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RANDOM SEQUENCES AND POINTWISE CONVERGENCE OF

MULTIPLE ERGODIC AVERAGES

N. FRANTZIKINAKIS, E. LESIGNE, AND M. WIERDL

Abstract. We prove pointwise convergence, as N → ∞, for the multiple ergodic averages
1
N

∑N

n=1 f(T
nx) ·g(Sanx), where T and S are commuting measure preserving transformations,

and an is a random version of the sequence [nc] for some appropriate c > 1. We also prove

similar mean convergence results for averages of the form 1
N

∑N

n=1 f(T
anx) · g(Sanx), as well

as pointwise results when T and S are powers of the same transformation. The deterministic
versions of these results, where one replaces an with [nc], remain open, and we hope that our
method will indicate a fruitful way to approach these problems as well.

1. Introduction

1.1. Background and new results. Recent advances in ergodic theory have sparked an
outburst of activity in the study of the limiting behavior of multiple ergodic averages. Despite
the various successes in proving mean convergence results, progress towards the corresponding
pointwise convergence problems has been very scarce. For instance, we still do not know
whether the averages

(1)
1

N

N
∑

n=1

f(T nx) · g(Snx)

converge pointwise when T and S are two commuting measure preserving transformations
acting on the same probability space and f and g are bounded measurable functions. Mean
convergence for such averages was shown in [11] and was recently generalized to an arbitrary
number of commuting transformations in [27]. On the other hand, the situation with pointwise
convergence is much less satisfactory. Partial results that deal with special classes of trans-
formations can be found in [2, 3, 22, 23, 1]. Without imposing any strictures on the possible
classes of the measure preserving transformations considered, pointwise convergence is only
known when T and S are powers of the same transformation [8] (see also [12] for an alternate
proof), a result that has not been improved for twenty years.
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More generally, for fixed α, β ∈ [1,+∞), one would like to know whether the averages

(2)
1

N

N
∑

n=1

f(T [nα]x) · g(S[nβ ]x)

converge pointwise. Mean convergence for these and related averages has been extensively
studied, partly because of various links to questions in combinatorics. In particular, mean
convergence is known when T = S and α, β are positive integers [18, 25], or positive non-integers
[15]. Furthermore, for general commuting transformations T and S, mean convergence is known
when α, β are different positive integers [10]. Regarding pointwise convergence, again, the
situation is much less satisfactory. When α, β are integers, some partial results for special classes
of transformations can be found in [13] and [24]. Furthermore, pointwise convergence is known

for averages of the form 1
N

∑N
n=1 f(T

[nα]x) with no restrictions on the transformation T ([7]
for integers α, and [29] or [6] for non-integers α). But for general commuting transformations
T and S, no pointwise convergence result is known, not even when T = S and α 6= β.

The main goal of this article is to make some progress related to the problem of pointwise
convergence of the averages (2) by considering randomized versions of fractional powers of n,
in place of the deterministic ones, for various suitably chosen exponents α and β. In our first
result, we study a variation of the averages (2) where the iterates of T are deterministic and
the iterates of S are random. More precisely, we let an be a random version of the sequence
[nβ] where β ∈ (1, 14/13) is arbitrary. We prove that almost surely (the set of probability 1 is
universal) the averages

(3)
1

N

N
∑

n=1

f(T nx) · g(Sanx)

converge pointwise, and we determine the limit explicitly. This is the first pointwise conver-
gence result for multiple ergodic averages of the form 1

N

∑N
n=1 f(T

anx) · g(Sbnx), where an, bn
are strictly increasing sequences and T, S are general commuting measure preserving transfor-
mations. In fact, even for mean convergence the result is new, and this is an instance where
convergence of multiple ergodic averages involving sparse iterates is obtained without the use
of rather deep ergodic structure theorems and equidistribution results on nilmanifolds.

In our second result, we study a randomized version of the averages (2) when α = β. In
this case, we let an be a random version of the sequence [nα] where α ∈ (1, 2) is arbitrary, and
prove that almost surely (the set of probability 1 is universal) the averages

(4)
1

N

N
∑

n=1

f(T anx) · g(Sanx)

converge in the mean, and conditionally to the pointwise convergence of the averages (1), they
also converge pointwise. Even for mean convergence, this gives the first examples of sparse
sequences of integers an for which the averages (4) converge for general commuting measure
preserving transformations T and S.

Because our convergence results come with explicit limit formulas, we can easily deduce
some related multiple recurrence results. Using the correspondence principle of Furstenberg,
these results translate to statements in combinatorics about configurations that can be found
in every subset of the integers, or the integer lattice, with positive upper density.
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Let us also remark that convergence of the averages (1) for not necessarily commuting trans-
formations is known to fail in general1. We prove that this is also the case for the averages (2),
(3), and (4).

We state the exact results in the next section, where we also give precise definitions of the
concepts used throughout the paper.

1.2. Precise statements of new results.

1.2.1. Our setup. We work with random sequences of integers that are constructed by selecting
a positive integer n to be a member of our sequence with probability σn ∈ [0, 1]. More precisely,
let (Ω,F ,P) be a probability space, and let (Xn)n∈N be a sequence of independent random
variables with

P(Xn = 1) = σn and P(Xn = 0) = 1− σn.

In the present article we always assume that σn = n−a for some a ∈ (0, 1). The random
sequence (an(ω))n∈N is constructed by taking the positive integers n for which Xn(ω) = 1 in
increasing order. Equivalently, an(ω) is the smallest k ∈ N such that X1(ω)+ · · ·+Xk(ω) = n.
We record the identity

(5) X1(ω) + · · ·+Xan(ω)(ω) = n

for future use.
The sequence (an(ω))n∈N is what we called random version of the sequence n1/(1−a) in

the previous subsection. Indeed, using a variation of the strong law of large numbers (see

Lemma 5.6 below), we have that almost surely 1∑N
k=1 σk

∑N
k=1Xk(ω) converges to 1. Using the

implied estimate for an(ω) in place of N , where n is suitably large, and (5), we deduce that

almost surely an(ω)/n
1/(1−a) converges to a non-zero constant.

1.2.2. Different iterates. In our first result we study a randomized version of the averages (2)
when α = 1.

Theorem 1.1. With the notation of Section 1.2.1, let σn = n−a for some a ∈ (0, 1/14). Then
almost surely the following holds: For every probability space (X,X , µ), commuting measure
preserving transformations T, S : X → X, and functions f, g ∈ L∞(µ), for almost every x ∈ X
we have

(6) lim
N→∞

1

N

N
∑

n=1

f(T nx) · g(San(ω)x) = f̃(x) · g̃(x)

where f̃ := limN→∞
1
N

∑N
n=1 T

nf = E(f |I(T )), g̃ := limN→∞
1
N

∑N
n=1 S

ng = E(g|I(S)).2

1See example 7.1 in [2], or let T, S : T → T, given by Tx = 2x, Sx = 2x+α, and f(x) = e−2πix, g(x) = e2πix,

where α ∈ [0, 1] is chosen so that the averages 1
N

∑N

n=1 e
2πi·2nα diverge.

2If (X,X , µ) is a probability space, f ∈ L∞(µ), and Y is a sub-σ-algebra of X , we denote by E(f |Y) the
conditional expectation of f given Y. If T : X → X is a measure preserving transformation, by I(T ) we denote
the sub-σ-algebra of sets that are left invariant by T .
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We remark that the conclusion of Theorem 1.1 can be easily extended to all functions f ∈ Lp,
g ∈ Lq, where p ∈ [1,+∞] and q ∈ (1,+∞] satisfy 1/p + 1/q ≤ 1.3

Combining the limit formula of Theorem 1.1 with the estimate (see Lemma 1.6 in [9])
∫

f · E(f |X1) · E(f |X2) dµ ≥
(

∫

f dµ
)3
,

that holds for every non-negative function f ∈ L∞(µ) and sub-σ-algebras X1 and X2 of X , we
deduce the following:

Corollary 1.2. With the assumptions of Theorem 1.1, we get almost surely, that for every
A ∈ X we have

lim
N→∞

1

N

N
∑

n=1

µ(A ∩ T−nA ∩ S−an(ω)A) ≥ µ(A)3.

The upper density d̄(E) of a set E ⊂ Z
2 is defined by d̄(E) = lim supN→∞

|E∩[−N,N ]2|
|[−N,N ]2| . Com-

bining the previous multiple recurrence result with a multidimensional version of Furstenberg’s
correspondence principle [17], we deduce the following:

Corollary 1.3. With the notation of Section 1.2.1, let σn = n−a for some a ∈ (0, 1/14). Then
almost surely, for every v1,v2 ∈ Z

2 and E ⊂ Z
2 we have

lim inf
N→∞

1

N

N
∑

n=1

d̄
(

E ∩ (E − nv1) ∩ (E − an(ω)v2)
)

≥ (d̄(E))3.

We remark that in the previous statement we could have used the upper Banach density

d∗ in place of the upper density d̄. This is defined by d∗(E) = lim sup|I|→∞
|E∩I|
|I| , where |I|

denotes the area of a rectangle I and the lim sup is taken over all rectangles of Z2 with side
lengths that increase to infinity. The same holds for the statement of Corollary 1.6 below.

1.2.3. Same iterates. In our next result we study a randomized version of the averages (1). By
Tf we denote the composition f ◦ T .

Theorem 1.4. With the notation of Section 1.2.1, let σn = n−a for some a ∈ (0, 1/2). Then
almost surely the following holds: For every probability space (X,X , µ), commuting measure
preserving transformations T, S : X → X, and functions f, g ∈ L∞(µ), the averages

(7)
1

N

N
∑

n=1

T an(ω)f · San(ω)g

converge in L2(µ) and their limit equals the L2-limit of the averages 1
N

∑N
n=1 T

nf · Sng (this
exists by [11]). Furthermore, if T and S are powers of the same transformation, then the
averages (7) converge pointwise.

3To see this, one uses a standard approximation argument and the fact that the averages 1
N

∑N

n=1 T
nf

converge pointwise for f ∈ Lp when p ∈ [1,+∞], and the same holds for the averages 1
N

∑N

n=1 S
an(ω)f for

f ∈ Lq when q ∈ (1,+∞] (see for example exercise 3 on page 78 of [26]).
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Our argument actually shows that the averages (7) converge pointwise if and only if the
averages (1) convergence pointwise. Furthermore, using our method, one can get similar con-
vergence results for other random multiple ergodic averages. For instance, our method can be
modified and combined with the results from [27] and [10] to show that for every ℓ ∈ N, if
σn = n−a and a is small enough (in fact any a ∈ (0, 2−ℓ) works), then almost surely the aver-

ages 1
N

∑N
n=1 T

an(ω)
1 f1 · · · T an(ω)

ℓ fℓ and
1
N

∑N
n=1 T

an(ω)
1 f1 · T (an(ω))2

2 f2 · · ·T (an(ω))ℓ

ℓ fℓ converge in
the mean.

Combining Theorem 1.4 with the multiple recurrence result of Furstenberg and Katznelson
[17], we deduce the following:

Corollary 1.5. With the assumptions of Theorem 1.4, we get almost surely, that if A ∈ X has
positive measure, then

lim
N→∞

1

N

N
∑

n=1

µ(A ∩ T−an(ω)A ∩ S−an(ω)A) > 0.

Combining the previous multiple recurrence result with the correspondence principle of
Furstenberg [16], we deduce the following:

Corollary 1.6. With the notation of Section 1.2.1, let σn = n−a for some a ∈ (0, 1/2). Then
almost surely, for every v1,v2 ∈ Z

2, and every E ⊂ Z
2 with d̄(E) > 0, we have

lim inf
N→∞

1

N

N
∑

n=1

d̄
(

E ∩ (E + an(ω)v1) ∩ (E + an(ω)v2)
)

> 0.

1.2.4. Non-recurrence and non-convergence. One may wonder whether the assumption that the
transformations T and S commute can be removed from the statements of Theorems 1.1 and
1.4 and the related corollaries. It can definitely be weakened; probably assuming that the group
generated by T and S is nilpotent suffices, see for example [4] where mean convergence of the
averages (1) is shown under such an assumption. On the other hand, constructions of Berend
(Ex 7.1 in [2]) and Furstenberg (page 40 in [16]) show that Theorem 1.4 and Corollary 1.5
are false if the assumption that the transformations T and S commute is completely removed.
Next, we state a rather general result which implies that one has similar obstructions when
dealing with Theorem 1.1 and Corollary 1.2.

Given a probability space (X,X , µ), we say that a measure preserving transformation T : X →
X is Bernoulli if the measure preserving system (X,X , µ, T ) is isomorphic to a Bernoulli shift
on finitely many symbols.

Theorem 1.7. Let a, b : N → Z \ {0} be two injective sequences. Then there exist a probability
space (X,X , µ) and measure preserving transformations T, S : X → X, both of them Bernoulli,
such that

• for some f, g ∈ L∞(µ) the averages 1
N

∑N
n=1

∫

T a(n)f · Sb(n)g dµ diverge, and

• for some A ∈ X with µ(A) > 0 we have µ(T−a(n)A ∩ S−b(n)A) = 0 for every n ∈ N.

One can use a variation of our argument to extend Theorem 1.7 to sequences of bounded
multiplicity, meaning sequences (c(n)) that satisfy supm∈range(c)#{n ∈ N | c(n) = m} < +∞.
On the other hand, Theorem 1.7 cannot be extended to all sequences that take any given
integer value a finite number of times. For instance, it is not hard to show that the pair of
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sequences a(n) = [
√
n], b(n) = n, is good for (multiple) recurrence and mean convergence (see

the proof of Theorem 2.7 in [15]).

1.2.5. Further directions. The restrictions on the range of the eligible parameter a in Theo-
rem 1.1, Theorem 1.4, and the related corollaries, appears to be far from best possible.4 In
fact, any a < 1 is expected to work, but it seems that new techniques are needed to prove this.
This larger range of parameters is known to work for pointwise convergence of the averages
1
N

∑N
n=1 f(T

an(ω)x) (see [5] for mean convergence, [7] for pointwise, and [26] for a survey of
related results). Furthermore, when σn = σ ∈ (0, 1) for every n ∈ N, it is not clear whether the
conclusion of Theorem 1.1 related to pointwise convergence holds (see Theorem 4 in [21] for a
related negative pointwise convergence result).

Regarding Theorem 1.1, it seems very likely that similar convergence results hold when
the iterates of the transformation T are given by other “good” deterministic sequences, like
polynomial sequences. Our argument does not give such an extension because it relies crucially
on the linearity of the iterates of T . Furthermore, it seems likely that similar convergence results
hold when the iterates of T and S are both given by random versions of different fractional
powers, chosen independently. Again our present argument does not seem to apply to this case.

1.3. General conventions and notation. We use the symbol ≪ when some expression is
majorized by a constant multiple of some other expression. If this constant depends on the
variables k1, . . . , kℓ, we write ≪k1,...,kℓ. We say that an ∼ bn if an/bn converges to a non-
zero constant. We denote by oN (1) a quantity that converges to zero when N → ∞ and
all other parameters are fixed. We say that two sequences are asymptotically equal whenever
convergence of one implies convergence of the other and both limits coincide. If (Ω,F ,P) is
a probability space, and X is a random variable, we set Eω(X) :=

∫

X dP. We say that
a property holds almost surely if it holds outside of a set with probability zero. We often
suppress writing the variable x when we refer to functions and the variable ω when we refer to
random variables or random sequences. Lastly, the following notation will be used throughout
the article: N := {1, 2, . . .}, Tf := f ◦ T , e(t) := e2πit.

2. Convergence for independent random iterates

In this section we prove Theorem 1.1. Throughout, we use the notation introduced in
Section 1.2.1 and we also let

Yn := Xn − σn, WN :=

N
∑

n=1

σn.

We remark that if σn = n−a for some a ∈ (0, 1), then WN ∼ N1−a.

4Any improvement in the range of the eligible parameter a in the statement of Proposition 2.1 or Proposi-
tion 3.1, would give corresponding improvements in the statement of Theorem 1.1 and Theorem 1.4 and the
related corollaries.
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2.1. Strategy of the proof. Roughly speaking, in order to prove Theorem 1.1 we go through
the following successive comparisons:

1

N

N
∑

n=1

f(T nx) · g(San(ω)x) ≈ 1

WN

N
∑

n=1

Xn(ω) · f(TX1(ω)+···+Xn(ω)x) · g(Snx)

≈ 1

WN

N
∑

n=1

σn · f(TX1(ω)+···+Xn(ω)x) · g(Snx)

≈ 1

N

N
∑

n=1

f(TX1(ω)+···+Xn(ω)x) · g(Snx)

≈ g̃(x) · 1

N

N
∑

n=1

f(TX1(ω)+···+Xn(ω)x)

≈ g̃(x) · 1

N

N
∑

n=1

f(T nx)

≈ f̃(x) · g̃(x),

where AN (ω, x) ≈ BN (ω, x) means that almost surely (the set of probability 1 is universal), the
expression AN (ω, x) is asymptotically equal to BN (ω, x) for almost every x ∈ X. The second
comparison is the most crucial one; essentially one has to get good estimates for the L2 norm of

the averages 1
WN

∑N
n=1(Xn(ω)−σn) ·TX1(ω)+···+Xn(ω)f ·Sng. We do this in two steps. First we

use an elementary estimate of van der Corput twice to get a bound that depends only on the
random variables Yn, and then estimate the resulting expressions using the independence of the
variables Yn. Let us also mention that the fifth comparison follows immediately by applying
the first three for g = 1.

2.2. A reduction. Our first goal is to reduce Theorem 1.1 to proving the following result:

Proposition 2.1. Suppose that σn = n−a for some a ∈ (0, 1/14) and let γ > 1 be a real num-
ber. Then almost surely the following holds: For every probability space (X,X , µ), commuting
measure preserving transformations T, S : X → X, and functions f, g ∈ L∞(µ), we have

(8)

∞
∑

k=1

∥

∥

∥

∥

∥

∥

1

W[γk]

[γk]
∑

n=1

Yn(ω) · TX1(ω)+···+Xn(ω)f · Sng

∥

∥

∥

∥

∥

∥

2

L2(µ)

< +∞.

We are going to establish this reduction in the next subsections.

2.2.1. First step. We assume, as we may, that both functions |f | and |g| are pointwise bounded
by 1 for all points in X. By (5) for every ω ∈ Ω and x ∈ X we have

1

N

N
∑

n=1

f(T nx) · g(San(ω)x) =
1

N

N
∑

n=1

f(TX1(ω)+···+Xan(ω)(ω)x) · g(San(ω)x).
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A moment of reflection shows that for every bounded sequence (bn)n∈N, for every ω ∈ Ω, the
averages

1

N

N
∑

n=1

ban(ω)

and the averages

1

WN (ω)

N
∑

n=1

Xn(ω) · bn,

where WN (ω) := X1(ω) + · · · + XN (ω), are asymptotically equal as N → ∞. Moreover,
Lemma 5.6 in the Appendix gives that almost surely limN→∞WN (ω)/WN = 1. Therefore, the
last averages are asymptotically equal to the averages

1

WN

N
∑

n=1

Xn(ω) · bn.

Putting these observations together, we see that for almost every ω ∈ Ω the averages in (6)
and the averages

(9)
1

WN

N
∑

n=1

Xn(ω) · f(TX1(ω)+···+Xn(ω)x) · g(Snx)

are asymptotically equal for every x ∈ X.

2.2.2. Second step. Next, we study the limiting behavior of the averages (9) when the random
variables Xn are replaced by their mean. Namely, we study the averages

(10)
1

WN

N
∑

n=1

σn · f(TX1(ω)+···+Xn(ω)x) · g(Snx).

By Lemma 5.3 in the Appendix, for every ω ∈ Ω and x ∈ X they are asymptotically equal to
the averages

(11)
1

N

N
∑

n=1

f(TX1(ω)+···+Xn(ω)x) · g(Snx).

Lemma 2.2. Suppose that σn = n−a for some a ∈ (0, 1). Then almost surely the following
holds: For every probability space (X,X , µ), measure preserving transformations T, S : X → X,
and functions f, g ∈ L∞(µ), we have

lim
N→∞

( 1

N

N
∑

n=1

f(TX1(ω)+···+Xn(ω)x) · g(Snx)− 1

N

N
∑

n=1

f(TX1(ω)+···+Xn(ω)x) · E(g|I(S))(x)
)

= 0

for almost every x ∈ X.

Proof. It suffices to show that almost surely, if E(g|I(S)) = 0, then limN→∞AN (f, g, ω, x) = 0
for almost every x ∈ X, where

AN (f, g, ω, x) :=
1

N

N
∑

n=1

f(TX1(ω)+···+Xn(ω)x) · g(Snx).
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First we consider functions g of the form h − Sh where h ∈ L∞(µ). Assuming, as we may,
that both |f | and |h| are pointwise bounded by 1 for all points in X, partial summation gives
that

AN (f, h− Sh, ω, x) =
1

N

N
∑

n=1

(

f(TX1(ω)+···+Xn(ω)x)− f(TX1(ω)+···+Xn−1(ω)x)
)

· h(Snx) + oN (1).

The complex norm of the last expression is bounded by a constant times the average

1

N

N
∑

n=1

1En(ω)

where En := {ω : Xn(ω) = 1}. Since P(En) = n−a, combining our assumption with Lemma 5.5
in the Appendix, we get that the last average converges almost surely to 0 as N → ∞. There-
fore, on a set Ω0 of probability 1, that depends only on the random variables Xn, we have

(12) lim
N→∞

AN (f, h− Sh, ω, x) = 0

for almost every x ∈ X.
Furthermore, using the trivial estimate

|AN (f, g, ω, x)| ≤ 1

N

N
∑

n=1

|g|(Snx),

and then applying the pointwise ergodic theorem for the transformation S, we get for every
ω ∈ Ω that

(13)

∫

lim sup
N→∞

|AN (f, g, ω, ·)| dµ ≤ ‖g‖L1(µ) .

Since every function g ∈ L∞(µ) that satisfies E(g|I(S)) = 0 can be approximated in L1(µ)
arbitrarily well by functions of the form h− Sh with h ∈ L∞(µ), combining (12) and (13), we
get for every ω ∈ Ω0, that if E(g|I(S)) = 0, then limN→∞AN (f, g, ω, x) = 0 for almost every
x ∈ X. This completes the proof. �

2.2.3. Third step. We next turn our attention to the study of the limiting behavior of the
averages

(14)
1

N

N
∑

n=1

f(TX1(ω)+···+Xn(ω)x).

Lemma 2.3. Let σn = n−a for some a ∈ (0, 1/14). Then almost surely the following holds: For
every probability space (X,X , µ), measure preserving transformation T : X → X, and function
f ∈ L∞(µ), the averages in (14) converge to E(f |I(T ))(x) for almost every x ∈ X.

Remark. Improving the range of the parameter a would not lead to corresponding improvements
in our main results. On the other hand, the restricted range we used enables us to give a succinct
proof using Proposition 2.1.
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Proof. We assume, as we may, that the function |f | is pointwise bounded by 1 for all points in
X. First notice that by Lemma 5.3 in the Appendix, for every ω ∈ Ω and x ∈ X, the averages
in (14) are asymptotically equal to the averages

1

WN

N
∑

n=1

σn · f(TX1(ω)+···+Xn(ω)x)

where WN :=
∑N

n=1 n
−a ∼ N1−a. Combining this observation with Corollary 5.2 on the

Appendix, we deduce that it suffices to show that almost surely the following holds: For
every probability space (X,X , µ), measure preserving transformation T : X → X, function
f ∈ L∞(µ), and γ ∈ {1 + 1/k, k ∈ N}, we have

(15) lim
N→∞

1

W[γN ]

[γN ]
∑

n=1

σn · f(TX1(ω)+···+Xn(ω)x) = E(f |I(T ))(x)

for almost every x ∈ X.
Using Proposition 2.1 for g = 1, we get that almost surely (the set of probability 1 depends

only on the random variables Xn), for every γ ∈ {1 + 1/k, k ∈ N}, the averages in (15) are
asymptotically equal to the averages

1

W[γN ]

[γN ]
∑

n=1

Xn(ω) · f(TX1(ω)+···+Xn(ω)x)

for almost every x ∈ X. Hence, it suffices to study the limiting behavior of the averages

1

WN

N
∑

n=1

Xn(ω) · f(TX1(ω)+···+Xn(ω)x).

Repeating the argument used in Section 2.2.1 (with g = 1), we deduce that for every ω ∈ Ω
and x ∈ X, they are asymptotically equal to the averages

1

N

N
∑

n=1

f(TX1(ω)+···+Xan(ω)(ω)x) =
1

N

N
∑

n=1

f(T nx)

where the last equality follows from (5). Finally, using the pointwise ergodic theorem we get
that the last averages converge to E(f |I(T ))(x) for almost every x ∈ X. This completes the
proof. �

2.2.4. Last step. We prove Theorem 1.1 by combining Proposition 2.1 with the arguments
in the previous three steps. We start with Proposition 2.1. It gives that there exists a set
Ω0 ∈ F of probability 1 such that for every ω ∈ Ω0 the following holds: For every probability
space (X,X , µ), commuting measure preserving transformations T, S : X → X, functions f, g ∈
L∞(µ), and γ ∈ {1 + 1/k, k ∈ N}, we have

(16)
∞
∑

N=1

∥

∥

∥
S[γN ](ω, ·)

∥

∥

∥

2

L2(µ)
< +∞
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where

SN (ω, x) :=
1

WN

N
∑

n=1

Yn(ω) · f(TX1(ω)+···+Xn(ω)x) · g(Snx).

In the remaining argument ω is assumed to belong to the aforementioned set Ω0. Notice that
(16) implies that

lim
N→∞

S[γN ](ω, x) = 0 for almost every x ∈ X.

We conclude that for almost every x ∈ X, for every γ ∈ {1 + 1/k, k ∈ N}, the difference

1

W[γN ]

[γN ]
∑

n=1

Xn(ω) · f(TX1(ω)+···+Xn(ω)x) · g(Snx)− 1

W[γN ]

[γN ]
∑

n=1

σn · f(TX1(ω)+···+Xn(ω)x) · g(Snx)

converges to 0 as N → ∞. In Sections 2.2.2 and 2.2.3 we proved that for almost every x ∈ X
we have

lim
N→∞

1

WN

N
∑

n=1

σn · f(TX1(ω)+···+Xn(ω)x) · g(Snx) = f̃(x) · g̃(x),

where f̃ := E(f |I(T )), and g̃ := E(g|I(S)). We deduce from the above that for almost every
x ∈ X, for every γ ∈ {1 + 1/k, k ∈ N}, we have that

lim
N→∞

1

W[γN ]

[γN ]
∑

n=1

Xn(ω) · f(TX1(ω)+···+Xn(ω)x) · g(Snx) = f̃(x) · g̃(x).

Since the sequence (Wn) satisfies the assumptions of Corollary 5.2 in the Appendix, we conclude
that for non-negative functions f, g ∈ L∞(µ), for almost every x ∈ X, we have

(17) lim
N→∞

1

WN

N
∑

n=1

Xn(ω) · f(TX1(ω)+···+Xn(ω)x) · g(Snx) = f̃(x) · g̃(x).

Splitting the real and imaginary part of the function f as a difference of two non-negative
functions, doing the same for the function g, and using the linearity of the operator f → f̃ , we
deduce that (17) holds for arbitrary f, g ∈ L∞(µ).

Lastly, combining the previous identity and the argument used in Section 2.2.1, we deduce
that for almost every x ∈ X we have

lim
N→∞

1

N

N
∑

n=1

f(T nx) · g(San(ω)x) = f̃(x) · g̃(x).

We have therefore established:

Proposition 2.4. If Proposition 2.1 holds, then Theorem 1.1 holds.

In the next subsection we prove Proposition 2.1.
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2.3. Proof of Proposition 2.1. The proof of Proposition 2.1 splits in two parts. First we
estimate the L2 norm of the averages 1

WN

∑N
n=1 Yn · TX1+···+Xnf · Sng by an expression that is

independent of the transformations T, S and the functions f, g. The main idea is to use van der
Corput’s Lemma (see Lemma 5.4 in the Appendix) enough times to get the desired cancelation,
allowing enough flexibility on the parameters involved to ensure that certain terms become
negligible. Subsequently, using moment estimates, we show that the resulting expression is
almost surely summable along exponentially growing sequences of integers.

Before delving into the details we make some preparatory remarks that will help us ease our
notation. We assume that both functions f, g are bounded by 1. We remind the reader that

σn = n−a, WN ∼ N1−a

for some a ∈ (0, 1). We are going to use parameters M and R that satisfy

M = [N b], R = [N c]

for some b, c ∈ (0, 1) at our disposal. We impose more restrictions on a, b, c as we move on.

2.3.1. Eliminating the dependence on the transformations and the functions. To simplify our

notation, in this subsection, when we write
∑Nα

n=1 we mean
∑[Nα]

n=1 .

Using Lemma 5.4 in the Appendix with M = [N b] and vn = Yn · TX1+···+Xnf · Sng, we get
that

(18) AN :=

∥

∥

∥

∥

∥

N−1+a
N
∑

n=1

Yn · TX1+···+Xnf · Sng

∥

∥

∥

∥

∥

2

L2(µ)

≪ A1,N +A2,N ,

where

A1,N := N−1+2a−b ·
N
∑

n=1

∥

∥Yn · TX1+···+Xnf · Sng
∥

∥

2

L2(µ)

and

A2,N := N−1+2a−b ·
Nb
∑

m=1

∣

∣

∣

N−m
∑

n=1

∫

Yn+m ·Yn ·TX1+···+Xn+mf ·Sn+mg ·TX1+···+Xn f̄ ·Snḡ dµ
∣

∣

∣.

We estimate A1,N . Since E(Y 2
n ) = σn − σ2n ∼ n−a, Lemma 5.6 in the Appendix gives for

every a ∈ (0, 1) that
∑N

n=1 Y
2
n ∼∑N

n=1 E(Y
2
N ) ∼ N1−a. Therefore, almost surely we have

A1,N ≪ N−1+2a−b
N
∑

n=1

Y 2
n ≪ω N

−1+2a−b ·N1−a = Na−b.

It follows that A1,N is bounded by a negative power of N as long as

b > a.

Next, we estimate A2,N . We compose with S−n and use the Cauchy-Schwarz inequality. We
get

A2,N ≪ N−1+2a−b ·
Nb
∑

m=1

∥

∥

∥

∥

∥

N−m
∑

n=1

Yn+m · Yn · S−nTX1+···+Xn+mf · S−nTX1+···+Xn f̄

∥

∥

∥

∥

∥

L2(µ)

.
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Furthermore, since

N−1+2a−b
Nb
∑

m=1

m≪ N−1+2a+b,

we get the estimate

A2,N ≪ N−d1 +N−1+2a−b ·
Nb
∑

m=1

∥

∥

∥

∥

∥

N
∑

n=1

Yn+m · Yn · S−nTX1+···+Xn+mf · S−nTX1+···+Xn f̄

∥

∥

∥

∥

∥

L2(µ)

where d1 := 1− 2a− b is positive as long as

2a+ b < 1.

Using the Cauchy-Schwarz inequality we get

A2
2,N ≪ N−2d1 +N−2+4a−b ·

Nb
∑

m=1

∥

∥

∥

∥

∥

N
∑

n=1

Yn+m · Yn · S−nTX1+···+Xn+mf · S−nTX1+···+Xn f̄

∥

∥

∥

∥

∥

2

L2(µ)

.

Next we use Lemma 5.4 in the Appendix with R = [N c] and the obvious choice of functions
vn, in order to estimate the square of the L2 norm above. We get the estimate

A2
2,N ≪ N−2d1 +A3,N +A4,N ,

where A3,N , A4,N , can be computed as before. Using Lemma 5.7 in the Appendix, and the
estimate E(Y 2

n ) ∼ n−a, we deduce that almost surely, for every a ∈ (0, 1/6) we have

A3,N ≪ N−1+4a−b−c
Nb
∑

m=1

N
∑

n=1

Y 2
n+mY

2
n ≪ω N

2a−c = N−d2

where d2 > 0 as long as

2a < c.

Composing with T−(X1+···+Xn)Sn, using that T and S commute, and the Cauchy-Schwarz
inequality, we see that

A4,N ≪ N−1+4a−b−c ·
Nb
∑

m=1

Nc
∑

r=1

∥

∥

∥

N−r
∑

n=1

Yn+m+r · Yn+r · Yn+m · Yn·

TXn+1+···+Xn+m+rS−rf · TXn+1+···+Xn+rS−rf̄ · TXn+1+···+Xn+m f̄
∥

∥

∥

L2(µ)
.

Since for every k ∈ N we have Xn+1 + · · ·+Xn+k ∈ {0, . . . , k}, it follows that

(19) A4,N ≪ A5,N := N−1+4a−b−c ·
Nb
∑

m=1

Nc
∑

r=1

m+r
∑

k1=0

r
∑

k2=0

m
∑

k3=0

∣

∣

∣

N−r
∑

n=1

Yn+m+r · Yn+r · Yn+m · Yn·

1∑m+r
i=1 Xn+i=k1

(n) · 1∑r
i=1 Xn+i=k2(n) · 1∑m

i=1 Xn+i=k3(n)
∣

∣

∣
.

Summarizing, we have just shown that as long as

(20) a < b, 2a+ b < 1, 2a < c, a ∈ (0, 1/6), b, c ∈ (0, 1),
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almost surely the following holds: For every probability space (X,X , µ), commuting measure
preserving transformations T, S : X → X, and functions f, g ∈ L∞(µ) with ‖f‖L∞(µ) ≤ 1 and

‖g‖L∞(µ) ≤ 1, we have

(21) AN ≪ω N
−d3 +A5,N

for some d3 > 0, where A5,N is defined in (19). Notice that the expression A5,N depends only
on the random variables Xn. Therefore, in order to complete the proof of Proposition 2.1, it
suffices to show that almost surely A5,N is summable along exponentially growing sequences of
integers.

2.3.2. Estimating A5,N (End of proof of Proposition 2.1). Assuming that

(22) b < c,

we get that

(23) Eω(A5,N ) ≤ N−1+4a−b−c
Nb
∑

m=1

Nc
∑

r=1

2Nc
∑

k1=0

Nc
∑

k2=0

Nb
∑

k3=0

Eω

∣

∣

∣

∣

∣

N−r
∑

n=1

Yn · Zn,m,r,k1,k2,k3

∣

∣

∣

∣

∣

where

Zn,m,r,k1,k2,k3 := Yn+m+r ·Yn+r ·Yn+m ·1∑m+r
k=1 Xn+k=k1

(n) ·1∑r
k=1 Xn+k=k2(n) ·1∑m

k=1 Xn+k=k3(n).

Using the Cauchy-Schwarz inequality we get

(24) Eω

∣

∣

∣

∣

∣

N−r
∑

n=1

Yn · Zn,m,r,k1,k2,k3

∣

∣

∣

∣

∣

≤



Eω

∣

∣

∣

∣

∣

N−r
∑

n=1

Yn · Zn,m,r,k1,k2,k3

∣

∣

∣

∣

∣

2




1/2

.

We expand the square in order to compute its expectation. It is equal to
∑

1≤n1,n2≤N−r

Eω(Yn1 · Zn1,m,r,k1,k2,k3 · Yn2 · Zn2,m,r,k1,k2,k3).

Notice that if n1 < n2, then for every m, r ∈ N, and non-negative integers k1, k2, k3, the random
variable Yn1 is independent of the variables Yn2 , Zn1,m,r,k1,k2,k3 , and Zn2,m,r,k1,k2,k3 . Since Yn
has zero mean, it follows that if n1 6= n2, then

Eω(Yn1 · Zn1,m,r,k1,k2,k3 · Yn2 · Zn2,m,r,k1,k2,k3) = 0.

Therefore, the right hand side of equation (24) is equal to

(

N−r
∑

n=1

Eω(Y
2
n ) · Eω(Z

2
n,m,r,k1,k2,k3)

)1/2

≤
(

N−r
∑

n=1

Eω(Y
2
n ) · Eω(Y

2
n+m · Y 2

n+r · Y 2
n+m+r)

)1/2

.

If r,m, n are fixed and r 6= m, then the variables Y 2
n+m, Y

2
n+r, Y

2
n+m+r are independent, and as

a consequence the right hand side is almost surely bounded by

(

N
∑

n=1

σ4n

)1/2

≪ N1/2−2a.
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On the other hand, if r,m, n are fixed and r = m, then the random variables Y 4
n+r, Y

2
n+2r are

independent, and as a consequence the right hand side is almost surely bounded by

(

N
∑

n=1

σ3n

)1/2

≪ N1/2−3a/2.

Combining these two estimates with (23), we deduce that

Eω(A5,N ) ≪ N−1+4a−b−c(N1/2−2a+2b+3c+N1/2−3a/2+2b+2c) = N−1/2+2a+b+2c+N−1/2+5a/2+b+c.

For fixed ε > 0, letting a ∈ (0, 1/6), b be greater and very close to a, and c be greater and very
close to 2a, we get that the conditions (20) and (22) are satisfied, and

(25) Eω(A5,N ) ≪ N (−1+14a)/2+ε +N (−1+11a)/2+ε = N−d4

for some d4 that satisfies

(26) d4 > (1− 14a)/2 − ε.

Therefore, for every a ∈ (0, 1/14), if ε is small enough, then the estimates (21) and (25) hold
for some d3, d4 > 0.

Equation (25) gives that for every γ > 1 we have

∞
∑

N=1

Eω(A5,[γN ]) < +∞.

As a consequence, for every γ > 1 we have almost surely that

(27)

∞
∑

N=1

A5,[γN ](ω) < +∞.

Recalling the definition of AN in (18), and combining (21) and (27), we get that for every a ∈
(0, 1/14) and γ > 1, almost surely the following holds: For every probability space (X,X , µ),
commuting measure preserving transformations T, S : X → X, and f, g ∈ L∞(µ), we have

∞
∑

N=1

∥

∥

∥
S[γN ](ω, ·)

∥

∥

∥

2

L2(µ)
< +∞

where

SN (ω, ·) := N−1+a
N
∑

n=1

Yn(ω) · TX1(ω)+···+Xn(ω)f · Sng.

This finishes the proof of Proposition 2.1.

3. Convergence for the same random iterates

In this section we prove Theorem 1.4. Throughout, we use the notation introduced in
Section 1.2.1 and the beginning of Section 2.2.
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3.1. Strategy of the proof. In order to prove Theorem 1.4 we go through the following
successive comparisons:

1

N

N
∑

n=1

f(T an(ω)x) · g(San(ω)x) ≈ 1

WN

N
∑

n=1

Xn(ω) · f(T nx) · g(Snx)

≈ 1

WN

N
∑

n=1

σn · f(T nx) · g(Snx)

≈ 1

N

N
∑

n=1

f(T nx) · g(Snx),

where our notation was explained in Section 2.1. The key comparison is the second. One
needs to get good estimates for the L2 norm of the averages 1

WN

∑N
n=1 Yn(ω) · T nf · Sng,

where Yn := Xn − σn. We do this in two steps. First we use van der Corput’s estimate
and Herglotz’s theorem to get a bound that depends only on the random variables Yn. The
resulting expressions turn out to be random trigonometric polynomials that can be estimated
using classical techniques.5

3.2. A reduction. Arguing as in Section 2.2 (in fact the argument is much simpler in the
current case) we reduce Theorem 1.4 to proving the following result:

Proposition 3.1. Suppose that σn = n−a for some a ∈ (0, 1/2) and let γ > 1 be a real num-
ber. Then almost surely the following holds: For every probability space (X,X , µ), commuting
measure preserving transformations T, S : X → X, and functions f, g ∈ L∞(µ), we have

(28)

∞
∑

k=1

∥

∥

∥

∥

∥

∥

1

W[γk]

[γk]
∑

n=1

Yn(ω) · T nf · Sng

∥

∥

∥

∥

∥

∥

2

L2(µ)

< +∞

where WN :=
∑N

n=1 σn.

We prove this result in the next subsection.

3.3. Proof of Proposition 3.1. As was the case with the proof of Proposition 2.1 the proof
of Proposition 3.1 splits in two parts.

3.3.1. Eliminating the dependence on the transformations and the functions. We assume that
both functions f, g are bounded by 1. We start by using Lemma 5.4 for M = N and vn :=
Yn ·T nf ·Sng (this is essentially the ordinary expansion of the square of the sum). We get that

(29) AN :=

∥

∥

∥

∥

∥

N−1+a
N
∑

n=1

Yn · T nf · Sng

∥

∥

∥

∥

∥

2

L2(µ)

≪ A1,N +A2,N

where

A1,N := N−2+2a ·
N
∑

n=1

‖Yn · T nf · Sng‖2L2(µ)

5A faster way to get such an estimate is to apply van der Corput’s Lemma twice. The drawback of this
method is that the resulting expression converges to zero only when σn = n−a for some a ∈ (0, 1/4).
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and

A2,N := N−2+2a ·
N
∑

m=1

∣

∣

∣

∣

∣

N−m
∑

n=1

∫

Yn+m · Yn · T n+mf · Sn+mg · T nf̄ · Snḡ dµ

∣

∣

∣

∣

∣

.

We estimate A1,N . Since Eω(Y
2
n ) ∼ n−a, Lemma 5.6 gives

∑N
n=1 Y

2
n ≪ω N1−a. It follows

that almost surely we have

(30) A1,N ≪ N−2+2a
N
∑

n=1

Y 2
n ≪ω N

−2+2a ·N1−a = Na−1.

Therefore, A1,N is bounded by a negative power of N for every a ∈ (0, 1).
We estimate A2,N . Composing with S−n and using the Cauchy-Schwarz inequality we get

A2,N ≪ N−2+2a ·
N
∑

m=1

∥

∥

∥

∥

∥

N−m
∑

n=1

Yn+m · Yn · S−nT n+mf · S−nT nf̄

∥

∥

∥

∥

∥

L2(µ)

.

Using that T and S commute and letting R = TS−1 and fm = Tmf · f̄ , we rewrite the previous
estimate as

A2,N ≪ N−2+2a ·
N
∑

m=1

∥

∥

∥

∥

∥

N−m
∑

n=1

Yn+m · Yn · Rnfm

∥

∥

∥

∥

∥

L2(µ)

.

Using Herglotz theorem on positive definite sequences, and the fact that the functions fm are
bounded by 1, we get that the right hand side is bounded by a constant multiple of

A3,N := N−1+2a · max
1≤m≤N

max
t∈[0,1]

∣

∣

∣

N−m
∑

n=1

Yn+m · Yn · e(nt)
∣

∣

∣
.

Summarizing, we have shown that

(31) AN ≪ Na−1 +A3,N .

Therefore, in order to prove Proposition 3.1 it remains to show that almost surely A3,N ≪ω N
−d

for some d > 0. We do this in the next subsection.

3.3.2. Estimating A3,N (End of proof of Proposition 3.1). The goal of this section is to prove
the following result:

Proposition 3.2. Suppose that σn ∼ n−a for some a ∈ (0, 1/2). Then almost surely we have

max
1≤m≤N

max
t∈[0,1]

∣

∣

∣

N−m
∑

n=1

Yn+m · Yn · e(nt)
∣

∣

∣≪ω N1/2−a
√

logN,

Notice that by combining this estimate with (31) we get a proof of Proposition 3.1, and as
a consequence a proof of Theorem 1.4.

The key ingredient in the proof of Proposition 3.2 is the following lemma. It is a strengthening
of an estimate of Bourgain [7] regarding random trigonometric polynomials. The proof of the
lemma is a variation on the classical Chernoff’s inequality (see e.g. Theorem 1.8 in [28]),
combined with an elementary estimate on the uniform norm of a trigonometric polynomial.
We were motivated to use this argument, over the one given in [7], after reading a paper of Fan
and Schneider (in particular, the proof of Theorem 6.4 in [14]).
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Lemma 3.3. Let (Zm,n)m,n∈N be a family of random variables, uniformly bounded by 1, and
with mean zero. Suppose that, for each fixed m, the random variables Zm,n, n ≥ 1, are inde-
pendent. Let (ρn) be a sequence of positive numbers such that

sup
m∈N

(

Var(Zm,n)
)

≤ ρn and lim
N→∞

1

logN

N
∑

n=1

ρn = +∞.

Then, almost surely, we have

max
1≤m≤N

max
t∈[0,1]

∣

∣

∣

∣

∣

N
∑

n=1

Zm,n · e(nt)
∣

∣

∣

∣

∣

≪ω





√

√

√

√logN ·
N
∑

n=1

ρn



 .

Proof. It suffices to get the announced estimate for

MN := max
1≤m≤N

max
t∈[0,1]

|Pm,N (t)|

where

Pm,N (t) :=
N
∑

n=1

Zm,n · cos(2πnt).

In a similar way we get an estimate with sin(2πnt) in place of cos(2πnt).

Since |Zm,n| ≤ 1 and Eω(Zm,n) = 0, we have Eω

(

eλZm,n
)

≤ eλ
2Var(Zm,n) for all λ ∈ [−1, 1].

(See Lemma 1.7 in [28].)
For every m ∈ N, λ ∈ [−1, 1], and t ∈ [0, 1], we get that

(32) Eω

(

eλPm,N (t)
)

=
N
∏

n=1

Eω

(

eλZm,n cos(2πnt)
)

≤
N
∏

n=1

e(λ cos(2πnt))2Var(Zm,n) ≤ eλ
2RN

where

RN :=

N
∑

n=1

σn.

Next notice that for λ ∈ [0, 1] we have
(33)

Eω(e
λMN ) = Eω

(

max
1≤m≤N

eλmaxt |Pm,N (t)|
)

≤ Eω

(

N
∑

m=1

eλmaxt |Pm,N (t)|
)

≤ N max
1≤m≤N

Eω(e
λMm,N )

where
Mm,N := max

t∈[0,1]
|Pm,N (t)|.

It is easy to see (e.g. Proposition 5 in Chapter 5, Section 2 of [19]) that there exist random
intervals Im,N of length |Im,N | ≥ N−2 such that |Pm,N (t)| ≥Mm,N/2 for every t ∈ Im,N . Using
this, we get that

Eω(e
λNMm,N/2) ≪ N2 · Eω

(

∫

Im,N

(eλNPm,N (t) + e−λNPm,N (t)) dt
)

≤

N2 · Eω

(

∫

[0,1]
(eλNPm,N (t) + e−λNPm,N (t)) dt

)
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where λN ∈ [0, 1] are numbers at our disposal. Using (32) we get that

Eω

(

∫

[0,1]
(eλNPm,N (t) + e−λNPm,N (t)) dt

)

=

∫

[0,1]
Eω

(

eλNPm,N (t) + e−λNPm,N (t)
)

dt ≤ 2eRNλ2
N .

Therefore,

Eω(e
λNMm,N/2) ≪ N2 · eRNλ2

N .

Combining this estimate with (33), we get

Eω(e
λNMN/2) ≪ N3 · eRNλ2

N .

Therefore, there exists a universal constant C such that

Eω

(

eλN/2(MN−2RNλN−2 log(CN5)λ−1
N

)
)

≤ 1

N2
.

As a consequence,

(34) P
(

MN ≥ 2RNλN + 2 log(CN5)λ−1
N

)

≤ 1

N2
.

For α, β positive, the function f(λ) = αλ+ βλ−1 achieves a minimum
√
αβ for λ =

√

β/α. So

letting λN =
√

log(CN5)/(ARN ) (by assumption λN converges to 0, so λN < 1 for large N)
in (34) gives

P

(

MN ≥
√

4RN log(CN5)
)

≤ 1

N2
.

By the Borel-Cantelli Lemma, we get almost surely that

MN ≪ω

√

RN logN.

This completes the proof. �

Finally we use Lemma 3.3 to prove Proposition 3.2.

Proof of Proposition 3.2. Our goal is to apply Lemma 3.3 for the random variables Yn+m · Yn
where Yn = Xn − σn. These random variables are bounded by 1 and have zero mean. We just
have to take some care because they are not independent. We divide the positive integers into
two classes:

Λ1,m := {n : 2km < n ≤ (2k + 1)m for some non-negative integer k}
and

Λ2,m := {n : (2k + 1)m < n ≤ (2k + 2)m for some non-negative integer k}.
Then for fixed m ∈ N, the random variables Yn+m · Yn, n ∈ Λ1,m, are independent, and the
same holds for the random variables Yn+m · Yn, n ∈ Λ2,m. For i = 1, 2, we apply Lemma 3.3 to
the random variables

Zm,n := Yn+m · Yn · 1Λi,m∩[1,N−m](n).

Notice that either Var(Zm,n) = 0, or

Var(Zm,n) = σn+mσn − σ2n+mσn − σn+mσ
2
n + σ2n+mσ

2
n ≤ σn+mσn ≤ σ2n ∼ n−2a.
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Since
∑N

n=1 n
−2a ∼ N1−2a and a < 1/2, the assumptions of Lemma 3.3 are satisfied for

ρn = n−2a. We deduce that almost surely we have

max
1≤m≤N

max
t∈[0,1]

∣

∣

∣

N−m
∑

n=1

Yn+m · Yn · e(nt)
∣

∣

∣
≪ω N

1/2−a
√

logN.

This completes the proof. �

4. Non-recurrence and non-convergence.

In this section we prove Theorem 1.7. The proof is based on the following lemma:

Lemma 4.1. Let a, b : N → Z\{0} be injective sequences and F be any subset of N. Then there
exist a probability space (X,X , µ), measure preserving transformations T, S : X → X, both of
them Bernoulli, and A ∈ X , such that

µ
(

T−a(n)A ∩ S−b(n)A
)

=

{

0 if n ∈ F,
1
4 if n /∈ F.

Proof. We are going to combine a construction of Berend (Ex 7.1 in [2]) with a construction of
Furstenberg (page 40 in [16]).

Suppose first that the range of both sequences misses infinitely many integers. Let X =
{0, 1}Z, µ be the (1/2, 1/2) Bernoulli measure on X, and T be the shift transformation. Given a
permutation π of Z with π(0) = 0 we define the measure preserving transformation ψπ : X → X
by

(ψπx)n =

{

x0 if n = 0,

1− xπ(n) if n 6= 0.

Let S = ψ−1
π Tψπ (S is also Bernoulli). Since (ψπ)

−1 = ψπ−1 and (ψπ−1x)0 = x0, for n ∈ N we
have

(Snx)0 = (ψπ−1T nψπx)0 = (T nψπx)0 = (ψπx)n = 1− xπ(n).

Hence, if A = {x ∈ X : x(0) = 1} we have

T−a(n)A ∩ S−b(n)A = {x ∈ X : xa(n) = 1, xπ(b(n)) = 0}.

Finally, we make an appropriate choice for π. Since the sequences (a(n)) and (b(n)) are injective
and miss infinitely many integers, there exists a permutation π of the integers that fixes 0 and
satisfies π(b(n)) = a(n) if n ∈ F , and π(b(n)) 6= a(n) if n /∈ F . Then

µ(T−a(n)A ∩ S−b(n)A) =

{

0 if n ∈ F,

1/4 if n /∈ F.

We now consider the general case. Notice that the range of the sequences (2a(n)) and (2b(n))
misses infinitely many values. We consider the transformations T 2 and S2 in place of T and
S (again they are Bernoulli) and carry out the previous argument with a permutation π that
satisfies π(2b(n)) = 2a(n) if n ∈ F and π(2b(n)) 6= 2a(n) if n /∈ F . �
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Corollary 4.2. Let a, b : N → Z \ {0} be injective sequences, and c : N → [0, 1/4] be any
sequence. Then there exist a probability space (X,X , µ), measure preserving transformations
T, S : X → X, and A ∈ X , such that for every n ∈ N one has

c(n) = µ
(

T−a(n)A ∩ S−b(n)A
)

.

Proof. The set S consisting of all sequences that take values on a set [0, α], where α > 0, is
a compact (with the topology of pointwise convergence) convex subset of the locally convex
space that consists of all bounded sequences. The extreme points of S are the sequences that
take values in the set {0, α}. The set ext(S), of extreme points of S, is closed, hence, by the
theorem of Krein-Milman, every element in S is the barycenter of a Borel probability measure
on ext(S). As a consequence we get that given any sequence c : N → [0, 1/4], there exists a
Borel probability measure σ on a compact metric space (Y, d), and sequences cy : N → {0, 1/4},
y ∈ Y , such that for every n ∈ N one has

c(n) =

∫

cy(n) dσ(y).

Looking at the proof of Lemma 4.1 we see that there exist measure preserving transformations
Ty and Sy, acting on the same probability space (X,X , µ), and A ∈ X , such that for every
y ∈ Y and n ∈ N one has

cy(n) = µ
(

T−a(n)
y A ∩ S−b(n)

y A
)

.

On the space (Y ×X,BY ×X , σ×µ) we define the measure preserving transformations T, S : Y ×
X → Y ×X by the formula T (y, x) = (y, Ty(x)) and S(y, x) = (y, Sy(x)). Then for every n ∈ N

one has

µ
(

T−a(n)A ∩ S−b(n)A
)

=

∫

µ
(

T−a(n)
y A ∩ S−b(n)

y A
)

dσ(y) =

∫

cy(n) dσ(y) = c(n).

�

Proof of Theorem 1.7. For non-convergence take F =
⋃

n∈N[2
2n, 22n+1] in Lemma 4.1 and de-

fine f = g = 1A. For non-recurrence take F = N in Lemma 4.1. �

5. Appendix

We prove some results that were used in the main part of the article.

5.1. Lacunary subsequence trick. We are going to give a variation of a trick that is often
used to prove convergence results for averages (see [26] for several such instances).

Lemma 5.1. Let (an)n∈N be a sequence of non-negative real numbers and (Wn)n∈N be an
increasing sequence of positive real numbers that satisfies

lim
γ→1+

lim sup
n→∞

W[γn]

Wn
= 1.

For N ∈ N let

AN :=
1

WN

N
∑

n=1

an.
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Suppose that there exists L ∈ [0,+∞], and a sequence of real numbers γk ∈ (1,+∞), with
γk → 1, and such that for every k ∈ N we have

lim
N→∞

A[γN
k
] = L.

Then

lim
N→∞

AN = L.

Proof. Fix k ∈ N and for N ∈ N let M =M(k,N) be a non-negative integer such that

[γMk ] ≤ N < [γM+1
k ].

Since an ≥ 0 for every n ∈ N and Wn is increasing, we have

AN =
1

WN

N
∑

n=1

an ≤ 1

W[γM
k

]

[γM+1
k

]
∑

n=1

an ≤ ck,MA[γM+1
k

] where ck,M :=W[γM+1
k

]/W[γM
k

].

Similarly we have

AN ≥ c−1
k,MA[γM

k
].

Putting the previous estimates together we get

(35) c−1
k,MA[γM

k
] ≤ AN ≤ ck,MA[γM+1

k
].

Notice that our assumptions give that

(36) lim
k→∞

lim sup
M→∞

ck,M = 1.

Since M =M(k,N) → ∞ as N → ∞ and k is fixed, letting N → ∞ and then k → ∞ in (35),
and combining equation (36) with our assumption limN→∞A[γN

k
] = L, we deduce that

lim inf
N→∞

AN = lim sup
N→∞

AN = L.

This completes the proof. �

Corollary 5.2. Let (X,X , µ) be a probability space, fn : X → R, n ∈ N, be non-negative
measurable functions, (Wn)n∈N be as in the previous lemma, and for N ∈ N let

AN (x) :=
1

WN

N
∑

n=1

fn(x).

Suppose that there exists a function f : X → R and a sequence of real numbers γk ∈ (1,∞),
with γk → 1, and such that for every k ∈ N we have for almost every x ∈ X that

(37) lim
N→∞

A[γN
k
](x) = f(x).

Then

lim
N→∞

AN (x) = f(x) for almost every x ∈ X.

Proof. It suffices to notice that for almost every x ∈ X equation (37) is satisfied for every
k ∈ N, and then apply Lemma 5.1. �
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5.2. Weighted averages. The following lemma is classical and can be proved using summa-
tion by parts (also the assumptions on the weights wn can be weakened).

Lemma 5.3. Let (vn)n∈N be a sequence of vectors in a normed space, (wn)n∈N be a decreasing
sequence of positive real numbers that satisfies wn ∼ n−a for some a ∈ (0, 1), and for N ∈ N

let WN := w1 + · · ·+wN . Then the averages 1
N

∑N
n=1 vn and the averages 1

WN

∑N
n=1 wnvn are

asymptotically equal.

5.3. Van der Corput’s lemma. We state a variation of a classical elementary estimate of
van der Corput.

Lemma 5.4. Let V be an inner product space, N ∈ N, and v1, . . . , vN ∈ V . Then for every
integer M between 1 and N we have

∥

∥

∥

∥

∥

N
∑

n=1

vn

∥

∥

∥

∥

∥

2

≤ 2M−1N ·
N
∑

n=1

‖vn‖2 + 4M−1N
M
∑

m=1

∣

∣

∣

N−m
∑

n=1

< vn+m, vn >
∣

∣

∣
.

In the case where V = R and ‖·‖ = | · |, the proof can be found, for example, in [20]. The
proof in the general case is essentially identical.

5.4. Borel-Cantelli in density. We are going to use the following Borel-Cantelli type lemma:

Lemma 5.5. Let En, n ∈ N, be events on a probability space (Ω,F ,P) that satisfy P(En) ≪
(log n)−1−ε for some ε > 0. Then almost surely the set {n ∈ N : ω ∈ En} has zero density.6

Proof. Let

AN (ω) :=
1

N

N
∑

n=1

1En(ω).

Our assumption gives

Eω(AN (ω)) ≪ (logN)−1−ε.

Therefore, for every γ > 1
∞
∑

N=1

A[γN ](ω) < +∞

almost surely. This implies that for every γ > 1

lim
N→∞

A[γN ](ω) = 0 almost surely.

Since γ > 1 is arbitrary we conclude by Corollary 5.2 that

lim
N→∞

AN (ω) = 0 almost surely.

This proves the advertised claim. �

6On the other hand, it is not hard to construct a probability space (Ω,F , P) and events En, n ∈ N, such that
P(En) ≤ (logn)−1, and almost surely the set {n ∈ N : ω ∈ En} has positive upper density.
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5.5. Estimates for sums of random variables. We use some straightforward moment es-
timates to get two bounds for sums of independent random variables that were used in the
proofs.

Lemma 5.6. Let Xn be non-negative, uniformly bounded random variables, with Eω(Xn) ∼ n−a

for some a ∈ (0, 1). Suppose that the random variables Xn − Eω(Xn) are orthogonal. Then
almost surely we have

lim
N→∞

1

WN

N
∑

n=1

Xn = 1,

where, as usual, WN :=
∑N

n=1 Eω(Xn).

Remark. Assuming independence, one can use Kolmogorov’s three series theorem to show that
the stated result holds under the relaxed assumption WN → ∞.

Proof. We can assume that Xn(ω) ≤ 1 for every ω ∈ Ω and n ∈ N. We let

AN :=
1

WN

N
∑

n=1

Yn

where

Yn := Xn − Eω(Xn).

Since Yn are zero mean orthogonal random variables and Eω(Y
2
n ) ≤ Eω(Xn), we have

Eω(A
2
N ) =

1

W 2
N

N
∑

n=1

Eω(Y
2
n ) ≤

1

WN
.

Combining this estimate with the fact WN ∼ N1−a, we conclude that for every γ > 1 we have

∞
∑

N=1

Eω(A
2
[γN ]) < +∞.

Therefore, for every γ > 1 we have

lim
N→∞

A[γN ] = 0 almost surely,

or equivalently, that

lim
N→∞

1

W[γN ]

[γN ]
∑

n=1

Xn = 1 almost surely.

Since the sequence (Wn)n∈N satisfies the assumptions of Corollary 5.2, and Xn is non-negative,
we conclude that

lim
N→∞

1

WN

N
∑

n=1

Xn = 1 almost surely.

This completes the proof. �
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Lemma 5.7. Let Xn be independent, uniformly bounded random variables, with Eω(Xn) ∼ n−a

for some a ∈ (0, 1/6), and let b be any positive real number. Then almost surely we have

∣

∣

∣

Nb
∑

m=1

N
∑

n=1

Xn+mXn

∣

∣

∣≪ω N
b+1−2a.

Using a lacunary subsequence trick, similar to the one used in the proof of Lemma 5.6, one
can show that the conclusion actually holds for every a ∈ (0, 1/4).

Proof. Let

SN :=

Nb
∑

m=1

N
∑

n=1

(Xn+mXn − Eω(Xn+m) · Eω(Xn))

and

AN := N−cSN where c := b+ 1− 2a,

Since

N−c
Nb
∑

m=1

N
∑

n=1

Eω(Xn+m) · Eω(Xn) ≪ 1,

it suffices to show that almost surely we have limN→∞AN = 0.
Expanding S2

N and using the independence of the random variables Xn, we see that

Eω(S
2
N ) ≪ |{(m,m′, n, n′) ∈ [1, N b]2× [1, N ]2 : n, n′, n+m,n′+m′ are not distinct }| ≪ N1+2b.

Therefore,

Eω(A
2
N ) ≪ N−(1−4a).

It follows that if k ∈ N satisfies k(1− 4a) > 1, then

∞
∑

N=1

Eω(A
2
Nk) < +∞.

As a consequence,

lim
N→∞

ANk = 0 for every k ∈ N satisfying k(1− 4a) > 1.

For any such k ∈ N, and for a given N ∈ N, let M ∈ N be an integer such that Mk ≤ N ≤
(M + 1)k. Then

|AN −AMk | ≤ |(N−cMkc − 1)AMk |+N−c
∑

Mk<n≤(M+1)k

|Yn|

≪ |(N−cMkc − 1)AMk |+N−cMk−1.

The first term converges almost surely to zero as N → ∞, since this is the case for AMk and
N−1Mk ≤ 1. The second term converges to zero if kc > k− 1, or equivalently, if k(2a− b) < 1.

Combining the above estimates, we get almost surely that limN→∞AN = 0, provided that
there exists k ∈ N such that k(2a− b) < 1 < k(1− 4a). If a < 1/6, then k = 3 is such a value.
This completes the proof. �
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