N
N

N

HAL

open science

Profiling of SIGNAL programs and its application in the
timing evaluation of design implementations

Apostolos Kountouris, Paul Le Guernic

» To cite this version:

Apostolos Kountouris, Paul Le Guernic. Profiling of SIGNAL programs and its application in the
timing evaluation of design implementations. IEE Colloquium on the Hardware-Software Cosynthesis

for Reconfigurable, Feb 1996, Bristol, United Kingdom. pp.6/1-6/9, 10.1049/ic:19960225 .

00544253

HAL Id: hal-00544253
https://hal.science/hal-00544253
Submitted on 7 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00544253
https://hal.archives-ouvertes.fr

Profiling of SIGNAL programs and its application in the timing evaluation
of design implementations

Apostolos A. Kountouris
Paul Le Guernic

In this paper we present the tool currently under construction in order to
enhance the SIGNAL environment with a facility that will allow the temporal
validation of a system specification in respect to its R/T constraints while stay-
ing within the context of the SIGNAL language. By use of the so called temporal
homomaorphisms we express the temporal dimension of a functional specifica-
tion as a SIGNAL program. This facility can be further extended to evaluate the
temporal behavior of a system in respect to a chosen execution architecture, by
modelling processor architectural features influencing execution time.

1.0 Introduction optimizations can also be taken into account.
From work in [16] it becomes apparent that mod-
Reasoning about the timing properties of a predling processor architectural features increases
gram is indispensable in the development of timge quality of the results. In [16][17][18][19] it is
critical systems where failure to meet deadlineshown that RISC and DSP processor pipelines
can result in loss of life or material. There igan be adequately modelled and in some cases the
much work done in the domain of functionaimodels can also be extended to account for
specification where formal languages like SiGinstruction caches. Finally in [20] it is demon-
NAL, Esterel, Lustre [3] can be successfullstrated that it is possible to predict the perfor-
used. There seems to be an inadequacy as fam@&nce of synthesized hardware at the behavioral
the validation of temporal properties is concernespecification level.
and this is mainly due to the fact that many differ-
ent factors influence the execution time of a prd=rom the discussion above it is clear that a facil-
gram making this problem quite complicatedty that evaluates at the specification level if R/T
when viewed from a high abstraction level. constraints are respected, when a system is imple-
mented by a chosen architecture, is feasible and
In the problem of finding execution time boundgan be very useful. In he remainder of this paper
of a system there are two types of pessimisme describe the facility for extracting the timing
involved. The first type has to do with the proproperties of SIGNAL programs by generating
gram execution flow, available parallelism etcheir temporal homomorphisms, the advantages
The second type is related to target architectuggé the SIGNAL graph in minimizing the pessi-
configuration, and choice of specific componentgism in execution time estimation and finally
that affect the system execution time by eithéfow we plan to extend the use of homomor-
constraining the potential parallelism or imposinghisms to evaluate implementation alternatives.
different operation delays. Previous research
efforts focus in finding safe and tight executio .
time bounds by limiting as much as possible th -0 Introduction to SIGNAL

sources of pessimism. Several approaches fe SIGNAL lan . ,
. . guage[1] is a dataflow oriented
proposed in the literature [12](14]. In [14] theI.anguage based on the synchrony hypothesis[2].

conl()jlltlonﬁ necessia:_y for a prf[)grarrll_ SO St,rl]gi\lt: ?belongs to the family of synchronous languages
probiem has a solution are Set, making] and it is used for the functional specification

programs a good candidate since by definitio reactive RIT systems for control and DSP

they Sa.mey g” ?ft_them.tl?h[li:,]]_ |th|s ‘T‘hOV\Im thata plications. Using the language expressions the
reasoning about time at the nigher 1evel SoUrGe.q o programming in an equational style and

language, is practicable and can yield interestirmus each program is a system of equations. The
results, it is also shown that features like compiler

A. Kountouris and P. Le Guernic are with Institut de Recherche en Informatique et Systéemes Aléatoires - IRISA,
in Rennes, France

SIGNAL compiler resolves these systems andan be considered as equivalence classes between
proves that the control of a program is functionsignals. When two signals are present at the same
ally safe. Around the SIGNAL language and itdogical instants they possess the same clock; oth-
compiler exists a variety of tools that constituteerwise their clocks are different.
the SIGNAL environment. There isGraphical
User Interfacefor program(system desigrgntry, The SIGNAL Ianguage is defined by a small ker-
C and Fortran code generators to generate codel of statements. Each statement has formally
used for functional simulators, intermediate codéefined semantics and defines a clock equation
generators to access formal verification [4] angnd the data dependencies of the participating
other third-party development tools [9]. Fina”ySignalS. Its small size allows for mathematical
there exists a VHDL code generator [5] thafmanipulation of these equations enabling formal
enables us to access hardware synthesis toolgfification of program properties. The basic lan-
The basic data structure of the SIGNAL environguage constructs are shown in the table below
ment is thedynamic graph(DG) which is con- along with an m_formal description. For a more
structed by the compilation process. During thdetailed Qesgrlptlon of the Ianguage, its semantics
compilation the SIGNAL compiler performs and appllcathns th_e reader_ is referred to [1] and
checks (see [1]) useful in discovering possiblé- A last point of interest is the SIGNAL lan-
sources of error and functional unsafety. Briefliguage features that extend its use in the domain
once compilation is over it is certain that the pro®f DSP applications.
gram is deterministic, does not exhibit contradic-
tions, has no cycles (circular data/control deperg.0 Temporal property extraction
dencies), no constraints are set on the inputs and
that desired functional properties (coded as SIGn the paragraphs that follow we present the idea
NAL equations) are satisfied. of SIGNAL program homomorphisms and their
application for the extraction of the temporal
Before introducing the basic elements of the SIGyroperties of a SIGNAL specification. Another
NAL language let us give some basic definitiongmportant aspect is the context of their use that
In SIGNAL terminology asignal is an infinite permits not only the extraction of information,
sequence of data where each element is implicithut also the experimentation with alternatives
indexed by time. At any given logical instant anfluencing execution time (e.g. partitioning,
signal may be absent or present. Presence géheduling).
denoted by the signal’s value at that instant. The
clock of a signal is the set of the logical instant®\n homomorphism is a SIGNAL program gener-
that it is present (and thus carries a value). Clocksed by applying a set efansformationrules on

Language Construct SIGNAL syntax Description
stepwise extensions X:= AopB where op: arithmetic/relational/boolean]
operators
delay ZA = A $x memorization of the® past value of A
extraction R := AwhenB R equal to A when B is present and tue
. . - if X present R:=X else if Y present R :=
priority merging R := X default Y Y else R absent
process composition (PO processes are composed common nanjes

correspond to shared signals

useful extensions

when B the clock of the true instants of B

event X the presence instants of X

synchro {A, B} clock of A equal with clock of B

J

A 4

date_C := CADD (add_pars) {date_A date_ B} I

FIGURE 1. translation rules for temporal homomorphism generation

an initial SIGNAL program. The structure of theof program execution all the potential parallelism
homomorphic program is essentially the same butherent in the system specification can be
its computations expose another aspect of the igxploited. We assume zero communication delays
formation contained in the program graph. Hoand finally to make things even simpler, constant
momorphism generation can be fully automatedperation delays. Even though this scheme may
provided that the transformation rules are definetle far from real it can yield some useful results
Depending on the type of information we wish tdike an upper limit of system performance capa-
extract from a SIGNAL program we may defingilities. If performance constraints are not satis-
an appropriate homomorphism. As an example fifed even under such an ideal execution, that
figure 1 we present the basic translation rules thatompts the designer for algorithmic modifica-
when applied to a SIGNAL program vyield itstions at the functional specification level, before
temporal homomorphism. Roughly these rulegroceeding to later development phases.

are: substitute each signal by its correspondin

date (e.g. date_C for C), substitute each operalgk're data programs: In pure data programs
by an appropriate SIGNAL process (e_gt_here is no control so in the DG dependencies are
CADD() {} for the addition) that acts as a comalways active at every iteration of the system. The
ponent library front-end, insert parameters valud¥’des represent operations. At every node we
that affect operation execution time (e.gh@ve incoming arcs representing the operation
add_pars). These parameters reflect informa@rguments and outgoing arcs representing the
tion that is either found in the DG or is providedPPeration results. The graph of the temporal
by the user and it is the topic of a later section r@omomorphism has exactly the same structure
lating to the target architecture modelling. Anothbut its arcs represent dates and its nodes the
er useful homomorphism is the one for operatioﬁCtiOﬂS that compute the result dates as a function
counting. It can be used in identifying computaOf the argument dates. These actions consist of
tionally intensive parts that may require paralleifinding the maximum of incoming dates and add-
izing, or algorithmic bottlenecks in the specificalnd to it the delay corresponding to the operation

example given in figure 2. In the center we have

drawn the graph that corresponds to the program
on the left. On the right we give the graph corre-

To present the basic ideas we start by consideriggonding to the temporal homomorphism of the
an ideal case. As we proceed we relax o@fogram, which is produced by applying the

assumptions so that in the end we consider a re§j@nsformation rules. In each node we give the
istic case of system implementation. At each st)’P Which is the delay of the operati¢op). The

we introduce the necessary additions to the SIGOttom box contains the actions taking place at
NAL Dynamic Graphn such a way that the sameach node in order to compute the node’s result

model always applies for date calculations. date. In this way starting with the system input
dates and by traversing the graph we obtain the

system output dates.

3.1 Temporal homomorphism

3.1.1 Ideal parallel case

Control/Data programs: The case of programs

In this case we assume that an unlimited nUMbBg{,¢ 4150 contain control demonstrates the advan-

of processors is available, so that at every instant

date_c := max(date_a, date_b) + Dop

date_b

FIGURE 2. date calculations for pure data programs

tages of the SIGNAL graph in accounting for théJsing the SIGNAL clocks it is easy to account
longest execution paths. The date computatiammly for the active paths in the graph during suc-
model is exactly the same as before, only now weessive system iterations, and even more, exclude
have to take into account the clocks of arcs argfocessing paths that can never exist (e.g. paths
nodes. In the SIGNAL graph every element (arcontaining mutually exclusive parts). Such paths
or node) is tagged by the clock that defines theontain dependencies whaose clocks are mutually

logical instants of its presence. Thus consideringxclusive. This information is discovered during
the temporal homomorphism of a node at the lefjock calculus. These advantages of the DG in
of figure 3 the result of theaxis controlled by respect to traditional graphs are illustrated in the
the clocks of the incoming arcs, as it is shown iBxample given in figure 4. In this example thick
the bottom box. When both arcs are present at thiges correspond to program data and thin ones to
same logical instant we take the maximum daigontrol data that affects the execution flow. Next
of the two or else we take the date of whichevep the graph we give the corresponding
arc is present. In the resulting date we add th@eudocode. It is easy to see thataRd Q are
delay of the operation in order to compute the

date of the node output.

1. mutually exclusive clocks are never present at the
same instant

hy ha hy hy
hs h
¥

date_C :=AP; +
max (date_A, date_B)when (h; when hy)
default date_Adefault date_B

FIGURE 3. date calculations when SIGNAL clocks are taken into account

ro:=Py(x) /* 1%
el se

r.=Py(x) /* 2 */
if (co && c,)

y 1= Q(r) /* 3 */
el se

y 1= Q(r) /* 4 */

FIGURE 4. finding longest paths in the SIGNAL dynamic graph

mutually exclusive so the path containing both (have to enforce it with additional dependencies
3) should not be considered in time consumptidmetween potentially parallel operations. The main
counting. This is important if one considers thgbreoccupation is to preserve the same model for
in many approaches for the worst case executidiate calculations as before. The example in
time calculation, a lot of pessimism is attributedigure 5 demonstrates our approach. For this sim-
to the fact that many paths that are infeasible caple case there are no dependencies between oper-
not be excluded from the computations. In [13&tions B and B so there are two possibilities for

[14] [15] [16] user annotations are used to indisequential execution;;PP,, P, Py or Py, P, P,,

cr?te such paths and thrl:s r(;duce pessimism Bt A first step is to add a dependency between P
there Is no guarantee that these annotations gigy R. This dependency is conditional in order to
always correct especially in the case of large

complex programs. In the context of SIGNALbe active only at the instants thaf[both operations
these annotations are clock relationships thdf€ t0 Pe executed at the same time. The clock of

thanks to clock calculus become explicit and a is addeddependency is the intersection (com-

validated durina compilation and thus thev can &N instants) of the clocks of the two operations
considered to k?e saf(fand correct y and it is noted [§ which is the clock defined by

the instants that the boolean arries thetrue
The case otontrol/dataprograms requires somevalue. When gis true the dependency of,Ro P
special care in the generation of their homomols active meaning that,Rnust execute before;P

phlsm_s. I\/Ilanyé control _brr]anc_hes dep:cer;]d on boqlﬁ order to make our scheduling scheme more
ean signals that are either Inputs of the prograji,iyje e also add an inverse conditional depen-

or they are internally computed by the evaluatlogia(_’,ncy from Rto P, with [~sy] as its clock so that

of relational operations. Since in the homomor\;vhen 2 scheduling dependency is active its
phic program no computations contained in the 9 P y

original program take place, we have to provid' verse dependency is inactive. To d(_emo_nstrate
the booleans that define such clocks as ext at the same model of date calculation is pre-
inputs to the homomorphisms in order to preser\feerved let us assume that the clocks j&f €

the same model for date calculations. figure 5) are equal and that we choogetas be
true. The production date of4HAs calculated as
3.1.2 Sequential case follows:

%te_a = max(date_B, date_R) + AP,

: : . d
Since the graph corresponding to the program is — max((date R + AP,),

partial order, to achieve sequential execution we

(max(date_R, date_BR) + AP3) +AP, modelled as SIGNAL processes in order to

= max((date_R +AP,), (max(date_R, account for different execution rates between
(date_R + APy)) + AP3) +AP, PE’s.
= date_ﬁ_’ + AP, + AP3 + AP,

which corresponds to the chosen sequential ex%‘—l'4 Obtaining results using homomorphisms

cution path. There are two ways to use the temporal homo-

morphism in order to obtain results regarding the
temporal behavior of a system and reason

@ @ whether or not time constraints are satisfied. The
first is a sort of approximate temporal simulation
@ @ * Sp- @ @ where the homomorphism is used on a stand-
alone basis. In the second by combining the orig-

inal SIGNAL program with its temporal homo-

@ @ morphism we obtain itgrofiled version.
Approximate temporal simulation: In order to

FIGURE 5. operation scheduling for sequential simulate the temporal response of a system in
execution respect to defined operation delays, we generate

its homomorphism which is the main element of
such a simulator whose configuration is shown in

In a more realistic case an execution architectuf@ure 6. In the bottom box it is indicated that an
consists of a finite number pfocessing elements OUtput date is a function of subsets of input dates,
(PE’s) where the communications between theé@ndltlo_n boo_leans and schedullng dependencies.
PE'’s take time and are no longer for free. At thi§OF & Simulation we have to provide test vectors
point we consider the PE’s as abstract processifig+Gl Which are the clock defining booleans.
elements. The architecture configuration (PE%Ve can either provide a set of vectors that covers
and communication links) defines a hardwar@ll the possible combinations or use a smaller
graph on which the software graph mapped. Thigpresentative set of test vectors. The input gen-
mapping is dictated by a graph partitioning, thagrator (process IN) may perform a statistical
assigns each graph node to a PE. This partitiogmulation of the external environment in order to
ing can be generated in many ways either manget an approximate temporal response of the sys-
ally [6] or automatically by using a partitioning tem. A statistical emulation consists in providing
algorithm. Execution on each PE may be sequeiput date values (environment emulation) and
tial, so ordering dependencies are added (whel@,---, Gl test vectors (program control flow
needed) between the nodes assigned to the sagmeulation). We also have to provide the schedul-
PE. So far in order to treat this general case weg booleans;sas inputs to the homomorphism.

combine the ideas already mentioned in the idegib do this we add a procegshed)that assigns
parallel and sequential cases. The last thing th@fem a value according to a scheduling strategy.
remains is to present how inter-PE communicg=or astatic scheduling these boolean values are
tions are handled so that we can still apply theept constant throughout the execution. In this
same model for date calculations. Communicayay we can also evaluate the results of a schedul-
tions are represented in the DG as operatiqAg algorithm that when applied to a program
nodes added [6] in the graph during partitioninggraph gives a combination of salues. For a

For each communication node its clock has to Q‘Fynamic scheduling s values are assigned

fo_u_nd in such away that the functionality of theaccording to a chosen scheduling strategy that
initial graph is preserved and control error

. ?’nay depend oimput/outputor intermediatesig-
(cycles) are not introduced. Once all the aboYﬁaI dates. In this case tiehedprocess includes

tsteps arle Eerformed r\]/_/e have abDG for Wht'cg Ili%)gic simulating the scheduling strategy. Finally
emporal nomomorphism can be generate e post-processing process may calculate,

before. Furthermore communication links can be

3.1.3 General case: constrained parallelism

X
.1—> P >y,
X'n ’ — Yn
\ -
|._> Postproc == R
N[date Xy "T s date_y;
1 N ! . P : '
— date_xn P) : = date_y,
R >
yYyy? Ca
Sched g; '
Aol
date_y; := Fj (date_xy,..., date_xy, Cy,..., Cg, S1,-.., Sp)

FIGURE 6. temporal behavior simulator configuration

among other things, maximum, minimum anents for such a scheme to work is the topic of the
average dates for the outputs. All these procesgesxt section.
can be automatically generated.

3.2 Extending homomorphisms for timing

Temporal profiling: In software development evaluation of system implementations

profiling of a program is the instrumentation of a

source code so that information and statistics 3ffomomorphisms is the tool that permits to ex-
gathered during_ execution. This information i$;5ct such timing information and in the para-
later processed in order to study program behayraphs that follow we present how its use can be
ior, debug, test etc. In the configuration shown iBytended in order to evaluate at a higher level
figure 7 a SIGNAL program is instrumented fOlyoy the choice of a specific execution platform
temporal property extraction when composefhfyences the temporal response of a system. The
with its temporal homomorphism. To refer to thirs; step is to parametrize the temporal homomor-
combined execution of a SIGNAL program anghnism and for that we identify the parameters that
its temporal homomorphism we introduce théyfiyence operation delays and the building
term temporal profiling The original program is p|ocks(componentspf system architectures. The
transformed in such a way the conditional bookecond step is to make available the timing model
eans computed inside are produced as outpiSeach component and by accessing these models
connected to the c_orrespondmg inputs of _the teRjith the appropriate parameter values get the op-
poral homomorphism process. Scheduling angation delays when executed on a specific com-
date post-processing processes follow the Sa¥Bnent. Finally, using the parametrized homo-
model as in the approximate simulation case. Tf?ﬁorphisms a high-levelco-)simulation environ-
basic application of thigrofiling is a high level ment can be defined, in which the designer can
simulation environment where we can simulatgj late the execution of a system on a target ar-

the execution of a SIGNAL program on a Va”e%hitecturé. This facility permits fast and cheap

of target architectures and contrast the perfor: . . . :

.) design exploration as evaluation occurs early in
mance of each one against the system's R/T “GHe development process and entirely in software
straints. In this environment we can experimen b b y '

with various scheduling strategies and with dif-
ferent types of processing elements in order to

refine the design choices. The necessary ingreai_ if a target architecture contains hardware such a
simulation can be seen as a sort of co-simulation.

e | N

- LB &1
| - P | -
Xn » Vi
Cq
I, Postproc i R
> N[c:ate_xlr T o ——Pdate_y,;
> L date_x,) - date_yn
X cy 00
vyyvvy Ca >
S ——>
Sched Sp—
A A

K g B /

FIGURE 7. profiling of SIGNAL programs for exact modelling of temporal behavior

Homomorphism parametrization: Briefly we unpredictability, like data caches for example, are
can introduce parameters in the componenisually avoided.

library process front-ends (e.g. add_pars of

CADD in figure 1) whose values indicate amongdince there are many similarities in machine code
other things the PE executing an operation so th@gneration for off-the-shelf processors and netlist
the appropriate component library file can b@eneration for hardware ones it would be very
used, the operation class and the argument typéseful if we could use the same modelling ap-
involved. To account for compiler optimizationsproach for all types of components. In [20] the

and architectural features like pipelined or supefeasibility of extracting performance estimations

scalar processors it is necessary to include paraffem behavioral specifications is encouraging as
eters giving the operation context (in terms ofar as modelling hardware at a high level is con-
Surrounding Operations, argument sources ars@rned. FinaIIy in the case of interconnects accu-
result sinks etc.). The parameter values can Bate analytical models, that we can use to obtain

either found in the DG or be provided by the useEommunication delays, already exist. In our view
it is possible to create high-level models for each

Component modelling: A target architecture basic processor architectural feature and then by
might contain a various number of processingombining them obtain complete models of exist-
elements and interconnects between them. A primg processors that can be used under our frame-
cessing element can be either an off-the-shelfork.

processor or a hardware ASIC (or ASIP) but at a

high level of abstraction we can refer to them 4% 0 Conclusions

processors. For the off-the shelf processors dif-

ferent ones impose different levels of modelling, this paper we presented the ideas for augment-
complexity depending on their architectural feajg the SIGNAL environment with a facility that
tures. In [17] and [18] it is shown that RISC propermits the validation of functional as well as
cessor pipelines can be adequately modelled afhing properties of R/T control and DSP sys-
in [16] and [18] the method is also extended tgms. The SIGNAL language has many desirable
account for instruction caches. In [16] it is clearlfeatures permitting control-safe specifications
shown that memory hierarchy cannot beng it also satisfies the prerequisites for the
neglected since it affects execution time considsytraction of safe execution time bounds. The
erably. Modelling of DSP processors is the suqmemaﬂ representation of tiynamic graptcon-
ject of [19] where things seem to be less compliyins information that permits to safely minimize
cated since in their design features introducing,e pessimism for making those bounds tighter by

excluding infeasible paths. The concept of homahoices (e.g. hw/sw partitioning) is implicit in the
morphisms has been introduced, in order tagorithms and bound to either inaccurate compo-
expose the temporal dimension of SIGNAL prorent modelling information or quite restrictive
grams expressed as SIGNAL processes. Ttarget architectures [7][8][9], at the cost of limit-
parametrization of homomorphisms will permiing the design space and making re-iterations in
reasoning about the timing properties of speciftbe design process, costly. The high-level
implementations by use of high-level componerpproach we propose will increase the quality of
models. This extension will enable us to evaluatesults and moves the evaluation early enough so
implementation alternatives early in the develofhat design space exploration is quicker and more
ment lifecycle by building versatile implementaflexible.

tion simulators that can also serve as experimen-

tation platforms assisting in fine tuning the desighs future directions in our work we can briefly
choices. Accurate component models will furthghention the use of homomorphisms to obtain

minimize the pessimism in estimating evefther types of information like for example opera-
tighter execution time bounds. tion counting. Also, since the temporal aspect of a

system is expressed as a SIGNAL process that
In respect to the potential applications of oumneans that a system of temporal equations can be
method two domains are of particular intereséxtracted and formal calculi tools might be used.
First, design evaluation schemes for hw/sw coderom a SIGNAL program we can generate cor-
sign methods and second, development framectly annotated C code in order to access other
work aspects.Currently the evaluation of desigexisting timing tools.

REFERENCES

[1] “Programming Real Time Applications with SIGNAL”, Paul Le Guernic, Michel Le Borgne,
Thierry Gautier, Claude Le Maire, Proceedings of the IEEE, vol.79, no.9, pgs 1321-1336,
Sep. 1991

[2] “The Synchronous Approach to Reactive and Real-Time Systems”, Albert Benveniste, Gerard
Berry, Proceedings of the IEEE, vol.79, no.9, Sep. 1991, pgs 1270-1282

[3] Special section: R/T Programming, Proceedings of the IEEE, vol.79, no.9, Sep. 1991

[4] “The SIGNAL dataflow methodology applied to a production cell”, T.P. Amagbegnon, P. Le
Guernic, H. Marchand, E. Rutten, Lecture Notes in Computer Science LNCS No 891,
Springer Verlag, Jan. 1995

[5] *“Using VHDL for Link to Synthesis Tools”, M. Belhadj, North Atlantic Test Workshop, Jun.
1994

[6] “Synchronous distribution of SIGNAL programs”, Pascal Aubry, P. Le Guernic, S. Machard,
Proceedings 29th Hawaii Intl. Conference on System Sciences, Jan. 1996, pgs 656--665

[7] “System Synthesis via Hardware-Software Codesign”, R.K.Gupta, Giovanni De Micheli,
Computer Systems Laboratory Technical Report, CSL-TR-92-548

[8] “A Global Criticality / Local Phase Driven Algorithm for the Constrained Hardware / Soft-
ware Partitioning Problem”, A.Kalavade, E.A.Lee, IEEE Proceedings, Intl.Conf. on HW/SW
Codesign, pgs 42-48, 1994

[9] “The SynDEx software environment for real-time distributed systems design and implementa-
tion”, C. Lavarenne, O. Seghrouchni, Y. Sorel, M. Sorine, ECC91 European Control Confer-
ence, Grenoble, France Jul.91, pgs 1684-1689

[10] “A Hardware-Software Codesign Methodology for DSP Applications”, Asawaree Kalavade,
Edward A. Lee, IEEE Design & Test of Computers, pgs 16-28, Sep. 1993

[11] “Synthesis Steps and Design Models for Codesign”, Tarek Ben Ismail, Amine Jerraya, IEEE
Computer, pgs 44-52, Feb. 1995

[12] *“Reasoning about time in higher-level language software”, A.C. Shaw, IEEE Transactions on
Software Engineering, vol.15, no.7, July 1989, pgs 875-889

[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

“Experiments with a Program Timing Tool Based on Source-Level Timing Schema”, Chang
Yun Park, Allan C. Shaw, IEEE Computer, May 1991, pgs 48-57

“Calculating the Maximum Execution Time of Real-Time Programs”, P. Puschner, Ch. Koza,
RR-01-89, Institut fur Technische Informatik, Technische Universitat Wien, April 1989

“ A Tool for the Computation of Worst Case Task Execution Times”, P. Puschner, A. Schedl,
RR-04-93, Institut fur Technische Informatik, Technical University of Vienna

“Efficient Microarchitecture Modelling and Path Analysis for Real-Time Software”, Y-T.S.
Li, Sh. Malik, A. Wolfe, Proceedings of the IEEE Real-Time Systems Symposium, Dec. 1995

“Predicting Worst Case Execution Times on a Pipelined RISC Processor”, S.J. Bharrat, K.
Jeffay, Technical Report TR94-072, Dept. of CS, Univ. of North Carolina at Chapel Hill,
April 1994

“An Accurate Worst Case Timing Analysis Technique for RISC Processors”, Sung-Soo Lim
et al., IEEE Real-Time Systems Symposium 1994, Puerto Rico, Dec. 1994, pgs 97-108

“Software performance estimation of DSPs for HW/SW partitioning”, M. Augin, C. Belleudy,
G. Gogniat, C. Kieffer, Intl. Workshop on Logic and Architecture Synthesis, IFIP TC10
WG10.5, Grenoble-France, Dec. 1995, pgs 273-282

“Estimating Architectural Resources and Performance for High-Level Synthesis Applica-
tions”, Alok Sharma, Rajiv Jain, IEEE Transactions on VLSI systems, vol.1, no.2, June 1993,
pgs 175-190

“Generating Machine Specific Optimizing Compilers”, Roger Hoover, Kenneth Zadeck,
Research Report, IBM Research Division

“A Retargetable Compiler for ANSI C”, C.W. Fraser, D.R. Hanson, SIGPLAN Notices 26,
pgs 29-43, Oct. 1991

