Numerical resolution of a mono-disperse model of bubble growth in magmas

Abstract : Growth of gas bubbles in magmas may be modeled by a system of differential equations that account for the evolution of bubble radius and internal pressure and that are coupled with an advection-diffusion equation defining the gas flux going from magma to bubble. This system of equations is characterized by two relaxation parameters linked to the viscosity of the magma and to the diffusivity of the dissolved gas, respectively. Here, we propose a numerical scheme preserving, by construction, the total mass of water of the system. We also study the asymptotic behavior of the system of equations by letting the relaxation parameters vary from 0 to infinity, and show the numerical convergence of the solutions obtained by means of the general numerical scheme to the simplified asymptotic limits. Finally, we validate and compare our numerical results with those obtained in experiments.
Type de document :
Article dans une revue
Applied Mathematical Modelling, Elsevier, 2012, 36 (12), pp.5936-5951. 〈10.1016/j.apm.2012.01.031〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00544506
Contributeur : Simona Mancini <>
Soumis le : vendredi 13 janvier 2012 - 12:23:35
Dernière modification le : mardi 29 mai 2018 - 12:51:04
Document(s) archivé(s) le : mardi 13 décembre 2016 - 23:03:16

Fichier

fcmbj2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Louis Forestier-Coste, Simona Mancini, Alain Burgisser, François James. Numerical resolution of a mono-disperse model of bubble growth in magmas. Applied Mathematical Modelling, Elsevier, 2012, 36 (12), pp.5936-5951. 〈10.1016/j.apm.2012.01.031〉. 〈hal-00544506v3〉

Partager

Métriques

Consultations de la notice

609

Téléchargements de fichiers

139