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Abstract

This paper is concerned with the dynamic instability of an internally damped ro-
tating composite shaft. A homogenized finite element beam model, which takes
into account internal damping, is introduced and then used to evaluate natural
frequencies and instability thresholds. The influence of laminate parameters: stack-
ing sequences, fiber orientation, transversal shear effect on natural frequencies and
instability thresholds of the shaft are studied. The results are compared to those
obtained by using equivalent modulus beam theory (EMBT), modified EMBT and
Layerwise beam theory (LBT), which are used in the literature. This parametric
study shows that shaft instability thresholds can be very sensitive to laminate pa-
rameters.

Key words: Rotordynamics, Composite Shaft, Damping, Stability, Threshold
speed, Transversal shear, Finite element, Beam theory.

1 INTRODUCTION

Composite materials have interesting properties such as high strength to weight
ratio, compared to metals, which make them very attractive for rotating sys-
tems. Attempts are being made to replace metal shafts by composite ones
in many applications: drive shafts for helicopters, centrifugal separators, and
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 cylindrical tubes for the automotive and marine industries (Zorzi and Gior-

dano [27], Darlow [4], Gupta and Singh [12,14,15], Chatelet [2]). They also
provide designers with the possibility of obtaining predetermined behaviors,
in terms of position of critical speeds, by changing the arrangement of the dif-
ferent composite layers: orientation and number of plies (Bauchau [1], Gubran
and Gupta [19], Chatelet [2] and Pereira [6]). On the other hand, these ma-
terials have relatively high-damping characteristics. For a rotor made with
composite materials, internal damping is much more significant than when
associated with a metal rotor. Unfortunately, such damping may cause insta-
bility as shown by Wettergren [24].

Accurate prediction of damping characteristics of rotor systems is therefore
fundamental in the design of rotating machines as it provides estimations on
safe-ranges of speeds of rotation. Over the last few years, many studies have
focused on predicting critical speeds, natural frequencies, unbalance responses
and, in particular, instability thresholds. Newkirk [10] observed that rotor-disk
systems would undergo violent whirling at the first natural frequency at speeds
above the first critical speed. Kimball [7] showed that internal damping desta-
bilizes the whirling motion if the rotation speed of the rotor exceeds the first
critical speed. In addition, Bucciarelli [9] showed that the instability criterion
based on the ratio of energy dissipated between internal and external damp-
ing is inaccurate and that internal forces can produce instability by coupling
spin and whirl motions. Classical results have been obtained and showed that
rotor stability is improved by increasing external damping, whereas increasing
internal damping may reduce the instability threshold. However, most of the
published studies deal with metal rotating structures and remain exclusively
numerical without precise estimations of internal damping.

Several finite element formulations have been performed for the analysis of
composite shafts. These formulations are based on homogenized beam and
shell theories. The equivalent modulus beam theory (EMBT), which is widely
used for the dynamic analysis of composite shafts, was firstly introduced by
Tsai [23]. With this approach, equivalent longitudinal Young and in-plane
shear moduli are identified by using laminate theory for symmetrical stack-
ing. Then, classical beam theory can be used to model the shaft, see Pereira
[6] and Singh and Gupta [14]. This approach has many limitations which are
summarized by Singh and Gupta in [12]. They studied the natural frequencies
and damping ratios in flexural modes of cylindrical laminate tubes and com-
pared shell and EMBT models for symmetric laminate stacking, concluding
that in the case of the tube configurations usually used in composite shaft
applications, the differences in flexural frequencies between the two models
are negligibly small. Using shell theory in [13], the same authors, showed that
the modal loss factors are more sensitive to parametric (laminate stacking, an-
gle orientations, etc.) changes than frequency values. They also presented in
[15] a comparison between EMBT theory and Layerwise Beam Theory (LBT)
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 for symmetric and asymmetric stacking. They showed that LBT is more effi-

cient that EMBT because it takes into account the effect of changed stacking,
thickness shear deformation and bending-stretching coupling. However, LBT
requires the development of a complex beam element with a high number of
degrees of freedom dependent on the number of layers, making the method too
expensive. Recently, Gubran and Gupta presented in [19] a modified EMBT
method which takes into account the effects of a stacking sequence and dif-
ferent coupling mechanisms. They considered a Graphite/Epoxy shaft simply
supported on rigid bearings and compared the first three frequencies with
those obtained by using the LBT method. In spite of its simplicity, the nat-
ural frequencies obtained using modified EMBT excluding different coupling
effects agree well with those obtained using LBT and those reported in the
literature. In these cited works, the internal damping, is not often taken into
account, except in [12] where viscoelastic material damping is assumed.

In this paper, a Simplified Homogenized Beam Theory (SHBT) is used to
analysis the sensitivity of the frequencies and instability thresholds regarding
shear effect, stacking order and fiber orientation. In this approach, the homog-
enized beam parameters such as flexural and shear stiffness are evaluated using
an energy formulation that simultaneously considers Young’s modulus, shear
modulus, specific damping capacity, the distance to the shaft axis orientation
and the thickness of each layer of the rotor. Flexural warping is determined by
solving a boundary value problem defined on the cross-section, as mentioned
in Nouri and Gay [11], then the shear corrector factor is evaluated. However,
the formulation is simplified by assuming that the mechanical coupling ef-
fects, induced by the nonsymmetrical stacking of layers, are negligible. This
approach is connected to that developed by Gubran and Gupta in [19] under
the same assumption.

In the following, an outline of the formulation is presented. In section 2, equa-
tions of motion of rotordynamics with and without internal damping are pre-
sented and compared. In section 3, the orthotropic properties of a layer com-
ponent of a composite shaft are presented. In section 4, a homogenized beam
theory is developed and elastic energy and dissipative virtual work are given.
Then, in section 5, the homogenized beam parameters are expressed as a func-
tion of the layer parameters. Numerical applications are presented in section
6. In the first one, frequencies are compared with those obtained by Gubran
and Gupta in [19] using the modified EMBT and LBT methods. The second
application is that presented in the work of Pereira [6]. The sensitivity of the
shaft frequencies and instability thresholds regarding stacking order and fiber
orientations are outlined. These results are also compared to those obtained
from a classical equivalent modulus beam theory.
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 2 Rotordynamics

In the fixed frame, the following equations of motion are associated with a
rotor made of an isotropic material (Lalanne [8]):

[M ]
{
d̈
}

+ [C(Ω)]
{
ḋ
}

+ [K] {d} = {F (t)} (1)

where [M ] is the symmetric mass matrix, [C(Ω)] is the global asymmetric
matrix including an antisymmetric gyroscopic matrix (function of Ω speed of
rotation) and a frequently asymmetric matrix due to the characteristics of the
bearings, [K] is the elastic stiffness matrix that is frequently asymmetric due to

the characteristics of bearings, {F (t)} is the generalized force vector and
{
d̈
}
,{

ḋ
}

and {d} are respectively nodal acceleration, velocity and displacement
vectors. Taking into account the material’s dissipative effects gives two other
matrices associated with internal damping, as shown in Sino [22]:

[M ]
{
d̈
}

+ [Ci + C(Ω)]
{
ḋ
}

+ [K + Ki(Ω)] {d} = {F (t)} (2)

where [Ci] is the internal damping matrix and [Ki(Ω)] a stiffness matrix which
depends on the internal damping and also on the rotational speed Ω. The
anisotropic properties of composite materials and their lightness can be used
to optimize composite shafts in order to improve their dynamic behavior. Com-
pared to metals, composite materials have higher damping capacities which
can induce a destabilizing effect on the rotor motion. When modeling com-
posite rotors with the equivalent modulus beam theory, equations (1) and (2)
are considered directly. However, as mentioned earlier, this approach is based
on symmetric stacking laminate theory and cannot take into account the in-
fluence of layer stacking order. In the following, a more general homogenized
beam model is proposed.

3 Composite rotor

The shaft studied can be obtained by winding several plies of embedded fibers
on a mandrel, as shown in figure 1. Each ply has an orthotropic mechanical
behavior, as shown in figure 2. The generalized Hooke’s law for an orthotropic
material is written as follows:

{σ} = [Q] {ε} or {ε} = [S] {σ} (3)

4



ACCEPTED MANUSCRIPT 
 

laminate structure

y

z

x

Fig. 1. Composite rotor
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Fig. 2. Plan of ply

where {σ} and {ε} are respectively the stress and strain fields, [Q] and [S] are
respectively the material stiffness and compliance matrices. Only the expres-
sion of the compliance matrix will be developed here. The stiffness matrix can
be obtained by considering that [Q] = [S]−1. When linked to the orthotropic
axis, Hooke’s law takes the following form:





ε1

ε2

ε3

γ23

γ13

γ12





=




1/E1 −υ21/E2 −υ31/E3 0 0 0

−υ12/E1 1/E2 −υ31/E3 0 0 0

−υ13/E1 −υ31/E2 1/E3 0 0 0

0 0 0 1/G23 0 0

0 0 0 0 1/G13 0

0 0 0 0 0 1/G12








σ1

σ2

σ3

τ23

τ13

τ12





(4)

where (1, 2, 3) are the orthotropic axes. 1 is the fiber direction, 2 is the direction
transversal to the fibers in the ply, 3 is the direction perpendicular to the ply
and φ is the ply fiber angle. Each ply can be characterized by a plane stress
state (σ33 = 0). Then, the above relation can be split into membrane and
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 transverse shear effects:





ε1

ε2

γ12





=




1/E1 −υ21/E2 0

−υ12/E1 1/E2 0

0 0 1/G12








σ1

σ2

τ12





(5)





γ23

γ13





=




1/G23 0

0 1/G13








τ23

τ13





(6)

The following parameters have to be identified for each ply: E1 and E2 Young
moduli in the orthotropic axes; G23, G13, G12, transversal shear moduli, and
ν12 and ν21 Poisson’s ratios. When considering the transversal shear effects,
it is often very difficult to obtain an estimation of shear moduli G23 and G13,
therefore it is often assumed that they have the same value as G12. The behav-
ior of a viscoelastic composite material in harmonic steady-state motion can
be described by the complex constitutive relation. Assuming cyclic loading,
the complex stress component is written as:

{σ}= ([Q] + j [Q∗]) {ε} (7)

with [Q∗] = [Q][η], [η] is the damping matrix of the ply and j is the imaginary
unit. The dissipative properties of a ply can also be expressed by using the
specific damping capacities matrix [Ψ]. Usually energy dissipation in solids is
characterized by the relative energy dissipation which is defined as the ratio
of the energy losses 4W in a unit volume of a body, to the elastic energy W
under a given stress-strain state, Zinoviev [25]:

ψ =
∆W

W
=

∫ π/2ω
0 {ε}t [S∗] {ε} dt

∫ π/2ω
0 {ε}t [S] {ε} dt

(8)

where [S∗] is the damped compliance matrix. The composite ply has three
main directions of specific damping capacity, which can be expressed by the
following matrix.

[Ψ]m =




ψ1 0 0

0 ψ2 0

0 0 ψ12




and [Ψ]s =




ψ23 0

0 ψ13


 (9)

Here ψ1, ψ2 and ψ12 are the specific damping capacities associated with the
membrane effects in the orthotropic axes, and ψ23 and ψ13 are those asso-
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 ciated with the transversal shear effect. These coefficients can be identified

experimentally. The damping matrix [η] can be linked to the specific damping
capacity as follows:

[η]m = 1
2π




ψ1 0 0

0 ψ2 0

0 0 ψ12




and [η]s = 1
2π




ψ23 0

0 ψ13


 (10)

where [η]m and [η]s are membrane and shear damping matrices respectively.
Consequently, the damped material stiffness matrix [Q∗] is expressed as a
function of the specific damping capacity as follows [Q∗] = 1

2π
[Q][ψ]. All the

above equations are written in the orthotropic axes. Each ply p is positioned
by the angle φp between the y and 1 axes (shaft and fiber axes). They are
written in the global frame (x, y, z) by using the following transformations:

{σ}1,2 = [T ] {σ}x,y , {ε}1,2 = [T ]−t { ε}x,y , [S]x,y = [T ]t [S]1,2 [T ]

[Q]x,y = [T ]−t [Q]1,2 [T ]−1 , [Q∗]x,y = [T ]−t [Q∗]1,2 [T ]−1 ,

where the transfer matrix [T ] is given by:

[ T ] =




c2 s2 −2cs

s2 c2 2cs

sc −sc (c2 − s2)




(11)

with c = cos(φp) and s = sin(φp). Then, the compliance matrix takes the
following form and coupling terms appear in the third column and line.





εx

εy

γyx





=




1/Ex −υyx/Ey ηxy/Gxy

−υxy/Ex 1/Ey µxy/Gxy

ηx/Ex µy/Ey 1/Gxy








σx

σy

τxy





(12)





γxz

γyz





=




1/Gxz 0

0 1/Gyz








τxz

τyz





(13)

Membrane strain is {ε}m = [S]m{σ}m and shear strain is {ε}s = [S]s{σ}s,
where [S]m, [S]s are membrane and shear compliance matrices, and {σ}m,
{σ}s are membrane and shear stresses respectively.

7
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 The elastic and damping properties of the orthotropic ply are now established.

The following paragraph presents the formulation used to determine the equa-
tions of motion of the composite rotor, including dissipative effects.

4 Expression of energies

Let’ s consider a multilayered composite shaft made of N orthotropic layers.
If the stacking sequence is symmetric the shaft has a typical beam behavior
and can be modeled by using classical beam theory associated the homog-
enized stiffness parameters. If the stacking sequence is nonsymmetric, me-
chanical coupling effects such as bending-stretching, twisting-stretching and
shear-stretching will be present. In this study, we assume that coupling effects
are negligible.

Let’s consider a beam theory to model the composite rotor illustrated in figure
1. Thus the shaft is modeled as a beam with a constant circular cross-section.
The finite element used has two nodes as shown in figure 3. For each node,
the element has four degrees of freedom: two displacements u and w, and two
slopes about the x and z axes denoted respectively θx and θz. In this case, the
beam axis is y. The continuous displacement field at material points along the

y

z

x u2

u1 w2

w1

θz2

θz1

θx2

θx1

L

Fig. 3. Beam finite element

rotor cross-section is described as follows:

{u(x, y, z)} =





ux (x, y, z) = u(y)

uy (x, y, z) = −zθx(y) + xθz(y)

uz (x, y, z) = w(y)

(14)

8
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 Hence, the deformation field has the following form:

{ε} =





εyy = −z ∂θx

∂y
+ x∂θz

∂y

γyz = −θx + ∂w
∂y

γyx = θz + ∂u
∂y

(15)

Beam theory assumes that σxx = σzz = σxz = 0. Consequently, for each ply p
of the rotor cross-section, the stress-strain relation is written as:

{σ}p =





σp
yy = Ep

yεyy + E∗p
y ε̇yy

τ p
yz = Gp

yzγyz + G∗p
yzγ̇yz

τ p
yx = Gp

yxγyx + E∗p
y γ̇yx

(16)

where Ep
y , Gp

yz and Gp
yx are respectively Young’s modulus and transversal

shear moduli. E∗p
y ,G∗p

yz and G∗p
yx are the associated moduli linked to damping,

according to the rotor axis y. with:

Ep
y =

1

c4

Ep
l

+ s4

Ep
t

+ c2s2

(
1

Gp
lt
− 2

υp
tl

Ep
t

) , c = cos(φp), s = sin(φp) (17)

Then the stress vector can be split into elastic stress {σ}p
e and dissipative

stress {σ∗}p
d:

{σ}p = {σ}p
e + {σ∗}p

d (18)

Using equation (16), the two parts of (18) become:

{σ}p
e =





σp
yy = Ep

y

(
−z ∂θx

∂y
+ x∂θz

∂y

)

τ p
yz = Gp

yz

(
−θx + ∂w

∂y

)

τ p
yx = Gp

yx

(
θz + ∂u

∂y

)
(19)

{σ∗}p
d =





σ∗pyy = E∗p
y

(
−z ∂θ̇x

∂y
+ x∂θ̇z

∂y

)

τ ∗pyz = G∗p
yz

(
−θ̇x + ∂ẇ

∂y

)

τ ∗pyx = G∗p
yx

(
θ̇z + ∂u̇

∂y

)
(20)

where σp
yy and σ∗pyy are the normal cross-section stresses, τ p

yz, τ ∗pyz and τ p
yx, τ ∗pyx

9
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 are the transverse shear stresses. The elastic energy of the rotor can be written

as:

U =
1

2

L∫

0

∫

S

(
σp

yyεyy + τ p
yzγyz + τ p

yxγyx

)
dSdy (21)

with S being the cross section. The virtual dissipative work has the following
expression:

δW =

L∫

0

∫

S

(
σ∗pyyδεyy + τ ∗pyz δγyz + τ ∗pyxδγyx

)
dSdy (22)

Equation (21) can be explicitly written as a function of displacement field
components (15) and (19).

U =
1

2

L∫

0

∫

S

Ep
y

(
z2(

∂θx

∂y
)2 + x2(

∂θz

∂y
)2

)
dSdy (23)

+
1

2

L∫

0

∫

S


Gp

yz

(
−θx +

∂w

∂y

)2

+ Gp
yx

(
θz +

∂u

∂y

)2

 dSdy

The virtual work can also be expressed as a function of the stress field com-
ponents by using equation (16). Thus equation (22) becomes:

δW =

L∫

0

∫

S

E∗p
y ε̇yy δεyy dSdy +

L∫

0

∫

S

(G∗p
yzγ̇yz + G∗p

yxγ̇yx) δγ dSdy (24)

By using equation (20), equation (24) is:

δW =

L∫

0

∫

S

E∗p
y

(
−z

∂θ̇x

∂y
+ x

∂θ̇z

∂y

) (
−z

∂δθx

∂y
+ x

∂δθz

∂y

)
dSdy (25)

+

L∫

0

∫

S

[
G∗p

yz

(
−θ̇x +

∂ẇ

∂y

) (
−δθx +

∂δw

∂y

)]
dSdy

+

L∫

0

∫

S

[
G∗p

yx

(
θ̇z +

∂u̇

∂y

) (
δθz +

∂δu

∂y

)]
dSdy

10
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 5 Homogenization and equation of motion

The rotor has constant geometric properties along its longitudinal y axis. The
homogenized mechanical characteristics are extracted from equations (23) and
(25) by evaluating the integrals over the cross-section. The potential energy
and virtual work can be expressed as follows:

U =
1

2

L∫

0

(
EIx(

∂θx

∂y
)2 + EIz(

∂θz

∂y
)2

)
dy (26)

+
1

2

L∫

0


GSyz

(
−θx +

∂w

∂y

)2

+ GSyx

(
θz +

∂u

∂y

)2

 dy

δW =

L∫

0

(
EI∗x

∂θ̇x

∂y

∂δθx

∂y
+ EI∗z

∂θ̇z

∂y

∂δθz

∂y

)
dy (27)

+

L∫

0

[
GS∗yz

(
−θ̇x +

∂ẇ

∂y

) (
−δθx +

∂δw

∂y

)]
dy

+

L∫

0

[
GS∗yx

(
θ̇z +

∂u̇

∂y

) (
δθz +

∂δu

∂y

)]
dy

The rotor cross-section is circular thus the homogenized flexural inertias are
EIz = EIx = EI. They are obtained from:

EI =
N∑

p=1

Ep
yI

p with Ip =
R4

p −R4
p−1

4
(28)

where Ip is the cross-section inertia and Rp, Rp−1 are the external and internal
radius of layer p. The homogenized shear rigidities are GSyx = GSyz = GS,
with:

GS = k
N∑

p=1

Gp
12S

p (29)

where k is the transverse shear correction factor and Sp is the cross-section
area of the ply p. Shear correction factor k is determined as described in Nouri
[11] by evaluating the warping shape of the rotor cross-section. The damped
homogenized mechanical characteristics, i.e. flexural inertia EI∗ = EI∗x =
EI∗z and shear stiffness GS∗, are extracted from the expression of the virtual

11
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 work. Using the relation between the effective membrane and shear loss factor

equations, (10), and the specific damping capacity, they can be expressed as:

EI∗ =
N∑

p=1

E∗p
y Ip and GS∗ = k

N∑

p=1

G∗p
12S

p (30)

Applying Lagrange’s equations to the energy expressions, leads to the equa-
tions of motion in the fixed frame as reported in equation (2). The advantage
of the proposed approach is that it can be used within a classical finite beam
element. The stiffness matrix [K] depends on the homogenized characteristics
GS and EI, and [Ki(Ω)], [Ci] on the homogenized characteristics GS∗ and
EI∗.

6 Applications

6.1 Comparison of critical speed without internal damping

In this example we consider the shaft first studied by Zinberg and Symmonds
[26] and recently by Gubran and Gupta in [19]. The fundamental natural
frequency obtained in this work is compared to the experimental value and
those obtained by using EMBT, modified EMBT and LBT methods. The
geometric and material properties of the rotor are:

• L=2.47 m, mean radius=0.0635 m, Wall thickness=1.321 ×10−3 m;
• 10 layers of equal thickness from the innermost layer [90◦, 45◦,−45◦, [0◦]6, 90◦];
• ρ = 1967s kg/m3;
• E11 = 210 GPa, E22 = 24.1 GPa, G12 = 6.9 GPa, ν12 = 0.36.

Critical speed obtained by different investigators using different methods are
presented in the table 1. They are compared to the experimental critical speed
obtained by Zinberg and Symmonds in [26]. It appears that the greatest error
is that obtained by the EMBT method. The best results are those obtained
by the present work and the modified EMBT and LBT methods presented by
Gubran and Gupta in [19].

Critical speed obtained by the SHBT method (including shear effect with cor-
rector factor obtained by evaluating cross-sectional warping as shown in Nouri
and Gay [11]) agrees with those of the literature: numerical and experimental.
In spite of its simplicity, this method can also take into account the effect of
internal material damping.

12
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Investigator Critical speed
(rev/min)

Method

Zinberg and Symmonds [26] 5500 Experimental

5780 (5.09 %) Equivalent Modulus Beam Theory

Singh and Gupta [15] 5620 (2.18 %) Layerwise Beam Theory including
shear effect

Chen and Peng [3] 5714 (3.89 %)

Gubran and Gupta [19] 5555 (1.00 %) Layerwise Beam Theory without in-
cluding Poisson effect

5552 (0.94 %) Modified Equivalent Modulus Beam
Theory without including Poisson’s
effect

Present work 5767 (4.85 %) Simplified Homogenized Beam The-
ory without including shear effect

5435 (1.18 %) Simplified Homogenized Beam The-
ory including shear effect (shear cor-
rector factor k = 0.4983)

Table 1
Comparison of critical speed obtained by different investigators using different for-
mulations with that obtained in this work. The error indicated in the table relates
to the experimental critical speed.

6.2 Comparison of natural frequency and instability thresholds including in-
ternal damping

In this section, we study the influence of internal material damping on critical
speed and instability threshold. We consider the structure, proposed by Pereira
[6] which is a composite shaft with two rigid steel disks supported by two
bearings at the ends, as shown in figure 4. This structure present the following
geometric and material properties:

• Rotor : L = 1.2m, Ro = 0.048m, e = 0.008m
• Disk : Rdinner = 0.048m, Rdouter = 0.15m, h = 0.05m
• Composite : carbon/epoxy 8 layers

The material properties of each ply (carbon/epoxy) are summarized in table
2 and the anisotropic bearing stiffness characteristics are described in table 3.
The system is considered without external damping.

In order to emphasize the influence of internal damping in rotordynamic anal-
ysis, the Campbell diagram and instability threshold are determined. We anal-
yse the sensitivity of critical speed and instability threshold with the stacking
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Fig. 4. Winding rotor shaft with two disks.

Material E1

(GPa)
E2

(GPa)
G12

(GPa)
υ21 ρ

(kg/m3)
ψ1

%
ψ2

%
ψ12%

Carbon/
epoxy

172.7 7.20 3.76 0.3 1446.2 0.45 4.22 7.05

Table 2
Shaft material data

Kxx(N/m) Kzz(N/m) Kxz(N/m) Kzx (N/m)

Anisotropic
bearings

1.107 1.108 0 0

Table 3
Bearings Stiffness data

sequences and the transversal shear effect. Then, they are compared to those
obtained by using the classical EMBT method.

6.2.1 Effects of stacking sequences on frequencies and instabilities

Table 4 gives the frequencies and corresponding system instability thresh-
olds obtained from the proposed model (SHBT) with different lamination
schemes in both symmetrical and asymmetrical configurations. By contrast to
the EBMT method used by Pereira, the SHBT method allows considering any
stacking sequence configuration. Sequences 1 and 2 have four plies at 90˚,
two plies at 45˚ and two at 0˚, while sequences 3 to 6 consist of four plies at
0˚, two plies at 45˚ and two at 90˚. Variations of 22% for the first frequency
and 48% for the associated instability threshold are obtained when comparing
sequences 1 to 6. The contribution of each layer depends on its orientation
with respect to the rotor axis and its distance from the longitudinal tube axis.
The transversal specific damping capacity reported in table 2 shows that the
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 closer the fiber is oriented to 90, the greater the internal damping and the

sooner instability may appear.

The Campbell diagrams shown in figures 5, 6 and 7, representing the evo-
lution of natural frequency with respect to the speed of rotation, illustrate
the significant influence of stacking sequences on frequencies and instability
thresholds.

In figure 5 the composite rotor is in a balanced and symmetrical configuration:
[±75˚]8S. In this case, instabilities (symbolized by a dashed line) occur just
after the second critical speed. Such results are in perfect agreement with
those obtained by Pereira [6] using the EMBT formulation. The Campbell
diagrams associated with the second and the fifth sequences (table 4) are
presented respectively in figures 6 and 7 and illustrate the advantage of using
stacking sequences as an optimization parameter for both frequencies and
instability thresholds. The differences between the two configurations is up to
21% for frequencies at rest for the first forward whirl (FW1) and about 47% for
instability thresholds (5913 and 11111 rpm). For the fifth sequence, rotor speed
can exceed the third critical speed without generating instability, whereas
instability occurs at speeds higher than the second critical speed for the second
sequence. Such behavior is explained by the fact that the greater the number
of fibers oriented close to the longitudinal direction of the tube, the more they
contribute to shaft rigidity and, consequently, the higher frequencies are. In
parallel, the lower the orientation angle, the lower the internal damping due
to the composite materials is and, consequently, the later instability occurs.

Mechanical characteristics
of composite

Stacking sequence F1(Hz) Instability
threshold
(rpm)

1 [902,45,0]S 39.87 5864

2 [90,0,90,45,90,45,0,90] 40.08 5913

3 [90,45,02]S 50.71 10981

4 [02,452,902,02] 50.91 11106

5 [02,90,45]S 50.92 11111

6 [45,0,45,0,90,0,90,0] 51.36 11395
Table 4
Mechanical characteristics of the shaft and Results

6.2.2 Effects of transversal shear on frequencies and instability

The natural frequencies calculated by using SHBT are plotted in figure 8 with
respect to rotor parameter L/Ro (ratio of length over outer radius) for the
same test case made of 8 plies of 0.001 m thick in a balanced and symmetric
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Fig. 5. Campbell diagram and instability regions for a laminate [±75˚] with
anisotropic bearings
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Fig. 6. Campbell diagram and instability regions with anisotropic bearings: second
case [90, 0, 90, 45, 90, 45, 0, 90]

configuration. Results both with and without transversal shear effects are
represented (’S’ symbolizes transversal shear). Classically, shear deformation
has an influence at low L/Ro and is significant here above the first frequency.
The variation of instability thresholds with respect to ratio L/Ro is shown for a
configuration [±75˚]8S in figure 9 and leads to the conclusion that frequencies
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Fig. 7. Campbell diagram and instability regions with anisotropic bearings: fifth
case [02, 90, 45]s

and shear deformation decrease with L/Ro.
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Fig. 8. Natural frequencies of a symmetrical laminate for different L/Ro ratios for
[±75] angle orientation with and without shear effects

Tables 5 and 6 give the frequencies and the instability thresholds with respect
to the ply angle for a specific value of L/Ro=20.83, in order to demonstrate
the influence of angle orientation. Table 5 shows that frequencies increase
as the fiber angle decreases. The system is stiffer when fibers are directed
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Fig. 9. Instability threshold for different L/Ro ratios for [±75] angle orientation
with and without shear effects

mostly along the shaft axis. Thus internal damping decreases as the frequencies
increase (longitudinal specific damping capacity is lower than the transversal
specific damping capacity), leading to an increase in the instability threshold.
Table 6 confirms this conclusion, highlighting that equivalent rigidity decreases
as a function of ply angle whereas the damped equivalent rigidity increases.

Considering the first two forward precessions, the error made when neglecting
shear effects is 2% for the first flexural frequency and 7.5% for the second
flexural frequency for orientation [±75˚]s. This error increases by up to 11%
and 33.5% for the first and the second frequencies respectively with orientation
[±15˚]s.

θ (Degrees) FW1 (Hz) FW2 (Hz) FW1s (Hz) FW2s (Hz)

[±15] 61.55 229.57 54.37 152.49

[±45] 28.55 108.09 27.73 95.72

[±75] 22.49 85.27 22.08 78.81
Table 5
Natural frequencies of a symmetrical laminate for different ply angles with and
without shear effects with L/Ro=20.83

6.2.3 Comparative study of the two homogenization methods

A comparative study between the proposed SHBT and EMBT methods is
carried out. When considering a composite rotor in a balanced and symmetric
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 Instability Instability

φ (Degrees) EI (N m2) EIη threshold with threshold without

shear (rmp) shear(rpm)

[±15] 97811 136 10404 9937

[±45] 21206 277 2309 2255

[±75] 15717 338 1604 1585
Table 6
Mechanical characteristics of the shaft and instability thresholds

configuration [±75˚]8S (figure 5), the frequencies and instability thresholds
obtained with both methods are in very good agreement. On the other hand,
the results associated with the different stacking configurations listed in table 7
demonstrate that the distance to the neutral axis contributes to the calculation
of the mechanical characteristics of the rotor with SHBT, but not accurately
with EMBT as mentioned by Singh and Gupta in [14,15]. When using EMBT,
a difference of 15.7% and 15.1% in the instability threshold and 6.7% and 6.3%
in the first frequencies is observed for sequences 2 and 3. This difference is
more important than that obtained for critical speed. Obviously, the modified
EMBT and LBT methods developed by Gubran and Gupta could give better
results than classical EMBT, if internal damping is taken into account.

Stacking sequence
Instability
threshold
(rpm)

Error (%)
F1(Hz)

Error (%)

SHBT EMBT SHBT EMBT

[±75˚]8S 1167 1167 0 16.88 16.88 0

[902,45,0]S 5864 6956 15.7 39.87 42.76 6.7

[90,0,90,45,90,45,0,90] 5913 6965 15.1 40.08 42.76 6.3

[90,45,02]S 10981 12064 9 50.71 52.37 3.2

[02,452,902,02] 11106 12064 8 50.91 53.37 3

[02,90,45]S 11111 12064 8 50.92 52.37 3

[45,0,45,0,90,0,90,0] 11395 12064 5.5 51.36 52.37 2
Table 7
Comparison between SHBT and EMBT

For sequences 4 to 7, this error is 9% for the instability threshold and 3.2%
for the frequencies. Consequently, the classical EMBT over-estimates the in-
stability of the rotor.
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 7 CONCLUSION AND PERSPECTIVES

This work deals with the stability analysis of an internally damped rotat-
ing composite shaft. A Simplified Homogenized Beam Theory (SHBT) is
developed and compared to the classical Equivalent Beam Modulus Theory
(EMBT), the Modified Equivalent Beam Modulus Theory (modified EMBT)
and the Layerwise Beam Theory (LBT). The method developed avoids the
main drawbacks associated with EMBT formulation, that considers only sym-
metrical and balanced stacking sequences and does not take into account the
distance of composite layers from the neutral axis. It also takes into account
internal damping by using the specific damping capacity of each ply of the
composite assembly, and also considers transversal flexural shear. It allows
the use of existing beam finite element.

The critical speeds obtained by the method developed are in good agreement
with those obtained by LBT and modified EMBT as well as the experimental
one. The study highlights that EMBT simplifications may lead to significant
discrepancies in terms of frequencies. These discrepancies appear to be greater
for instability thresholds. A qualitative study of the effects of various param-
eters on frequencies and instability thresholds was carried out. The analysis
shows that although transversal shear has a minor influence on the first fre-
quencies, its effect is much more significant for the following ones, thereby
directly influencing instability thresholds.

However, this method requires some improvements to take account of the
coupling effects induced by nonsymmetrical stacking. These improvements will
be the subject of a forthcoming paper.
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