Skip to Main content Skip to Navigation
Journal articles

One Point Isometric Matching with the Heat Kernel

Maks Ovsjanikov 1, * Quentin Mérigot 2, * Facundo Mémoli 3 Leonidas J. Guibas 1
* Corresponding author
2 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
Abstract : A common operation in many geometry processing algorithms consists of finding correspondences between pairs of shapes by finding structure-preserving maps between them. A particularly useful case of such maps is isometries, which preserve geodesic distances between points on each shape. Although several algorithms have been proposed to find approximately isometric maps between a pair of shapes, the structure of the space of isometries is not well understood. In this paper, we show that under mild genericity conditions, a single correspondence can be used to recover an isometry defined on entire shapes, and thus the space of all isometries can be parameterized by one correspondence between a pair of points. Perhaps surprisingly, this result is general, and does not depend on the dimensionality or the genus, and is valid for compact manifolds in any dimension. Moreover, we show that both the initial correspondence and the isometry can be recovered efficiently in practice. This allows us to devise an algorithm to find intrinsic symmetries of shapes, match shapes undergoing isometric deformations, as well as match partial and incomplete models efficiently.
Document type :
Journal articles
Complete list of metadata

Cited literature [18 references]  Display  Hide  Download
Contributor : Quentin Mérigot <>
Submitted on : Monday, December 6, 2010 - 6:16:56 PM
Last modification on : Friday, February 26, 2021 - 10:58:01 AM
Long-term archiving on: : Monday, November 5, 2012 - 11:30:37 AM


Files produced by the author(s)




Maks Ovsjanikov, Quentin Mérigot, Facundo Mémoli, Leonidas J. Guibas. One Point Isometric Matching with the Heat Kernel. Computer Graphics Forum, Wiley, 2010, 29 (5), pp.1555-1564. ⟨10.1111/j.1467-8659.2010.01764.x⟩. ⟨hal-00543885⟩



Record views


Files downloads