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Abstract. The Italian Logic Programming community has given several
contributions to the theory of Concurrent Constraint Programming. In
particular, in the topics of semantics, verification, and timed extensions.
In this paper we review the main lines of research and contributions of
the community in this field.

1 The origins: from concurrect logic programming to

concurrent constraint programming

In the 80’s there had been several proposals to extend logic programming with
constructs for concurrency, aiming at the development of a concurrent language
which would maintain the typical advantages of logic programming: declarative
reading, computations as proofs, amenability to meta-programming etc. Exam-
ples of concurrent logic languages include PARLOG [14], Concurrent Prolog [58,
59], Guarded Horn Clauses (GHC) [61, 62] and their so-called flat versions. To-
wards the end of the decade, Concurrent constraint programming ([52, 56, 57])
emerged as one of the most successful proposals in this area.

Concurrent constraint programming (ccp) presented two new perspectives on
the underlying philosophy of logic programming. One is the replacement of the
concept of unification over the Herbrand universe by the more general notion
of constraint over an arbitrary domain. This is in a sense a ‘natural’ develop-
ment, and the idea was already introduced in ‘sequential’ logic programming by
Jaffar and Lassez ([45]). The other is the introduction of extra-logical operators
typical of the imperative concurrent paradigms, like CCS ([47]), TCSP ([8]) and
ACP ([1]); in particular, the choice (+), the action prefixing (→), and the hid-
ing operator (∃). Additionally, concurrent constraint programming embodies an
explicit characterization of the control mechanisms for communication and syn-
chronization by means of the introduction of two kinds of actions (ask and tell).
Also in concurrent logic languages these control features were present, but they
were hidden in various ways: the choice was represented by alternative clauses,
hiding by local (existentially quantified) variables, prefixing by commitment,
communication by sharing of variables, and synchronization by restrictions on
the unification algorithm.



There are many advantages in an explicit representation of these concurrency
control mechanisms by means of operators. First of all, they are ‘isolated’ and
therefore the laws of their behaviour can be understood better. For instance, one
of the problems in studying the semantics of concurrent logic programming is
that the choice mechanism is ‘mixed up’ with recursion, since a clause is in gen-
eral a recursive definition. Second, the standard tools developed in the theory of
concurrency can be applied more easily. Third, a ‘reconciliation’ with the declar-
ative principles of logic programming is more feasible, once the basic limitations
are well understood. For instance, the conditions which rule the behaviour of
ask and tell can be described in a logical way, thus providing the synchroniza-
tion mechanism with a ‘declarative flavour’ ([46, 51]) that was missing in the
‘restricted-unification’ approach.

2 The ccp paradigm

Ccp is based on the concept of store-as-constraint, in contrast to von Neumann’s
concept of store-as-valuation. The computation proceeds through the concurrent
execution of different processes, which interact and communicate through the
common store. They refine the partial information about the values of the vari-
ables by adding (telling) constraints to the store, and they test (ask ) whether
the store entails a constraint before proceeding in the computation.

One of the most characteristic features of the ccp paradigm is a formaliza-
tion of these basic operations which allow to update and to query the common
store, in terms of the logical notions of consistency, conjunction and entailment
supported by a given underlying constraint system.

Here we recall briefly the syntax and semantics of ccp. Among the several
variants which have been proposed in literature, we choose the simplest and
most basic one, called eventual tell ccp. Most of the other ccp dialects can be
obtained by enriching this one.

The ccp languages are defined parametrically w.r.t. to a given cylindric con-
straint system.

Definition 1.

– A constraint system is a complete algebraic lattice 〈C,⊢,⊔, true, false〉 where
⊔ is the lub operation, and true, false are the least and the greatest elements
of C, respectively. The entaiment relation ⊢ is the inverse ordering.

– Consider a (denumerable) set of variables x, y, z, . . .. Assume that for each
x ∈ Var a function ∃x : C → C is defined such that for any c, d ∈ C:

(i) c ⊢ ∃x(c),

(ii) if c ⊢ d then ∃x(c) ⊢ ∃x(d),

(iii) ∃x(c ⊔ ∃x(d)) = ∃x(c) ⊔ ∃x(d),

(iv) ∃x(∃y(c)) = ∃y(∃x(c)).

Then C = 〈C,≤,⊔, true, false,Var ,∃〉 is a cylindric constraint system.



In order to model parameter passing, diagonal elements ([44]) are added to
the primitive constraints: We assume that, for x, y ranging in Var , D contains
the constraints dxy which satisfy the following axioms.

(i) true ⊢ dxx,
(ii) if z 6= x, y then dxy = ∃z(dxz ⊔ dzy),
(iii) if x 6= y then dxy ⊔ ∃x(c ⊔ dxy) ⊢ c.

Note that if C models the equality theory, then the elements dxy can be thought
of as the formulas x = y. In the following ∃x(c) is denoted by ∃xc with the
convention that, in case of ambiguity, the scope of ∃x is limited to the first
constraint subexpression. (So, for instance, ∃xc ⊔ d stands for ∃x(c) ⊔ d.)

Definition 2. Assuming a given cylindric constraint system C the syntax of
agents is given by the following grammar:

A ::= stop | tell(c) |
∑n

i=1 ask(ci) → Ai | A ‖ A | ∃xA | p(x)

where the c, ci are supposed to be finite constraints (i.e. algebraic elements) in C.
A ccp process P is then an object of the form D.A, where D is a set of procedure
declarations of the form p(x) :: A and A is an agent.

The deterministic agents are obtained by imposing the restriction n = 1 in
the previous grammar. The standard operational model of ccp can be described
by a transition system T = (Conf ,−→). The configurations (in) Conf are pairs
consisting of a process, and a constraint in C representing the common store.
The transition relation −→⊆ Conf × Conf is described by the (least relation
satisfying the) rules R1-R6 of table 1.

The agent stop represents successful termination. The basic actions are given
by tell(c) and ask(c) constructs which act on the common store. Given a store d,
as shown by rule R1, the execution of tell(c) updates the store to c⊔d. The action
ask(c) represents a guard, i.e. a test on the current store d, whose execution
does not modify d. We say that ask(c) is enabled in d iff d ⊢ c. According to rule
R2 the guarded choice operator gives rise to global non-determinism: the agent
∑n

i=1 ask(ci) → Ai nondeterministically selects one ask(ci) which is enabled in
the current store, and then behaves like Ai. The external environment can then
affect the choice since ask(c) is enabled iff the current store d entails c, and d can
be modified by other agents (rule R1). If no guard is enabled, then the guarded
choice agent suspends, waiting for other (parallel) agents to add information
to the store. The situation in which all the components of a system of parallel
agents suspend is called global suspension or deadlock. The operator ‖ represents
parallel composition which is described by rule R3 as interleaving. The agent
∃xA behaves like A, with x considered local to A. To describe locality in rule
R4 the syntax has been extended by an agent ∃dxA where d is a local store of A

containing information on x which is hidden in the external store. Initially the
local store is empty, i.e. ∃xA = ∃truexA.

Rule R5 treats the case of a procedure call when the actual parameter equals
the formal parameter: in this case a simple body replacement suffices. We do not
need more rules since, for the sake of simplicity, we assume that the set D of
procedure declarations is closed w.r.t. parameter names.



R1 〈D.tell(c), d〉 −→ 〈D.Stop, c ⊔ d〉

R2 〈D.
∑n

i=1
ask(ci) → Ai, d〉 −→ 〈D.Aj , d〉 j ∈ [1, n] and d ⊢ ci

R3
〈D.A, c〉 −→ 〈D.A

′

, c
′〉

〈D.A ‖ B, c〉 −→ 〈D.A′ ‖ B, c′〉
〈D.B ‖ A, c〉 −→ 〈D.B ‖ A′, c′〉

R4
〈D.A, d ⊔ ∃xc〉 −→ 〈D.B, d

′〉

〈D.∃d
xA, c〉 −→ 〈D.∃d′

xB, c ⊔ ∃xd
′〉

R5 〈D.p(x), c〉 −→ 〈D.A, c〉 p(x) : −A ∈ D

Table 1. The transition system of ccp.

3 Semantic aspects of ccp

In the first few years after its design, ccp had been understood just as a particular
case of process algebra. Therefore, the definition of its compositional semantics
had been approached by the standard methods, like failure sets and bisimulation.
For instance, De Boer et al. [15, 16] used tree-like structures labeled with func-
tions on substitutions. More simple tree-like structures, labeled by constraints,
were used by Gabbrielli and Levi [39]. Saraswat and Rinard [56] used similar
structures modulo equivalence relations based on bisimulation.

De Boer and Palamidessi [18] realized that, due to the fact that the com-
munication mechanism of ccp is asynchronous, the branching structures used
for process algebra are not needed. In fact, which actions are enabled does not
depend upon the current state of the environment, but only upon the store. In
a transition system this can be made explicit by adding a passive rule that does
not exist in the classical concurrent paradigms: an arbitrary assumption of a
step made by the environment. This amounts to considering all the possible in-
teractions between the given process and arbitrary environments, and it leads to
a simple compositional semantics, consisting of sequences of constraints labeled
by assume/tell modes. In this framework the parallel composition corresponds
to zip sequences, so that the assumptions of a process match with the actions of
the other, and vice-versa.

Independently, a different approach was developed in [57]. The basic idea
consists in denoting processes as Scott’s closure operators, which have the nice
property of being representable by the set of their fixpoints. The operators of
the language can then be described as operations on those sets. In particular,
parallelism can be modeled simply by intersection.

The semantics developed in [18] and in [57] are based on very different points
of view. The one in [18] is more general, in the sense that it applies, without



essential modifications, to many variants of ccp, including the atomic and non-
deterministic versions. The one in [57] is very ingenious and elegant, and can be
considered one of the principal reasons of the success of ccp. However, it works
well only in the basic fragment, the deterministic eventual tell ccp, which is ob-
tained from Definition 6 by imposing n = 1 in the summation. Both semantics
are fully abstract, and therefore in the basic fragment they are equivalent. The
precise correspondence was delineated in [19].

One question that had remained open in [18] was how to model infinite
computations in an abstract way, i.e. by considering only the limit of the answer
substitution. When nondeterminism is present, the denotational characterization
of infinite computation is actually a non trivial problem: The semantics based on
Smith, Hoare and Plotkin’s powerdomains constitute only a partial solution to
this problem (in the sense that they identify too much), and the semantics based
on metric domains are far from being abstract. This problem was solved in [25]
by considering a categorical construction called Lehmann’s powerdomain, which
can be regarded as an extension of Smith’s powerdomain. This structure contains
more information than the powerdomains, enough to achieve compositionality.

3.1 Analysis and verification

De Boer et al. developed in [20] a system based on the closure operators semantics
to prove correctness assertions about concurrent constraint programs. Thanks to
the strong properties of ccp, this system is much simpler than the ones developed
for other parallel languages. In particular, only the strongest post-condition w.r.t.
True needs to be considered, and parallel composition is modeled simply by
logical conjunction.

Falaschi et al. investigated in [33] various fragments of ccp. Some of them
have a very simple semantics based on closure operators. Such semantics can
be considered as approximated semantics of ccp, and they were used as a basis
for static analysis [32, 34], by means of abstract interpretation techniques. These
techniques allow to statically optimize programs and to approximate several im-
portant semantic properties, such as deadlock detection, groundness propagation
etc.

One interesting fragment is ccp with local choice: This corresponds in fact
to CLP with delay, an extension of Constraint Logic Programming which allows
efficient implementations. Falaschi et al. [35] and De Boer et al. [23] used this
observation for developing the semantics foundations and a verification system
of CLP with delay, by means of techniques based on closure operators.

Another approach to the analysis of ccp was pursed in [65, 66] where it was
extended to ccp languages the generalized semantics approach to static analysis,
initially proposed in [41] for sequential CLP languages. [65] shows that such an
extension can be easily achieved for approximations that are closed under anti-
entailment: applications include analyses that can identify definite suspensions,
e.g., to compute upper bounds to the degree of concurrency in a ccp program. For
the more common case of entailment closed properties (that are of interest for,
e.g., proving suspension freeness), it is shown in [66] that correctness can only be



achieved by modifying the generalized semantics approach so as to introduce a
domain-dependent approximation of the synchronization primitive, which cannot
be modeled as an entailment test on the abstract domain.

3.2 Fold/unfold transformations of ccp

Unfold/fold are source-to source transformation techniques which were first in-
troduced in functional programming by Burstall and Darlington [10], and then
adapted to logic programming both for program synthesis and for program spe-
cialization and optimization. As shown by a number of applications, these tech-
niques provide a powerful methodology for the development and optimization of
large programs, and can be regarded as the basis to be used for partial evalua-
tion.

Despite a large amount of literature in the field of declarative sequential lan-
guages, the applications of unfold/fold transformations to concurrent languages
are relatively rare. This is partially due to the fact that the nondeterminism
and the synchronization mechanisms present in concurrent languages substan-
tially complicate their semantics, thus complicating also the definition of correct
transformation systems. Nevertheless, these transformation techniques can be
very useful also for concurrent languages, since they allow further optimizations
related to the simplification of synchronization and communication mechanisms.

One of the few papers addressing this issue is [31], where a transformation
system for concurrent constraint programming (ccp) was introduced. This sys-
tems was inspired by that one of Tamaki and Sato [60], a general framework for
the unfold/fold transformation of logic programs, which has remained over the
years the main historical reference of the field.

Compared to its predecessors, the system in [31] improves by eliminating the
limitation that in a folding operation the folding rule has to be non-recursive.
Moreover, following de Francesco and Santone [38], the applicability conditions
for this operation are based on the notion of “guardedness” and can be checked
locally on the program to be folded (rather than on the transformation history).
This makes the operation much easier to understand and to implement. Be-
sides folding and unfolding, the transformation system for ccp includes several
other new operations, namely backward instantiation, ask and tell simplification,
branch elimination, conservative ask elimination and distribution. The declara-
tive nature of ccp allows one to define reasonably simple applicability conditions
for these operations which ensure the total correctness of the system: the orig-
inal and the transformed program have the same semantics when considering
both input/output pairs and (under different applicability conditions) traces,
and distinguishing successful, deadlocked, and failed derivations.

From the correctness result follows that the original program is deadlock-
free iff the transformed one is, and this allows us to employ the transformation
system as an effective tool for proving deadlock-freeness of ccp programs. More-
over, the systems allows to optimize programs by eliminating communication
channels and synchronization points, by transforming nondeterministic compu-
tations into deterministic ones, and by saving of computational space. Some of



these improvements were possible already in the context of GHC programs by
using the system defined in Ueda and Furukawa [63].

Following the above line of research, [3] investigated transformation tech-
niques based on the replacement. This is a powerful operation which can mimic
the most common transformation operations such as unfold, fold, switching, dis-
tribution. Because of this flexibility, it can be incorrect if used without specific
applicability conditions. The above paper presented applicability conditions for
ccp and it showed that, under these conditions, the replacement generalizes both
the unfolding operation as well as a restricted form of folding operation.

4 Timed Reactive CCP

The tcc model is a timed reactive ccp framework introduced by Saraswat et al
[53] as an extension of deterministic ccp. This model is aimed at programming
and modeling timed reactive systems and it elegantly combines deterministic ccp
with ideas from the paradigms of Synchronous Languages [2].

In order to increase the specification expressiveness of tcc, Nielsen et al [49]
introduced a non-deterministic extension of tcc, called the ntcc calculus. As its
predecessor, the ntcc calculus takes the view of reactive computation as pro-
ceeding in discrete time units (or time intervals). Time is conceptually divided
into discrete intervals. In each time interval a ccp process receives a stimulus,
represented as a constraint, from the environment, it executes with this stimu-
lus as the initial store, and when it reaches its resting point, it responds to the
environment with the final store. Furthermore, the resting point determines a
residual process, which is then executed in the next time interval.

As illustrated in [49], this view of reactive computation is particularly appro-
priate for modeling and programming reactive systems such as robotic devices
and micro-controllers. These systems typically operate in a cyclic fashion; in
each cycle they receive and input from the environment, compute on this input,
and then return the corresponding output to the environment.

4.1 Syntax and Operational Semantics of ntcc

The ntcc calculus introduces operators to specify temporal executions. The unit-
delay operation next A, also present in tcc, specifies that A should be executed
in the next time interval, and the unbounded delay operation ⋆A specifies that A

will be eventually executed. The time-out operation unless c next A, also present
in tcc, specifies that unless c can be inferred from the final store in the current
time unit, A should be executed in the next time unit.

Furthermore, to ensure that only terminating processes can be executed
within time intervals, procedures are replaced with the simpler replicated form
!A. The replication operation !A specifies that A will be executed now and in each
future time interval. Thus, !A can be viewed as A ‖ next A ‖ next (next A) ‖ . . .

All in all, the agents of ntcc include those of ccp in Definition 2 except for
procedures, plus the above-mentioned temporal operators. More precisely,



Definition 3. Assuming a given cylindric constraint system C the syntax of
ntcc agents is given by the following grammar:

A ::= stop | tell(c) |
∑n

i=1 ask(ci) → Ai | A ‖ A | ∃xA

| next A | ⋆ A | unless c next A | !A

where the c, ci are supposed to be finite constraints (i.e. algebraic elements) in
C. For the sake of consistency with Definition 2, an ntcc process P can be inter-
preted as an object of the form D.A by decreeing that D = ∅; i.e., the empty set
of procedure declarations.

4.2 Reduction Relations

The operational semantics of ntcc is given in terms of an internal reduction
relation −→ given by the rules in Table 1 plus the rules in Table 2 and the
observable reduction relation =⇒ given in Table 2.

The internal transition γ −→ γ′ specifies the internal steps much like the ccp
transitions −→ in the previous section. The additional rules R6-R8 in Table 2
realize the above intuitions about the temporal operators.

The observable transition P
(c,d)
=⇒ R should be read as “P on input c from the

environment, reduces in one time unit to R and outputs d to the environment”.
The rule ROBS realizes the above intuition by stating that an observable tran-
sition from P = D.A labeled by (c, d) is obtained by performing a sequence of
internal transitions from the initial configuration 〈P, c〉 to a final configura-
tion 〈Q, d〉 with Q = D.A′ in which no further internal evolution is possible.
The residual process R to be executed in the next time interval is equivalent to
D.F (A′), where F (A′) represents the “future” of A′. The process F (A′), given in
Definition 4, is obtained by removing from A′ summations that did not trigger
activity within the current time interval and any local information which has
been stored in A′, and by “unfolding” the sub-terms within “next” and “un-
less” expressions. This “unfolding” specifies the evolution across time intervals
of processes of the form next B and unless c next B.

Definition 4 (Future Function). Let F be the partial function defined by

F (A) =















stop if A =
∑

i∈I ci → Ai

F (A1) ‖ F (A2) if A = A1 ‖ A2

∃xF (B) if A = ∃dxB

B if A = next B or A = unless c next B

4.3 A simple example of weak pre-emption

In spite of its simplicity, the tcc and ntcc extensions to ccp are far-reaching. Many
interesting temporal constructs can be expressed (see e.g. [53]). For example, tcc
allows processes to be “clocked” by other processes. This provides meaningful



R6 〈D. ⋆A, d〉 −→ 〈D.An, d〉 n ≥ 0
R7 〈D.unless c next A, d〉 −→ 〈D.stop, d〉, d ⊢ c

R8 〈D.!A, d〉 −→ 〈D.A ‖ next !A, c ⊔ d〉

ROBS
〈D.A, c〉 −→∗ 〈D.A

′

, c
′〉 6−→

D.A, c
(c,c′)
=⇒ D.F (A′)

Table 2. Additional rules for the transitions of ntcc processes. The internal reduction
−→ is given by the rules in Table 1 and Rules R6-R8. The observable reduction =⇒
is given by Rule ROBS. The relation −→∗ denotes transitive and reflexive closure
of −→. γ 6−→ holds iff that is no γ′ such that γ −→ γ′. The function F is given in
Definitions 4

pre-emption constructs and the ability to define multiple forms of time instead
of only having a unique global clock.

A rather simple example is the specification of a power-saver:

A = ! unless (LightsOff ) next ⋆ tell(LightsOff )

The power-saver agent A runs forever, hence it is replicated. Furthermore,
unless A can infer that the lights are already off in the current time interval, A

should turn them off either in the next time unit or sometime later.
Notice that because of the weak pre-emption nature of the time-out operation

in ntcc, it is not possible to specify that the lights should be turned off within
the current time interval unless they are already off.

The work in [54] introduces Default tcc as an extension of tcc with the ability
to define strong pre-emption. In this model, the time-out operation can trigger
activity in the current time interval. Strong pre-emption is useful when an action
must be triggered immediately on the absence of a constraint c rather than
delayed to the next interaction.

4.4 Observables and their Characterizations

Let us consider an infinite sequence of observable transitions:

P = P1
(c1,c′

1
)

====⇒ P2
(c2,c′

2
)

====⇒ P3
(c3,c′

3
)

====⇒ . . .

Intuitively, at time interval i, with i ≥ 0, the process Pi gets a stimulus ci

and then it provides a response c′i and evolves into Pi+1. We shall also represent

this run as P
(α,α′)
====⇒ where α = c1.c2.c3. . . . and α′ = c′1.c

′

2.c
′

3 . . ..
The observable input-output behaviour of an ntcc process is its set of stimulus-

response sequences. The strongest-postcondition, or quiescent behaviour, of a pro-
cess P is the set of sequences on input of which P can run without adding any
information whatsoever. More precisely,



Definition 5 (Observables of ntcc). Let P be a process. The input-output

behaviour of P is given by Oio(P ) = {(α, α′) | P
(α,α′)
====⇒}. The strongest post-

condition of P is given by Osp(P ) = {α | P
(α,α)

====⇒}.

As shown in [49] the observable input-output behaviour of deterministic ntcc
processes (i.e., tcc processes) can be compositionally specified as closure opera-
tors over sequences of constraints much like for the deterministic ccp case. Also,
by building on the strongest-postcondition semantics for ccp in [20], the work in
[49] includes a compositional characterization of the quiescent behaviour of ntcc
processes as well as a proof system for their temporal properties. The ntcc proof
system is similar to Dijkstra’s proof system for the strongest postcondition of
imperative programs.

In [48] the authors provided a hierarchy of ntcc variants based on the input-
output behaviour. A variant C is said to be as expressive as a variant C ′ if
for every process P in C ′, one can compute a process E(P ) in C such that
Oio(P ) = Oio(E(P )). The variants were obtained by replacing replication with
alternative mechanisms to specify infinite behaviour: Namely, procedure defini-
tions, static-scoping parameterless recursion, and dynamic-scoping parameterless
recursion. It was shown that ntcc is equally expressive to the variant with static-
scoping parameterless recursion. These variants were also shown to be strictly
less expressive than the variant with parametric procedures which in turn was
shown to be equally expressive to the variant with dynamic-scoping parameter-
less recursion. The authors also showed that the input-output behavior of every
ntcc processes is omega-regular ; i.e. it can be specified by a finite-state Büchi
automaton [9].

In [36] it is defined a framework for the declarative debugging of ntcc pro-
grams, which is based on a fixpoint semantics for this language. A general frame-
work, parametric w.r.t an abstract domain, for the static analysis of tcc programs
is provided in [37].

5 Another timed ccp language

A different timed extension of ccp, called tccp, was proposed in [21]. Similarly to
the previously mentioned timed languages (tcc) [53] and default tcc [54], tccp is a
language for reactive programming where computation takes a bounded period
of time rather than being instantaneous (as it is in ESTEREL [2]). However,
differently from tcc and default tcc, which are inspired by the deterministic syn-
chronous languages, tccp follows the guidelines of the timed process algebras
approach and allows for non-determinism. This corresponds to a different view
and use of a timed language: deterministic languages can be used for program-
ming “kernels” of real-time systems, since deterministic systems are simpler to
specify, debug and analyze. However, non-determinism arises when considering
larger reactive systems involving several processes running on different proces-
sors and communicating via asynchronous links. These (timed) systems can be
naturally specified and programmed by using a non-deterministic language.



Indeed all the existing timed process algebras and almost all the variants of
Statecharts admit non-determinism.

Notice that the ntcc calculus discussed in the previous section, is also a non-
deterministic timed ccp language. However, ntcc is an orthogonal non-deterministic
extension of tcc, while tccp is an orthogonal timed nondeterministic extension
of ccp. That means that, unlike in tccp, in ntcc computation proceeds as in the
synchronous languages.

Below we first describe the tccp language and its operational semantics. Then
we define a fix-point semantics for it which is based on reactive sequences and
which is fully abstract w.r.t. the input/output notion of observables. All the
technical definitions and results in this section are from [21].

5.1 Syntax and operational semantics of tccp

When querying the store for some information which is not present (yet) a
ccp agent will simply suspend until the required information has arrived. In
many applications involving time, however, often one cannot wait indefinitely
for an event. Consider for example the case of a bank teller machine: if there
is a problem with the authorization of the bank, after a reasonable amount of
time the card should be given back to the customer. In order to model such
a situation then the language should allow us to specify that, in case a given
time bound is exceeded (i.e. a time-out occurs), the wait is interrupted and an
alternative action is taken. Moreover, in some cases it is also necessary to abort
an active process A and to start a process B when a specific event occurs (this is
usually called preemption of A). For example, according to a typical pattern, A
is the process controlling the normal activity of some physical device, the event
indicates some abnormal situation and B is the exception handler.

In order to enrich ccp agents with such timing mechanisms, we introduce a
discrete global clock and assume that ask and tell actions take one time-unit.
Computation evolves in steps of one time-unit, so called clock-cycles, and action
prefixing is the syntactic marker which distinguishes a time instant from the
next one.

Furthermore, we make the assumption that parallel processes are executed
on different processors, which implies that at each moment every enabled agent
of the system is activated. This assumption, which is common to many timed
process algebras, gives rise to what is called maximal parallelism.

Since the store is monotonically increasing and one can have dynamic process
creation, clearly the previous assumptions in principle imply that the constraint
solver takes a constant time (no matter how big the store is) and that there is
an unbound number of processors. In practice, however, one can impose suitable
restrictions on programs, thus ensuring that the (significant part of the) store
and the number of processes do not exceed a fixed bound.

In order to express time-out and preemption which, as previously mentioned,
are essential to many applications, the language is enriched by introducing a
more basic timing construct of the form

now c then A else B .



This construct is similar to the analogous one used in [53], even though here it
has a different interpretation: If c is entailed by the store then the above agent
behaves as A at the current time instant, otherwise it behaves as B (at the
current time instant). Note that the ability to detect the absence of an event is
essential here.

Thus, we end up with the following syntax.

Definition 6 (tccp Language). Assuming a given cylindric constraint system
C the syntax of agents is given by the following grammar:

A ::= stop | tell(c) |
∑

n

i=1
ask(ci)→ Ai | now c then A else B | A ‖ B | ∃x A | p(x )

where the c, ci are supposed to be finite constraints (i.e. algebraic elements) in C.
A tccp process P is then an object of the form D .A, where D is a set of procedure
declarations of the form p(x ) : −A and A is an agent.

In order to simplify the notation, in the following we will omit the
∑n

i=1 when-
ever n = 1 and we will use tell(c) → A as a shorthand for tell(c) ‖ (ask(true) → A).

The operational model of tccp can be formally described by a transition
system T = (Conf ,−→) where we assume that each transition step takes exactly
one time-unit. Configurations (in) Conf are pairs consisting of an agent and a
constraint in C representing the common store. The transition relation −→⊆
Conf × Conf is the least relation satisfying the rules R1, R2, R4 and R5 in
Table 1 plus the rules in Table 3.

Notice that the rules now characterizes also the temporal evolution of the
system, so 〈A, c〉 −→ 〈B , d〉 means that if at time t we have the agent A and the
store c then at time t + 1 we have the agent B and the store d.

In particular, Rule R1 (in Table 1) shows that the evaluation of a tell action
takes one time-unit, thus the updated store c ⊔ d will be visible only starting
from the next time instant. Analogously, also the evaluation of an ask action
takes one time-unit (rule R2).

Let us now briefly discuss the new rules in Table 3.
Rules R3bis and R3ter, which replace rule R3 of Table 1, model the parallel

composition operator in terms of maximal parallelism: The agent A ‖ B executes
in one time-unit all the initial enabled actions of A and B .

The rules R9-R12 show that the agent now c then A else B behaves as A or
B depending on the fact that c is or is not entailed by the store. Note that here,
differently from the case of the ask, the evaluation of the guard is instantaneous.
Since A and B could contain nested now then else agents, a limit for the number
of these nested agents should be fixed. However, for recursive programs such a
limit is ensured by the presence of the procedure call, since we assume that the
evaluation of such a call takes one time unit.

Using the transition system described by (the rules in) Table 1 we can define
the following notion of observables which considers the input/output of termi-
nating computations, including the deadlocked ones. Here and in the sequel −→∗

denotes the reflexive and transitive closure of the relation −→.



R3bis
〈A, c〉 −→ 〈A′

, c
′〉 〈B , c〉 −→ 〈B ′

, d
′〉

〈A ‖ B , c〉 −→ 〈A′ ‖ B ′, c′ ⊔ d′〉

R3ter
〈A, c〉 −→ 〈A′

, c
′〉 〈B , c〉 6−→

〈A ‖ B , c〉 −→ 〈A′ ‖ B , c′〉
〈B ‖ A, c〉 −→ 〈B ‖ A′, c′〉

R9
〈A, d〉 −→ 〈A′

, d
′〉

〈now c then A else B , d〉 −→ 〈A′, d′〉
d ⊢ c

R10
〈A, d〉 6−→

〈now c then A else B , d〉 −→ 〈A, d〉
d ⊢ c

R11
〈B , d〉 −→ 〈B ′

, d
′〉

〈now c then A else B , d〉 −→ 〈B ′, d′〉
d 6⊢ c

R12
〈B , d〉 6−→

〈now c then A else B , d〉 −→ 〈B , d〉
d 6⊢ c

Table 3. The additional rules for tccp.

Definition 7 (Observables). Let A be an agent. We define Oio(A) = {〈c, d〉 |
〈A, c〉 −→∗ 〈B , d〉 6→}.

5.2 Programming example

We show now how some typical reactive programming idioms can be derived from
the basic combinators of tccp. Then we use these in a programming example.

Time-out The timed guarded choice agent

n
∑

i=1

ask(ci) → Ai time-out(m) B

waits at most m time-units (m ≥ 0) for the satisfaction of one of the guards.
Before this time-out the process behaves just like the guarded choice: As soon as
there exist enabled guards, one of them and the corresponding branch is nonde-
terministically selected. After waiting for m time-units, if no guard is enabled,
the timed choice agent behaves as B . This agent can be defined inductively as
follows. Let us denote by A the agent

∑

n

i=1
ask(ci) → Ai . In the base case,

m = 0, we define
∑

n

i=1
ask(ci) → Ai time-out(0 ) B as the agent

now c1 then A else
( now c2 then A else

...
( now cn then A else ask(true) → B) . . .)



For the inductive step we define
∑

n

i=1
ask(ci) → Ai time-out(m) B as

n
∑

i=1

ask(ci) → Ai time-out(0)

(

n
∑

i=1

ask(ci) → Ai time-out(m-1) B

)

.

Watchdogs These are typical preemption primitives of such languages as ESTEREL
and are used to interrupt the activity of a process on signal from a specific event.
Since events are expressed by constraints, a watchdog can be defined as the pro-
cess

do A watching celseB

which behaves as A, as long as c is not entailed by the store; when c is entailed,
the process A is immediately aborted and process B is started. We have here a
form of weak preemption in which the abortion of A is performed in the next
time interval. In fact, even though A is aborted at the same time instant of
the detection of the entailment of c, if c is detected at time t then c has to be
produced at time t′ with t′ < t.

Previous watchdog agent can be defined (by induction on the structure of
process A) in terms of the other constructs of the language (see [21]). For example
in case of the tell process one has the following translation

do tell(d) watching c else B ⇒ now c then B else tell(d),

As a simple example of a tccp program let us now consider a system s(Ex)
consisting of two processes p1 and p2 which perform some time critical activi-
ties, reacting to external inputs transmitted on the channel Ex. The system is
continuously checked by a controller which receives a stream of ok messages by
each process pi. Each ok message is sent at unpredictable time instants, however
it is assumed that each pi is working correctly iff it sends the next ok within
n time-units from the previous one. When this limit is exceeded by a process
pi the controller aborts the whole system, starts a recovery routine rr for the
activity of pi and then restart the system. The system s(Ex) is implemented by
the following program where the specific tasks of the pi’s and of the recovery
routines are not specificed:

s(Ex):- ∃ Alarm,O1,R1,O2,R2
((do p1(Ex,O1,R1) ‖ p2(Ex,O2,R2) watching Alarm = on)
‖ controller(O1,O2,R1,R2))

controller(O1,O2,R1,R2):- ∃ A1,A2
(do c(O1,A1) ‖ c(O2,A2) watching Alarm = on else
(now (A1 = on ⊔ A2 = on) then rr(R1) ‖ rr(R2) else
now A1 = on then rr(R1) else
now A2 = on then rr(R2))
‖ restart(Ex))

c(O,A):- ask (∃ Y.O=[ok|Y]) → (∃ Y tell(O=[ok|Y]) →c(Y,A))
timeout(n) tell(Alarm = on ⊔ A = on)



5.3 The denotational model

It is easy to see that the operational semantics which associates to an agent A
its observables Oio(A) is not compositional. A compositional characterization of
the operational semantics can be obtained by using sequences of pairs of finite
constraints, so called timed reactive sequences, analogous to those that we have
seen in the semantics of ccp.

However, a reactive sequence is now provided with a different interpretation
which accounts for the timing aspects. In fact such a sequence has the form

〈c1, d1〉 · · · 〈cn, dn〉〈d, d〉

and each pair of constraints 〈ci, di〉 now represents a computation step performed
by the agent A which, at time i, assuming ci as input constraint produces the
constraint di. The last pair denotes a “stuttering step” in which no further
information can be produced by the agent, thus indicating that a “resting point”
has been reached.

Since in tccp computations the store evolves monotonically and the con-
straints arising from computation steps are finite, it is natural to assume that
reactive sequences are monotonically increasing and contains only finite con-
straints. The set of all reactive sequences is denoted by S and its typical ele-
ments by s, s1 . . ., while sets of reactive sequences are denoted by S, S1 . . . and
ε indicates the empty reactive sequence. The semantics R which associates to
an agent the reactive sequences that it generates can be defined by a fixpoint
construction as follows.

Definition 8. The semantics R ∈ Agent → P(S) is defined as the least fixed-
point of the operator Φ ∈ (Agent → P(S)) → Agent → P(S) defined by

Φ(I)(A) = {〈c, d〉 · w ∈ S | c ∈ C, 〈A, c〉 → 〈B , d〉 and w ∈ I(B)}
∪
{〈c, c〉 · w ∈ S | 〈A, c〉 6→ and w ∈ I(A) ∪ {ε}}.

The ordering on Agent → P(S) is that of (point-wise extended) set-inclusion
and it is straightforward to check that Φ is continuous, so standard results allows
us to construct the least fixpoint in ω steps.

It is possible to show that the above semantics is correct (w.r.t. the in-
put/ouput observables) and compositional, however is not fully abstract, since
it distinguishes tccp agents whose observables are the same under any possi-
ble context. In order to obtain a fully abstract model one needs to introduce
a suitable abstraction on traces, however, due to the presence of the now then
else construct and of maximal parallelism, one cannot use here the abstraction
which has been used in [24] for ccp since this would be incorrect (it would identify
agents which can be distinguished by a context). This semantic difference has
also an expresiveness counterpart, indeed one can show [21] that tccp is strictly
more expressive than. ccp.

So, the full abstraction problem for tccp cannot be reduced to that one for
ccp. Indeed, differently from the case of ccp, the definition of a fully abstract



semantics for tccp requires the ability to specify the “difference” ci \ di−1 be-
tween an assumption ci (at time i) and the previous contribution di−1 (at time
i − 1). Such a difference is formalized by using the algebraic notion of weak rel-
ative pseudo-complement [42, 4]. Using this difference the abstraction α on set
of sequences can be defined as follows.

Definition 9 (Abstraction). Let s, s′ be reactive sequences. Then the � rela-
tion is defined as follows:

– s � s′ iff for some sequences s1 and s2 one has that s = s1 · 〈a, b〉〈c, d〉 · s2,
s′ = s1 · 〈a, b′〉〈c, d〉 · s2 and (c \ b′) ≤ (c \ b).

Moreover the (equivalence) relation ≃ is defined as follows

– s ≃ s′ iff the sequences s and s′ differ only in the number of repetitions of
the last element.

Given a set of reactive sequences S, α(S) denotes the least set S′ such that the
following holds:

(i) S ⊆ S′,
(ii) if s′ ∈ S′ and either s � s′ or s ≃ s′, then s ∈ S′.

The fully abstract semantics Rα is obtained by simply applying the function
α to R(A). One can show that the semantics obtained in this way is composi-
tional (w.r.t. all the operators of the language) and correct (since it allows to
reconstruct the observables Oio(A)). Moreover it is also fully abstract, as shown
by the following theorem.

Theorem 1 (Full abstraction). Assume that the constraint system is weakly
relative pseudo-complemented. Then, for any pair of tccp agents A and B, α(R(A)) =
α(R(B)) iff Oio(C [A]) = Oio(C [B ]) for each context C [·].

FInally it is worth noting that a temporal logic for reasoning on tccp pro-
grams, inpired by this semantics, has been defined in [22].

6 Other extensions of ccp

In this section we survey some more recent extensions of ccp which mainly deal
with probabilistic and uncertainty aspects.

6.1 Probabilistic ccp

In [27] the concurrent constraint programming paradigm is extended with a
probabilistic choice construct which replaces the nondeterministic choice of the
original paradigm; this allows a program to make stochastic moves during its
execution, so that it may be seen as a stochastic process. This embedding of
randomness within the semantics of a well structured programming paradigm,



like ccp, also aims at providing a sound framework for formalising and reasoning
about randomised algorithms and programs. For the resulting language called
probabilistic ccp, a fixpoint semantics is given in [26, 28], which is based on vec-
tor spaces and the Brouwer’s fixpoint theorem. The addition of probabilities
allows for a natural formulation of the average behaviour of a program, whose
specification and analysis is particularly important in the study of system per-
formance and reliability. It also allows for an average-case analysis of programs
as opposite to the worst case analysis common to the classical static analysis
approaches [30].

Concurrent Constraint Programming has been used as a reference program-
ming paradigm for the introduction of a general theory of probabilistic abstract
interpretation, which re-formulates the classical theory of abstract interpretation
in a setting suitable for a quantitative reasoning about programs. In this set-
ting, linear spaces replace the classical order-theoretic domains, and the notion
of the so-called Moore-Penrose pseudo-inverse of a linear operator replaces the
classical notion of a Galois connection. The resulting abstractions turn out to
be close approximations of the concrete semantics, so that closeness becomes a
quantitative replacement for classical safety [29].

6.2 ccp for Service Level Agreement

Service Oriented Computing is an emerging paradigm that builds upon the
notion of services as interoperable elements that can be described, published,
searched and composed. Services may expose both functional properties (i.e.
what they do) and non-functional properties (i.e. the way they are supplied).
A Service Level Agreement (SLA) is a contract between two parties, usually a
service provider and a customer, that records non-functional properties about a
service like performance, availability, and cost.

Recently several extensions of the pure ccp language have been proposed for
dealing with Service Level Agreement aspects. Here we briefly describe the main
proposals in this area.

The concurrent constraint pi-calculus (cc-pi calculus) [12] is a model of Ser-
vice Level Agreement negotiations that is inspired by both ccp and name-passing
calculi. Specifically, the cc-pi calculus combines basic operations of concurrent
constraint programming, such as ask and atomic tell, with a symmetric, syn-
chronous mechanism of interaction between senders and receivers, where the sent
name is ‘fused’ (i.e. identified) to the received name and such an explicit fusion
enables using interchangeably the two names. The cc-pi calculus is parametric
with respect to the choice of an underlying constraint system that is defined
using a suitable semiring structure, equipped with a notion of names. Moreover,
cc-pi includes a restriction operation that allows for local stores of constraints.
Synchronisations of interacting processes may have the effect of combining local
into global stores.

Some semantic aspects of the cc-pi calculus are studied in [13], where its is
defined a notion of open bisimilarity à la pi-calculus for cc-pi. Essentially, two
processes are open bisimilar if they have the same stores of constraints - which



can be statically checked - and if their moves can be mutually simulated. In
[13] it is also shown that the polyadic Explicit Fusion calculus introduced by
Gardner and Wischik can be translated into monadic cc-pi and such a transition
preserves open bisimilarity.

In [11] a further extension of the cc-pi calculus is defined by including prim-
itives for distributed nested commits, inspired by the cjoin calculus (introduced
by Bruni, Melgratti, and Montanari). The two key operations of cjoin are: the
‘abort with compensation’, to stop a negotiation and activate a compensating
process, and the ‘commit’, to store a partial agreement among the parties be-
fore moving to the next negotiation phase. This extended cc-pi calculus comes
equipped with both a small- and a big-step operational semantics which are
proved to coincide.

A different line of research is focused on the use of, so called soft constraint,
to model qualitative aspects of Service Level Agreement in the context of the ccp
paradigm. As described in more detail in another chapter of this book [40], soft
constraints extend classical constraints to represent multiple consistency levels,
and thus provide a way to express preferences, fuzziness, and uncertainty. An
extension of the ccp framework which allows soft constraints in the calculus has
been proposed in [6]. In this extension it is permitted to add (tell) or check (ask)
for soft constraints and the language is enriched with tell/ask thresholds which
can express the level of consistency of the store, thus allowing to prune and
direct the search for a solution (when some consistency levels are not satisfied).
The resulting language, called soft cc (scc), can be also very useful in many
web-related scenarios, since allows web agents to express their interaction and
negotiation protocols, and also to post their requests in terms of preferences.
Differently from the case of “hard” (or “crisp”) constraints, the underlying soft
constraint solver here can find an agreement among the agents even if their
requests are incompatible.

A timed extension of scc has been proposed in [5] in order to be able to express
also Quality of Service aspects which involve time. As in the case of scc, tell and
ask agents are equipped with a preference (or consistency) threshold which is
used to determine their success or suspension. The time and the semantic model
of this extension follows the lines of the tccp language presented in Section 5.

Another extension of scc, which allows the nonmonotonic evolution of the
constraint store, is defined in [7]. To accomplish this, some new operations are
introduced: the retract(c) reduces the current store by c; the updateX(c) trans-
actionally relaxes all the constraints of the store that deal with the variables
in X set, and then adds a constraint c; the nask(c) tests if c is not entailed by
the store. This language allows the management of resources that need a given
Quality of Service: the requirements of all the parties should converge, through
a negotiation process (which involves retract of information), on a formal agree-
ment defined as the Service Level Agreement, which specifies the contract that
must be enforced.



7 Some working ccp systems

In this section we shall briefly survey some existing working ccp systems.
The programming language jcc [55] was designed as an integration of default

tcc into Java and is intended for embedded reactive systems. In jcc users can
define their own constraint system and thus specialize the language to particu-
lar domains. The main purpose of jcc is to provide a model of loosely-coupled
concurrent programming in Java. The language introduces the notion of a vat.
A vat can be thought of as encapsulating a single synchronous, reactive tcc
computation. A computation consists of a dynamically changing collection of in-
teracting vats, communicating with each other through shared, mutable objects
called ports. Asking and telling objects can read from and write into the port,
respectively and the temporal constructs from the underlying tcc model allow
an object to specify code whose execution should be delayed.

In the hybrid concurrent constraint programming language, hcc [43], it is pos-
sible to express discrete and continuous evolution of time. More precisely, there
are points at which discontinuous change may occur (i.e. the execution pro-
ceeds as burst of activity) and open intervals in which the state of the system
changes continuously (i.e. the system evolves continuously and autonomously).
The notion of continuous constraint system (a real-time extension of constraint
systems) is introduced to describe the continuous evolution. The syntax of hcc
extends that of tcc with the construct hence P , asserting that P holds con-
tinuously beyond the current instant. An interpreter of hcc can be found at
http://www-cs-students.stanford.edu/∼vgupta/hcc/hcc.html.

NtccSim is a simulation tool developed in Oz for ntcc, one of the temporal
models previously described . Constraints over finite domains and real intervals
have been used to implement models of biological systems. NtccSim can be found
at http://cic.javerianacali.edu.co/wiki/doku.php?id=grupos:avispa:ntccsim. An
implementation of the other temporal model previously described, tccp, can be
found at http://users.dsic.upv.es/∼villanue/tccpInterpreter.

The LMNTAL model [64] provides a scalable, uniform view of concurrent pro-
gramming concepts such as processes, messages, synchronous and asynchronous
computation. It inherits ideas from the concurrent constraint language GHC and
from Janus. Communication is based on constraints over logical variables. Pro-
cesses sharing variables are thought of as been connected. Multisets of nested
nodes and links are a first-class notion in LMNtal. Transformations are rules,
much like in Janus. LMNtal provides both channel mobility and process mo-
bility: it allows dynamic reconfiguration of process structures as well as the
migration of nested computations. An implementation of LMNtal can be found
at http://www.ueda.info.waseda.ac.jp/lmntal/.

CORDIAL [50] is a visual language intended as a user transparent integration
of constraints and objects. The language is based on a ccp calculus extended
with the notion of objects and classes. Methods are represented as windows.
Objects within methods are represented by closed contours. Object methods
launch ccp processes that, in addition to the usual ask and tell operations, can
send messages to other objects. Messages are objects connected by links to object



mailboxes. Objects are identified by an associated constraint parametrized on
a local variable (so-called self ). Senders willing to invoke some object method
post a constraint involving some variable, say X, and then send the message to
X. Any object such that its associated constraint can be entailed by the store
conjoined with the constraint self = X, is eligible to accept the message. Some
eligible object is then non-deterministically chosen to handle the message. This
scheme allows very complex patterns of communication and mobility.
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