiobjective optimization pretv of
PPMs is based on the formulation of workspace maximization
i.e, the determination of the optimum geometric parameters
order to maximize a regular-shaped workspace.

In the scope of the paper, the regular-shaped workspace
supposed to be a cylinder of radiRg, for which at each point
a rotation rangédg =20° of the moving-platform about th&-
axis has to be reached. Figtll]e 5 illustrates such a regliéaoes!
workspace, whose., Y. andg; are its center coordinates and the
rotation angle of the moving-platform of the manipulatottie
home posture.

—

FIGURE 5. A REGULAR-SHAPED WORKSPACE

Consequently, in order to maximize the manipulator
workspace, the second objective of the optimization protdan
be written as:

f2 (X) = Ry — max (10)

Constraints of the Optimization Problem

The constraints of the optimization problem deals with the
geometric parameters, the dexterity and the accuracy ohtie
nipulators. Moreover, the constraints have to be defineddero
to obtain a singularity-free regular-shaped workspace.
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Constraints on the Geometric Parameters For the
three PPMs under study, the kinematic constraints are bdndl
with their inverse kinematics. It means that the inverseskin
matics is solved in order for the postures of the PPM to belong
to the same working mode throughout the manipulator regular
shaped workspace. Besides, for thERBR PPM, the lower and
upper bounds of the prismatic lengtps are defined such as
0<p < v/3Rin order to avoid collisions. To obtain feasible dis-
placements of the prismatic joints, the range of tHRFEER PPM
is defined such thdt/2 < p; < L.

Constraint on the Manipulator Dexterity The ma-
nipulator dexterity is defined by the condition number okitse-
matic Jacobian matrix. Theondition number kg (M) of amx n
matrix M, with m < n, based on the Frobenius norm is defined
as follows

Ke (M) = %\/tr(MTM)tr[(MTM)*l] (11)

Here, the condition number is computed based on the Frobeniu
norm as the latter produces a condition number that is doalyt
in terms of the posture parameters whereas the 2-norm does no
Besides, it is much costlier to compute singular values tioan
compute matrix inverses.

The terms of the direct Jacobian matrix of the three PPMs

under study are not homogeneous as they do not have same units

Accordingly, its condition number is meaningless. Indeiesd,
singular values cannot be arranged in order as they are -of dif
ferent nature. However, fromi [20] anf ]21], the Jacobiankman
normalized by means ofr@rmalizing length. Later on, the con-
cept ofcharacteristic length was introduced in|E2] in order to
avoid the random choice of the normalizing length. For insta
the previous concept was used[23] to analyze the kirgtiost
performance of manipulators with multiple inverse kineimao-
lutions, and therefore to select their besiking mode.

Accordingly, for the design optimization of the three PPMs,
the minimum of the inverse condition number!(J) of the
kinematic Jacobian matrikis supposed to be higher than a pre-
scribed value, say 0.1, throughout the regular-shapedspade,
for any rotation of its moving-platform, i.e.,

min(k*(J)) > 0.1 (12)

Constraints on the moving-platform pose errors
The position and orientation errors on the moving-platf@ana
evaluated by means of the stiffness models of the manipglato
Let (0x, oy, 6z) and(d¢, 0@, d¢) be the position and orien-
tation errors of the moving-platform subject to externakcts
(Fx, Fy, ;) and torquesgt,, Ty, T;). The constraints on the pose

6

errors on the moving-platform are defined as follows:

OX < XX Jy < QY™ Jz < 7™
(13)
O < O™ O < S 5o, < @™

(OxMax Jym - 57™) peing the maximum allowable position
errors and @™, 3@, d¢@™) the maximum allowable ori-
entation errors of the moving-platform. These accuracy- con
straints can be expressed in terms of the components of thie-me
anism stiffness matrix and the wrench applied to the moving
platform. Let us assume that the accuracy requirements are:

vV O0x2+dy? < 0.0001m (14a)
5z < 0.001m (14b)
0@, < 1deg (14c)

If the moving-platform is subject to a wrench whose compdsien
are |Fxy|| =F,=100N andr,= 100 Nm, then the accuracy con-
straints can be expressed as:

Ko™ > ||Fey||/v/8x2+ 8y2 = 10° N.m™? (15a)
KN > F,/5z=10° N.m* (15b)
ko > 1,/8¢, = N.m.rad*! (15c)

/180

Design Variables of the Optimization Problem

Along with the above mentioned geometric parameters, (L)

of the PPMs, the radiusj of the circular-cross-section of the
intermediate bars defined and the radiysf the circular-cross-
section of the platform bars are considered as design Vesiab
also called decision variables. As a remainder, the moving
platform is supposed to composed of three circular barswjtte

r.

As there are three PPMs under study, the PPM type is ar
other design variable that has to be taken into account. Le
d denote the PPM typed = 1 stands for the 2RR PPM,;

d = 2 stands for the RPR PPM; andd = 3 stands for the 3-
RRR PPM.

As a result, the optimization problem contains one discrete
variable, i.e.d, and five continuous design variables, iR.r,
Ly, rj andrp. Hence, the design variables vecxds given by:

x=[dRr Lyrj rp}T (16)

Formulation of the Optimization Problem
The Multiobjective Design Optimization Problem of PPMs
can be stated a$:ind the optimum design variables x of PPMs

Copyright © 2010 by ASME



in order to minimize the mass of the mechanism in motion and
to maximize its regular shaped workspace subject to geometric,
kinematic and accuracy constraints.

Mathematically, the problem can be written as:

minimize f1(x) = mx a7)
maximize fy(x) =Ry
over x=[dRrLyrj rp}T

R
Lp+r> =
b+ =

:0<pi < V3R
k1J)>01

subjectto: g1

02
O3

04 :
Os:
O6:
Xip < X < Xyp

wherex, andx,y, are the lower and upper boundsxfrespec-
tively.

RESULTS AND DISCUSSIONS
The multiobjective optimization problenfi {17) is solved by
means of modeFRONTIER [P4] and by using its built-in mul-

tiobjective optimization algorithms. MATLAB code is incor 1.8
porated in order to analyze the system and to get the numer-
ical values for the objective functions and constraintg ta 1.6; g © 8§° |
analyzed in modeFRONTIER for their optimality and feasibil — 1.4} (p,@@ﬂfm@ . . )
ity. The lower and upper bounds of the design variables are & @&@
given in Tab.[ll. The components of the PPMs are supposedf 1.2t 8 D1
to be made up of steel, of material density= 7850 kg/n¥ % o ,\
and Young modulug — 210x 10°N/m2.  For each iteration, & 1 é@g ID-1I ]
8 0.8 1
S
TABLE 1. LOWER AND UPPER BOUNDS OF THE DESIGN 2 0.6r 1
VARIABLES S
Design Variable d R[m] r[m] Lp[m] rj[m] rp[m] ; 0.4r |
IR ® Dl
Lower Bound 1 05 0.5 0.5 0 0 0.2*./ 1
Upper Bound 3 4 4 4 0.1 0.1

the regular-shaped workspace is evaluated for the comelépg

design variables and a discretization of this workspaceeis p
formed. The constraints of the optimization problem ar® als
evaluated at each grid point of the regular-shaped worlestiac
check whether they are satisfied or not. A multiobjectivesgien

TABLE 2. modeFRONTIERALGOTITHM PARAMETERS
Scheduler MOGA-II
Number of iterations 200
Directional cross-over probability R
Selection probability 5
Mutation probability 01
DNA (DeoxyriboNucleic Acid) string 0.05
mutation ratio
DOE algorithm Sobol
DOE number of designs 30
Total number of iterations 30 200= 6000

algorithm (MOGA) is used to solve MOOEl?) and to obtain the
Pareto frontier in the plane defined by the mechanism mass ar
the workspace radiusnodeFRONTIER scheduler and Design Of
Experiments (DOE) parameters are given in ‘ﬂab. 2. MATLAB is
used to evaluate each individual of the current populatimm{
erated by thenodeFRONTIER scheduler) MATLAB returns the
output variables that are analyzed tnpdeFRONTIER for the
feasible solutions according to the given constraints hatend,
the Pareto-optimal solutions are obtained from the geeéfag-
sible solutions.

00200 400 600 800 1000 1200 1400 1600
Massm [kg]

FIGURE 6. PARETO FRONTIER OF MOOH(17)
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The Pareto frontier, solution of MOOEl?), is depicted in
Fig. E whereas the design parameters and the corresponling o
jective functions for two extreme and one intermediate ®are
optimal solutions, as shown in FiJ. 6, are given in Tgb. 3. The
CAD designs illustrating the three foregoing solutions als®o
shown in Fig[B.

It appears that all Pareto-optimal solutions of MO(E a7
are 3PRR PPMs. Accordingly, Fig[]7 illustrates the Pareto
Frontiers associated with the three planar parallel maatpu
architectures. It is noteworthy that the Pareto-optimaltsans
associated with the BRR PPM architectures are better than
the Pareto-optimal solutions associated with thRER and 3-
RRR PPM architectures.

A
2.0 pt
2
s A 4
A A
Y 0'. Al
15 " s
—_— L‘
E 10 " e 3-RPR
; " i ]
2 i = 3-PRR
051 4 3RRR
0 # >
0 1000 2000 3000 4000
Mass[kg]
FIGURE 7. PARETO FRONTIERS ASSOCIATED WITH THE 3-

PRR, 3-RPR, AND 3-RRR PLANAR PARALLEL MANIPULATOR
ARCHITECTURES

Figured 9(3)—(c) and 10]a)—(c) show the evolution of the de-
sign variables as a function &, along the Pareto Frontier as-
sociated with each PPM architecture. It is noteworthy that t
higherRy, the higher the design variables. It is apparent that the
variations in variable®, r, L, andr; with respect to (w.r.t. Ry
are almost linear whereas the variations jrw.r.t. Ry is rather
quadratic. This is due to the fact that the higher the sizdef t
mechanism the higher the bending of the moving platformslink
whereas the intermediate links are mainly subjected todans
and compression.

CONCLUSIONS

In this paper, the problem of dimensional synthesis of par-
allel kinematics machines was addressed. A multiobjectare
sign optimization problem was formulated in order to defesm
optimum structural and geometric parameters of any paralle
kinematics machine. The proposed approach is similar tb tha
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used in ] but we took into account the mass and the regule
workspace instead of considering the entire volume of the ma
nipulator. The proposed approach was applied to the optimur
design of three planar parallel manipulators with the airmiio-
imize the mass in motion of the mechanism and to maximize
its regular shaped workspace. Other performance indicebea
used as constraints. However, they cannot necessarilydie us
as objective functions as the latter are usually formulasa
sum of an index over all the manipulator workspace. As anmothe
constraint, we could use the collisions between the leg®f t
manipulator.
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