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Contrasts, Independent Component Analysis, and Blind
Deconvolution
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I3S, CNRS-UNSA, Sophia-Antipolis

SUMMARY

A general definition of contrast criteria is proposed, which induces the concept of trivial filters.
These optimization criteria enjoy identifiability properties, and aim at delivering outputs satisfying
specific properties, such as statistical independence or a discrete character. Several ways of building
new contrast criteria are described. It is then briefly elaborated on practical numerical algorithms.
Copyright c© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The paper is organized as follows. In this section, the MIMO Blind Deconvolution problem
is introduced; notations and a brief bibliographical survey are also included. Section 2 is a
reminder about whitening operations and cumulants. Assumptions and definitions of Trivial
Filters are given in section 3. Section 4 defines a wide class of contrast functionals and gives
several examples; some of them are new. Practical algorithms are tackled in section 5.
Blind equalization or identification schemes have been the subject of intense interest since

the works of Sato [55] in 1975, and then Godard [25] a few years later. One of the main
advantages of blind techniques is that training sequences are not required; by deleting pilot
sequences, one can thus increase the transmission rate. But there are other advantages, which
stem from limitations of classical approaches. In fact, techniques based on pilot sequences are
difficult to use when channel responses are long, or fast varying, compared to the length of
the pilot sequence. The presence of a carrier residual can also make the equalization task more
difficult [32] [13].
Instead of basing the identification or equalization schemes on input-output measurements

(data-aided approaches), some properties about the inputs are exploited (blind approaches),
as is now explained.
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Figure 1. The transmitted sequence s[n] propagates through a channel Ȟ[z], is then whitened by a
filter W̌ [z], and is eventually deconvolved by a paraunitary equalizer Ǔ [z] to yield output x[n]; Ǧ[z]

denotes the global filter.

1.1. Modeling

Limiting our discussion to linear modulations, the complex envelope of a transmitted signal
s(t) takes the form in baseband [52]: s(t) =

∑

k g(t − kT ) s[k]. Note the distinction between
discrete-time and continuous time processes via brackets and parentheses: s[k] = s(kTs), where
Ts is the symbol period. After propagation through the channel and the receive filter, the signal
received on the antenna may be written as:

y(t) =
∑

k

h(t− kTs) s[k]

where h is the convolution of the transmit filter, the channel, and the receive filter. If the
received signal is sampled at the rate 1/Ts, it can be modeled as:

y[n] =
∑

k

h[n− k] s[k] (1)

with h[k]
def
= h(kTs). For Multiple Input Multiple Output (MIMO) systems, the transmitted

signal s[k] and the received signal y[k] may be considered as vector-valued discrete-time
processes; their dimension is denoted by P and K, respectively. Note the boldface that
emphasizes the multi-dimensional character of the processes. Model (1) can then be rewritten
as:

y[n] =
∑

k

H[n− k] s[k] (2)

where the global channel impulse response H [k] is now a sequence of K × P matrices. Its
z−transform is denoted as

Ȟ[z]
def
=

∑

k

H[k] z−k

In the present context, inputs sj [k] are often referred to as sources.
The case where source symbol rates are different or unknown is not addressed in this paper,

although it is an interesting issue, in surveillance or interception contexts for instance. However,
one can still say that the output appears as a convolution, but not as a discrete convolution
anymore. In fact, if the sample rate is 1/T ′ at the receiver, we have:

y[n] =
∑

k

H(nT ′ − kTs) s[k]
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CONTRASTS AND BLIND DECONVOLUTION 3

Another important issue is that of carrier mismatch. If the carrier frequency at the receiver
is slightly different from the modulating carrier, then there is a carrier residual, which one can
merely represent in baseband by a multiplicative exponential. For a SISO channel, this can be
written as:

y[n] =
∑

k

h[n− k] s[k] e k δ (3)

where δ is a small real number, and the dotless  denotes
√
−1.

The goal of blind equalization is to yield an estimate of input sequences sj [k] from the
sole observation of output sequences yi[n]. In order to solve this problem, some additional
assumptions are necessary, as explained in section 3.

1.2. Noise

The modeling described above does not include noise, which is not very satisfactory. In fact,
to some extent, an additive noise is a good means to take into account modeling errors. For
instance, the presence of weak extraneous sources (if they are fewer than K−P ) can be taken
into account this way. Yet, the core of the contrast setting relies on the existence of some
inverse filter, able to extract exactly all sources [11] [2] [7] [33]. For this reason, noise can only
be treated as a nuisance, and the number of sources cannot in principle exceed the number of
sensors.

Nevertheless, it is always possible to design a filter extracting one or several sources
by maximizing some optimization criterion. If at most K sources are attempted to be
simultaneously extracted, then this criterion may be a contrast. As an example, the contrast
criteria described in the present paper can be utilized in order to find the best MISO filter
extracting any single source, individually, regardless of the number of sources present. Each
MISO extracting filter is then hopefully a local maximum of the criterion. But the question
that then remains to be answered is: are there spurious local maxima, or does every maximum
correspond to an extracting filter? In its general form, this still remains an open question when
non Gaussian noise or extraneous sources are present, even if some works have already been
initiated in this direction [54].

1.3. Bibliographical comments

The exploitation of source color and spectral differences has been investigated in [5] [51],
among others. The case of non stationary or cyclo-stationary sources is studied for instance
in [50] [23]. MIMO blind identification/equalization via subspace fitting is described in [45]
[40]. The alternative approach via linear prediction has been first proposed in [10], and
then independently addressed in [56] [21] [1] [26] and in numerous subsequent works; linear
prediction approaches have long been recognized to be more robust to channel/equalizer length
misadjustment. This has been revisited in [39]. Deflation approaches have the advantage not
to require prior space-time whitening [20] [60] [61] [47], because sources are extracted one by
one; this also allows to write an ascent algorithm as a fixed point search [33]. Contrast-based
approaches can be found in [61] [22] [17] [12] [16]. For more references on the use of the discrete
character of sources in MIMO over-determined mixtures, either static or convolutive, see [29]
[64] [62] [57] [59] [63] [38] [24] [37] [30]. Underdetermined mixtures are addressed in [14] and
references therein. For a general account on blind techniques, see [31] [33] [36] [22] [7].
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4 P. COMON

2. STATISTICAL TOOLS

2.1. Whitening

The whitening operation is useful in SISO systems, and in over-determined (P ≤ K) MIMO
systems. In fact, if outputs aim at being independent, then they should at least be uncorrelated
at order 2. This is what the whitening operation does.

Theorem 1. Any matrix Ȟ[z], whose entries are rational functions, can be factored (generally
in a non unique manner) as Ȟ[z] = Ř[z] Ǔ [z], where Ǔ [z] is paraunitary and Ř[z] is triangular
minimum phase.

The paraunitarity means that

Ǔ [z] ǓH[1/z∗] = I (4)

where I is the identity. This property characterizes lossless filters. In the scalar case for
instance, Ǔ [z] is all-pass and Ř[z] has all its roots in the unit disk.

One possibility is thus to assume a 3-step processing: (i) whitening with the help of second-
order statistics, which can be done in many ways, (ii) estimation of a paraunitary separating
filter, (iii) Space-Time Matched Filtering (STMF), based on the estimated channel [15]. From
now on, we shall retain this procedure, although it is not always optimal, because it puts at
lot more weight on second-order statistics than on higher orders.

2.2. Cumulants

Whereas moments can be defined as the coefficients in the expansion of the first characteristic
function, cumulants are the coefficients in the expansion of the second one (the logarithm of the
first) [42]. For a zero-mean real random variable, the fourth order cumulant can be expressed

as a function of second and fourth order moments: C(4)
y = µ4

y − 3µ2
y. The Leonov-Shiryaev

formula allows to express any cumulant as a function of moments of lower or equal orders [42].

For a stationary process y[n], we define the ith marginal rth order cumulant as:

C(r,p)
yi

def
= Cum{yi, . . . yi

︸ ︷︷ ︸

p terms

, y∗i , . . . y
∗
i

︸ ︷︷ ︸

r−p terms

} (5)

The marginal cumulant with no complex conjugation, C(r,r)
yi , sometimes called the non circular

cumulant, will be denoted C(r)
yi , in short. The generic entry of the 4th order circular cumulant

tensor is denoted Cy;ij,kℓ = Cum{yi, yj, y∗k, y∗ℓ }.
One key property enjoyed by cumulants, and that is not shared by moments, is the following:

Property 2. If x1 and x2 are independent random variables, then ∀r, p: C(r,p)
x1+x2

= C(r,p)
x1

+

C(r,p)
x2

.

In digital communications, an important property is that of circularity. In particular, for
PSK−m modulations, elements of the complex constellation satisfy xm = 1. As a consequence,

E{xm} = 1, of course. But more interestingly, E{xp} = 0 and C(p)
x = 0, ∀p < m. We shall say

that x is circular up to order m− 1. General definitions can be provided [35]:

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2004; 00:1–16
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CONTRASTS AND BLIND DECONVOLUTION 5

Definition 3. A random variable is said to be strongly circular if its distribution is invariant
by rotation in the complex plane. It is said to be circular at order m−1,m > 1, if its distribution
is invariant by a rotation of angle 2π/m.

One must pay attention to the fact that by circular, it is often understood circular at order 2.
For instance, BPSK variables are non circular.

3. TRIVIAL FILTERS

3.1. Assumptions and taxonomy.

In order to blindly equalize convolutive models, the most widely used assumption is the
statistical independence between successive symbols.

Hypothesis H1. Sources sj [k] are all i.i.d. sequences.

For MIMO models, the independence assumption between sources is often utilized:

Hypothesis H2. Sources sj [k] are mutually statistically independent.

These hypotheses can generally be deflated to less strong whiteness/independence properties,
because moments of finite orders are used [15]. Let us stress that the case where sources are
linear processes can also be treated in a similar manner as i.i.d. sources; Hypothesis H1 is
thus not very restrictive. A particular case however raises problems, namely that of Gaussian
sources. In that case, all the information is contained in moments up to order 2, which is
not sufficient to establish identifiability. For this reason, it is necessary to resort to a third
hypothesis, along with hypotheses H1 and H2:

Hypothesis H3. At most one source is Gaussian.

Again, this assumption can often be deflated to a weaker one. For instance, when the contrast
optimization criterion is based on cumulants, then it is sufficient to consider the assumption

Hypothesis H4. At most one source has a null marginal cumulant.

On the other hand, there exist other frameworks in which hypotheses are different. For
instance, if sources have different spectra, or if they are non stationary, or cyclo-stationary,
then they can be separated with the help of appropriate techniques (cf. section 1.3). These
three cases are not addressed in the present paper, and yield quite different (easier) theoretical
problems. Nevertheless, the special framework of discrete sources is relevant in the context of
digital communications.

The interest of exploiting the discrete character lies not only in a more accurate
characterization of the desired output (than just non Gaussian or CM), but also in the fact
that some other assumptions can be dropped. In this section, the sole assumption used is

Hypothesis H5. The sources sj [n] belong to a known finite alphabet A characterized by the
d distinct complex roots of a polynomial Q(z) = 0.

For instance, sources can be correlated and non stationary. In fact, the criterion proposed above
is entirely algebraic and deterministic, so that no statistical tool is required. The simplest case
is Q(z) = zq − 1, for which we have a PSK−q constellation.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2004; 00:1–16
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6 P. COMON

Next, for identifiability reasons, another hypothesis will be needed:

Hypothesis H6. Sources sj [n] are sufficiently exciting

By sufficiently exciting, it is meant that sufficiently many distinct states (among the dP possible
ones) of the P−uplet s are present in the source data matrix. For general alphabets, as shown
in the proof of Theorem 16, it is sufficient that all binary sequences are present, which means
that the observation length should be at least of (d2)2

P symbols. For PSK alphabets, this
minimal length can be deflated to ⌈d

2⌉2P .

Depending on hypotheses (independence, discrete character, SISO/MIMO, P > K or not...),
a whole variety of problems can be stated [15]. From now on, and unless otherwise specified,
we shall concentrate only on Hypotheses H1 to H6, and on the case where P ≤ K (over-
determined mixtures). When more sources than sensors are present, the problem becomes more
complicated (under-determined mixtures), and specific tools generally need to be utilized; see
[14] and references therein.

3.2. Trivial filters.

The separating linear filter, F̌ [z], if it exists, aims at delivering an output, x[n], which should
satisfy as well as possible hypotheses H1 and H2. But it is clear that there exist some filters
that do not affect them. These are called the trivial filters, and we can prove

Lemma 4. Under hypotheses H1 to H3, trivial filters are of the form Ť [z] = P Ď[z], where
P is a permutation, and Ď[z] a diagonal filter. In addition, because of the i.i.d. property of
hypothesis H1, entries of Ď[z] must be of the form Ďpp[z] = λp z

δp , where δp is an integer.

Consequently, it is hopeless to estimate the pair (Ȟ[z], s[k]). One should rather try to
estimate one representative of the equivalence class of solutions. Once one solution is found,
all the others can be generated by trivial filtering.

Example. Assume the model is MIMO static. Then y[n] = H s[n], where y[n] and s[n] are
realizations of random variables. In that case, hypothesis H1 is not mandatory anymore. The
estimation of the pair (H, s[n]) from the sole observations y[n] under hypotheses H2 and H3,
has been introduced originally by Jutten and Comon [34] [10], and is now called Independent
Component Analysis (ICA) [11] [49] [33] [36] [31] [14].

Consider now hypotheses H5 and H6 instead of hypotheses H1 to H3. In the PSK−q case,
we have the following

Lemma 5. Under hypothesis H5 and H6 and with Q(z) = zq, trivial filters are of the form
P Ď[z], where Ďpp[z] are rotations in the complex plane of an angle multiple of 2π/q combined
with a pure delay, and P are permutations.

For more general alphabets (called constellations in the framework of digital linear
modulations), we need to define the following set

Definition 6. Let A be a finite alphabet not reduced to {0}, defined by Q(x) = 0, where Q is
a polynomial of degree d with d > 1 distinct roots, and let G be the subset of complex numbers
γ, such that γA ⊂ A.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2004; 00:1–16
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CONTRASTS AND BLIND DECONVOLUTION 7

Note that, because A is finite, numbers of G are necessarily of unit modulus, and integer
roots of unity (i.e., for every γ ∈ G, there exists an integer q(γ) such that γq(γ) = 1); this is
true regardless of polynomial Q. In other words, γA = A, ∀γ ∈ G. Then, for every γ ∈ G, the
equation γA = A implies that γ−1 ∈ G. Now, a similar statement as lemma 5 holds:

Lemma 7. Trivial filters associated with hypotheses H5 and H6 are of the form P Ď[z], where
the entries of Ď[z] can be written as Dpp[z] = γp z

n, with γp ∈ G and n ∈ ZZ .

It can thus be seen that the size of the set of trivial filters (characterizing the inherent
indeterminacy of the problem) depends on the nature of the alphabet.

4. CONTRASTS

When noise is present in model (2), the estimation of inputs can be carried out according to
a Maximum Likelihood (ML) or a Maximum A Posteriori (MAP) procedure if the noise has
a known distribution. If this is not the case, noise must be considered as a nuisance. Contrast
criteria are dedicated to this kind of situation.

4.1. Definition

Let H be a set of filters, and denote H·S the set of processes obtained by operation of filters
of H on processes of S. Denote T the subset of H of trivial filters, defined in lemma 4. An
optimization criterion, Υ(H;x), is referred to as a contrast, defined on H×H·S, if it satisfies
the three properties below [12]:

P1 Invariance: The contrast should not change within the set of acceptable solutions, which
means that
∀H ∈ T , ∀x ∈ H·S, Υ(H ;x) = Υ(I;x).

P2 Domination: If sources are already separated, any filter should decrease the contrast. In
other words,
∀s ∈ S, ∀H ∈ H, then Υ(H ; s) ≤ Υ(I; s).

P3 Discrimination: The maximum contrast should be reached only for filters linked to each
other via trivial filters:
∀s ∈ S,Υ(H ; s) = Υ(I; s) ⇒ H ∈ T .

The most natural criterion to measure the statistical mutual independence between P
variables zp is the divergence between the joint probability density and the product of the
marginal ones. If we assume the Kullback-Leibler divergence, we end up with the Mutual
Information (MI):

I(pz) =

∫

pz(u) log
pz(u)

∏

p pzp(up)
du. (6)

This quantity is indeed positive, and vanishes if and only if random variables zp are mutually
independent. It is also invariant by scale change. The MI is thus a first possible contrast
function [11] [49].
However, its practical use is rather difficult, especially in large dimension (e.g. convolutive

mixtures), even if some iterative algorithms have been devised [51]; the MI is nevertheless

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2004; 00:1–16
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8 P. COMON

a powerful tool for separating Non Linear mixtures [58] [3]. Therefore, contrasts based on
cumulants are often preferred in the context of linear mixtures.

4.2. Construction of contrast functionals based on cumulants

In this section, we restrict our attention to the construction of optimization criteria based on
marginal standardized cumulants of the equalizer output.

Lemma 8. If φ is a real convex function of a real variable, and if aj are real positive numbers,
1 ≤ j ≤ P ,

∑

j aj ≤ 1, then φ(
∑

j ajxj) ≤
∑

j aj [φ(xj)− φ(0)] + φ(0)

Proof. It suffices to add the coefficient a0 = 1−
∑

j aj to weight the origin.

Lemma 9. Let {αij} be a set of positive real numbers, 1 ≤ i, j ≤ P , such that (A1)
∑

j αij ≤ 1
and (A2)

∑

i αij ≤ 1 and let φ be convex as above. Then
∑

i φ(
∑

j αijxj) ≤
∑

j φ(xj).

Proof. From lemma 8 and (A1), one gets φ(
∑

j αijxj) ≤
∑

j αij [φ(xj) − φ(0)] + φ(0). By
summing this over i, and then using (A2), one obtains

∑

i φ(
∑

j αijxj) ≤
∑

j [φ(xj)− φ(0)] +
Pφ(0).

Lemma 10. Let {αij} be as in lemma 9, and ψ be a real concave function of a real variable,
then

∑

i ψ(
∑

j αijxj) ≥
∑

j ψ(xj).

The proof is similar.

Consider now a paraunitary equalizer, Ǔ [z]. The lemma below, already proved in [44], defines
a class of contrast criteria, encompassing those proposed in [12], allowing to optimize Ǔ [z]:

Lemma 11. If φ is monotonous strictly increasing convex and positive, then
∑

i φ(|C
(r,p)
xi |) ≤

∑

j φ(|C
(r,p)
sj |), ∀p.

Proof. To prove this, one assumes the input of the equalizer is the source process itself, s[n].

We have x[n] =
∑

k U [k]s[n−k]. This yields C(r,p)
xi =

∑

j,k Uij [k]
r Uij [k]

(r−p)∗ C(r,p)
sj . Then using

the triangle inequality and the monotonicity of φ leads to: φ(|C(r,p)
xi |) ≤ φ(

∑

j,k |Uij [k]|r |C(r,p)
sj |).

Now, because Ǔ [z] is paraunitary,
∑

j,k |Uij [k]|2 = 1 and
∑

i,k |Uij [k]|2 = 1. The first

consequence is that
∑

j,k |Uij [k]|r ≤ ∑

j,k |Uij [k]|2; and the second is that the coefficients αij
def
=

∑

k |Uij [k]|r satisfy the assumptions of lemma 9. Applying this lemma yields
∑

i φ(|C
(r,p)
xi |) ≤

∑

j φ(|C
(r,p)
sj |). This proves requirement P2.

It remains to prove that the equality can hold only when the filter is trivial. This is visible
from the equality

∑

j,k |Uij [k]|r =
∑

j,k |Uij [k]|2, which can hold true only when only one entry

of the polynomial matrix Ǔ [z] is nonzero in each row and each column, hence the result P3.

Theorem 12. Let φ be real positive strictly increasing convex, and ψ positive decreasing
concave. If H denotes the group of paraunitary filters, and S the set of processes satisfying

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2004; 00:1–16
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CONTRASTS AND BLIND DECONVOLUTION 9

hypotheses H1, H2, and H4, then the functional below is a contrast defined on H×H·S:

Υ(x)
def
=

∑

i φ(|C
(r,p)
xi |)

∑

i ψ(|C
(r,p)
xi |)

Proof. Obviously, in the same manner as lemma 11, one can state another lemma for concave
decreasing functions ψ. If ψ is not strictly decreasing, one looses the discrimination P3, but

we still have
∑

i ψ(C
(r,p)
xi ) ≥ ∑

j ψ(C
(r,p)
sj ). This inequality combined with lemma 11 proves that

Υ(x) ≤ Υ(s).

If equality holds, we must necessarily have
∑

i ψ(C
(r,p)
xi ) =

∑

j ψ(C
(r,p)
sj ) and

∑

i φ(C
(r,p)
xi ) =

∑

j φ(C
(r,p)
sj ). The strict monotonicity of φ then suffices to prove P3, as in the proof of lemma

11.

Now we come to a nice simple theorem allowing to combine criteria based on cumulants of
possibly different orders, which allows better discrimination properties:

Theorem 13. If Υk(y) are contrasts defined on H·Sk, and {ak} are strictly positive numbers,

then Υ(y)
def
=

∑

k akΥk(y) is a contrast on H·⋃k Sk.

Proof. Requirement P2 is obtained immediately, because all terms are positive: Υ(x) =
∑

k akΥk(x) ≤
∑

k akΥk(s) = Υ(s). If equality holds, then
∑

k ak[Υk(s)−Υk(x)] = 0, which
is possible only if every term vanishes because they are all positive. Thus Υk(x) = Υk(s),
∀k. But s ∈ Sk for some k, by hypothesis. And since Υk is a contrast, one can conclude that
x = T ⋆ s, for some trivial filter T of H. This proves the theorem.

Lastly, the theorem below is an obvious corollary of the definition of contrasts; Corollary 15
can be obtained by merely combining theorems 13 and 14, and using the same reasoning as in
the proof of Theorem 12.

Theorem 14. If Υ(y) is a contrast, then so is φ(Υ(x)), for any positive strictly increasing
function φ.

Corollary 15. Let φ be positive strictly increasing and ψ positive decreasing. Then, if Υk(x)
are contrasts defined on H·Sk, and {ak} and {bk} are positive numbers, ak > 0, then

Υ(x)
def
=

φ (
∑

k akΥk(x))

ψ (
∑

k bkΥk(x))

is a contrast on H·⋃k Sk.

4.3. Contrasts for discrete sources

Let us now turn to discrete inputs. We now assume Hypotheses H5 and H6 instead of H3 or
H4. For general alphabets (as defined in hypothesis H5), trivial filters are given by Lemma 7,
and a result similar to the above still holds true:

Theorem 16. Let S be the set of processes taking their values in alphabet A, and H the set
of P × P invertible FIR filters. Then criterion

Υ(A;x) = −
∑

n

∑

i

|Q(xi(n))|2 (7)

is a contrast under hypotheses H5 and H6.
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10 P. COMON

The proof of the theorem needs the lemma below.

Lemma 17. Let A = {xn, 1 ≤ n ≤ d} be a given finite set of complex numbers not reduced

to {0}, and {ci, 1 ≤ i ≤ P} non zero complex coefficients. Then, if
∑P

i=1 ci xσ(i) ∈ A, for all
mappings σ, not necessarily injective, from {1, . . . P} to {1, . . . d}, only one component ck is
non zero.

The proof of the Lemma is given in appendix. Let us now prove theorem 16.

Proof. Let us prove property P1. For any trivial filter T defined by lemma 7, we have
−Υ(T ;x) =

∑

i

∑

n |Q(γ xσ(i)[n+ τ ])|2, with τ ∈ ZZ , γ ∈ G, and σ a permutation. Because of
the sums, this can also be simply written −Υ(T ;x) =

∑

j

∑

m |Q(γ xj [m])|2. If xj [m] is in S,
then its value is in A, and so is that of γ xj [m], by definition of G. Thus Q(γ xj [m]) = 0.
Property P2 is obvious. In fact,

∑

i

∑

n |Q(yi[n])|2 ≥ 0. Hence it is larger than or equal
to

∑

i

∑

n |Q(si[n])|2, because the latter is null when s[n] ∈ S. We have indeed −Υ(H; s) ≥
−Υ(I; s).
Lastly, in order to prove property P3, we must show that if we have the equality

∑

i

∑

n |Q(yi[n])|2 = 0, then T is trivial. Consider one component of vector y[n], and drop its
subscript for the sake of convenience. Denote y[n] =

∑

j cj sj [n], with sj [n] ∈ A, and where cj
corresponds to the jth row of filter H. Then we have ∀n,Q(y[n]) = 0. From hypothesis H6,
we thus have that Q(

∑

j cjxj) = 0, for all P−uplet {x1, . . . xP }. We are in the conditions of
Lemma 17, and we may conclude that a single ck is non zero. In addition, this ck is necessarily
in G since ck xmust be in A for any x ∈ A. By proceeding in the same way for every component
of vector y[n], we end up with an impulse response H[n] having only one non zero entry in
every row. Because H is invertible, it must eventually be of the form given in lemma 7.

4.4. Examples

• For SISO blind equalization, the Constant Modulus (CM) criterion is

JCM (x) = E{(1− x2)2} (8)

whereas the criterion of the Maximal kurtosis (KM) is

JKM (x) =
E{|x|4} − E{x2}2

E{|x|2} − 2 =
C(4,2)
x

[C(2,1)
x ]2

(9)

Under mild conditions (circularity at order 2), these two criteria are equivalent, because related
by a monotonous decreasing function [22, ch.4] [53].

• Deflation approaches consist of extracting estimated sources one by one. Therefore, the
equalizer has K inputs but only one output. Criteria as JCM or JKM can be used for that
purpose [20] [60] [61] [47].

• For MIMO mixtures, the following criteria are contrasts, for any r > 2, α ≥ 1, 0 ≤ p ≤ r
[12]:

J (r,p)
α (x) =

∑

i

|C(r,p)
xi

|α (10)

Next, the Edgeworth expansion of the MI of a standardized (i.e. after whitening) real variable
is given as follows, up to an additive constant Io, as a function of standardized cumulants (i.e.
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cumulants of the whitened variable) [11]:

−I = Io +
∑

i

4 [C(3)
xi

]2 + [C(4)
xi

]2 + 7 [C(3)
xi

]4 − 6 [C(3)
xi

]2C(4)
xi

Note that a similar expression holds true in the complex case, though more complicated.
This approximation is not proved to be a contrast. But from theorem 13 and (10), the

criterion below is a contrast:

J
(3+4)
2 (x) =

∑

i

4 |C(3)
xi

|2 + |C(4)
xi

|2 (11)

and has the advantage to be discriminating for either 3rd or 4th order circular variables [11] [6],
and still approximates the MI in some way. This kind of idea has also been recently exploited by
jointly diagonalizing two cumulant tensors of different orders in [43]; the optimization criterion
has nevertheless not been proved to be a contrast by the author.

• Again thanks to theorem 13, one can combine contrasts based on cumulants and others
based on the discrete character. This has been for instance proposed in [41], even if the criterion
used there was not proved to be a contrast by the authors.

• For discrete PSK−q inputs, Q(z) = zq, and trivial filters are those given by Lemma 5 and
criterion

Υ(x)
def
= −

∑

i

∑

n

|xi[n]q − 1|2 (12)

is a contrast if the matrix (si[n]) is full rank.

• Instead of maximizing marginal cumulants through criteria such as J
(4,2)
2 , one can try to

Jointly Approximately Diagonalize (JAD) several cumulant matrices. The advantage is that
linear algebra tools can be utilized; One can prove that, under certain conditions, these JAD
criteria are indeed contrast functions [8] [16] [17]. Consider the static MIMO case for instance.
Because the sum of all squared cumulants is invariant by unitary transform [11], minimizing

all the squared moduli of cross-cumulants of x amounts to maximizing the sum of the marginal
ones. In [8], only part of the set of cross-cumulants is minimized in order to deflate the original
problem (of tensor nature) to a joint matrix diagonalization. The consequence is that the
equivalent contrast now contains more terms than in (10):

Υ
(4,2)
JAD(U ) =

∑

ijk

|Cx;ij,ik|2. (13)

The interest in doing so appears when expressing this quantity as a function of U . First use
the multilinearity property, based on the definition x = U ȳ:

Υ
(4,2)
JAD(U ) =

∑

ijk

|
∑

pqmn

Uip Ujq U
∗
im U∗

kn Cȳ;pq,mn|2

Because of the unitarity of U , the expansion of the square modulus simplifies. After some
manipulations, we get:

Υ
(4,2)
JAD(U) =

∑

qn

∑

i

|
∑

pm

UipCȳ;pq,mnU
∗
im|2 (14)
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12 P. COMON

It can now be seen that this criterion is nothing else but that of a Joint Approximate
Diagonalization of a set of matrices N (q, n) whose entries are N(q, n)pm = Cȳ

pq,mn, by a
unitary change of basis defined by matrix U . In fact, this contrast selects all the squares of
diagonal terms of every matrix UN (q, n)U H.

This type of contrast can also be defined for even orders r = 2q > 2 when data are in the
complex field, even if it is given here only for r = 4. Further extensions to JAD of tensors of
order higher than 2 are proposed in [18] [43]. For instance, in [18, ch.9], the STOTD contrast
takes the form:

Υ
(4,2)
STO(U) =

∑

pq

|Cx;pq,pp|2 (15)

• Let us turn to dynamic MIMO systems. After space-time prewhitening, the MIMO
equalizer is paraunitary, as already pointed out earlier. One can then try to approximate
this paraunitary constraint by a unitary constraint in a JAD framework [17]; the criterion
proposed therein is also a contrast [16]. Another idea is to sweep the delays [4]. For the former,
the contrast takes the form [16]:

Υ
(r,2)
JAD(Ǔ [z]) =

∑

i

∑

j

∑

ℓ

|C(r,2)
x [i, j, ℓ]|2, (16)

where C(r,2)
x [i, j, ℓ] are r−th order cumulant multi-correlation slices defined as

C(r,p)
x [i, j, ℓ]

def
= Cum{xi(n), . . . , xi(n)

︸ ︷︷ ︸

p terms

, xj1(n− ℓ1), . . . , xjq (n− ℓq)
︸ ︷︷ ︸

q= r−p terms

}

and where j = (j1, . . . jq) ∈ {1, . . . , P}q and ℓ = (ℓ1, . . . ℓq) ∈ ZZ
q. One can then show that this

contrast can be formulated as a JAD criterion, similar to that of the previous paragraph:

Υ
(r,2)
JAD(Ǔ [z]) =

∑

b

∑

γ

||Diag{V N (b,γ)V H}||2 (17)

where V is a N × NL semi-unitary matrix, if L denotes the number of matrix taps in the
MIMO equalizer.

4.5. Pathological cases: carrier mismatch

In the presence of carrier residual, real modulations (such as PAM or BPSK) raise problems,
because they appear as being circular (even if they are not originally circular: E{s[n]2} 6= 0).
In these particular cases, one can show that the kurtosis criterion can reach a maximum for
filters that contain two masses [32], instead of one as desired. In all other cases, one can prove
that most results for contrast-based SISO blind equalization hold true [9].

Another class of pathological cases encompasses the non Gaussian random variables that
have a null kurtosis. One could think these variables are rare and never encountered; this is
untrue. Take the example of a variable uniformly distributed on the unit circle with probability
1/2, and null with probability 1/2. This variable is encountered when the on-off modulation
{0, 1} suffers from a strong carrier offset [48]. This kind of variable is viewed as Gaussian by
the algorithms based on cumulants or moments of order lower than or equal to 4.
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5. NUMERICAL ALGORITHMS

5.1. Iterative ascent

Criteria JCM and JKM do not need prewhitening. JCM can be minimized directly, and JKM

should be maximized under a norm constraint on the equalizer tap vector. The usual practice,
at least in the SISO and deflation cases, is to run a gradient ascent of JKM :

v = f(k) + η g(k); f(k + 1) = v/||v|| (18)

where g(k) denotes the gradient of JKM (f) calculated at f(k), and η the step size. Standard
gradient implementations, especially with a fixed step, perform poorly because of the shape
of the criterion, which contains many saddle points. The way the step size is adjusted (e.g.
quasi-Newton) does not improve anything with this respect: if the algorithm is initialized near
a saddle point, the iterations can stay a long time in its neighborhood, and suddenly burst out
far away from the attraction basin, and take again a long time to come back. Yet, a significant
improvement can be brought to this.
In fact, assume J(f ) is a rational function in the fi’s. This is the case for instance for KM and

CM criteria. Then, J(f (k) + η g(k)) is a rational function in variable η. As a consequence, all
its stationary points can be explicitly computed, as roots of a polynomial in a single variable,
and the absolute minimum/maximum easily found [13]† This kind of algorithm may sometimes
give the possibility to leave the attraction basin of a local minimum, if any.

The contrast criteria that we proposed for discrete sources, e.g. (12), are of polynomial
nature. Hence, they can also be maximized with the help of our algorithm above, searching
for absolute maxima. The same remarks already made still hold. In the present case however,
algebraic solutions may be computed, as reported in [28] [27], among others.
Other approaches, that are not based on contrast maximization, exist in the literature,

including [64] [57] [62] [59] [63] [38] [28] [29] [19].

5.2. Quasi algebraic algorithms for static MIMO

Several algorithms have been proposed in the static (i.e. non frequency selective, encountered
in flat fading channels) MIMO case (ICA). Roughly speaking, one can divide them into two
families. First, the deflation type algorithms try to extract one source, and then subtract
it in the observation by linear regression [20]; we already talked about that. Second, direct
separating algorithms impose some structure on the filter F in order to make sure it does
not become singular, neither deliver several times the same source; this can be implemented
adaptively or not [11] [46].
• As an illustration, consider the 2×2 separating filter, which can often appear as a building

block of MIMO equalizers.

x =

(
c s eϕ

−s e−ϕ c

)

y (19)

where the input y has been whitened, c = cosα is real positive, s = sinα is real, and α, ϕ ∈
[−π/2, π/2[. Parameters (α, ϕ) can be found by maximizing the contrast J

(4,2)
1 = ε

∑

i C
(4,2)
xi , if

†The Matlab/Scilab codes for JKM and JCM will be downloadable from www.i3s.unice.fr/c̃omon in the near
future.
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14 P. COMON

sources have the same kurtosis sign, ε. It can be shown that this maximization problem admits
an analytical solution given by the dominant eigenvectorw = [cos 2α, sin 2α cosφ, sin 2α sinφ]T

of a 3× 3 real quadratic form: wT B w.
More precisely, let r = 2q be even. We give here a way to algebraically maximize

J
(r,q)
1 . It has been shown in [18, ch.9] that the maximization of contrast (15) amounts to

diagonalizing simultaneously a set of third-order tensors. For this purpose, it has been shown
that |Cz

12,1|2 + |Cz
21,2|2 is a quadratic form in variable w = [cos 2α, sin 2α cosφ, sin 2α sinφ]T.

Here we report that a similar result holds true for contrast Υ
(1)
2,2:

J
(4,2)
1 (U) = wT B w, (20)

where B is a 3× 3 real symmetric matrix with entries

B11 = C11,11 + C22,22, B21 = ℜ[C11,12 − C12,22], B31 = ℑ[C11,12 − C12,22],
B22 = 1

2 (C11,11 + C22,22) + 2C12,12 + ℜ[C11,22], B23 = ℑ[C11,22],
B33 = 1

2 (C11,11 + C22,22) + 2C12,12 −ℜ[C11,22]
where Cij,kℓ stands for Cȳ;ij,kℓ. This result is new.
• Another interesting example is that of the algorithm proposed in [6], where the

optimization criterion is an approximation of J
(3+4)
2 in (11), leading to an efficient numerical

algorithm, in the same spirit.

5.3. Quasi algebraic algorithms for dynamic MIMO

Only SIMO channels can be identified with order 2 statistics only, unless some specific
additional information is available. For instance, the non circularity of sources is used in [29],
and the non stationarity is used in [50]. The best we can do with second order statistics, is
to end up with a static MIMO problem. This is what linear prediction approaches do. But
one can proceed directly, as proposed in [4] [16] [17] for instance, by a Joint Approximate
Diagonalization as suggested in (17).

6. CONCLUDING REMARKS

Several extensions of the contrast concept have been examined, and are currently being
deepened. In particular, it has been shown that contrast criteria can be combined together to
build more efficient new contrasts. Algebraic block solutions become more and more attractive,
especially in TDMA transmissions, because of the increased computational power. Therefore,
quasi algebraic solutions become more attractive and should be the subject of increased efforts.
The issue of space-time prewhitening should not be overlooked in operational systems, and has
not been addressed in the present paper. Other interesting directions of research include the
impact of channel length misadjustment, Non Linear or under-determined mixtures; MCMC
approaches can be promising in this kind of context, for the same reason.
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18 P. COMON

APPENDIX

Proof of Lemma 17. The proof is in three stages. Assume that, for some c ∈ lC
P , we have that xT

c ∈ A,
∀x ∈ AP . We show below that c must then be trivial. The idea is to prove that a non trivial vector c
generates symbols that may lie outside the convex hull of alphabet A.

Preliminaries

Denote A = {a1, . . . ad}, c
T = [c1, . . . cP ], and 1 the vector formed of P ones.

• Because x
T
c ∈ A for any vector x containing elements of A, it must be true in particular for

x
T = ap 1

T. This implies that ∀ap ∈ A, ap

∑

i
ci ∈ A. In other words, we must always have

∑

i

ci ∈ G. (21)

• Next, for any pair of distinct complex numbers a and b, define the P × P matrix B =
(a−b) I+b11T. This matrix has a determinant equal to (a−b)P−1(a+(P −1)b). For a+(P −1)b 6= 0,
its inverse takes the form

B
−1 =

1

a− b

[

I −
b

a+ (P − 1)b
11

T

]

(22)

• As a result, for any pair of distinct symbols of A, a and b, there exists a vector α containing P
symbols of A such that Bc = α. From (22), we have in particular

∀(a, b) ∈ A2/a 6= b, a+ (P − 1)b 6= 0 :
∑

i

ci = [a+ (P − 1)b]−1
∑

i

αi (23)

Stage 1: Case of real symbols, with G = {1}
Denote xm = min{x, x ∈ A} and xM = max{x, x ∈ A}. We Consider the ith row of Bc = α. More
precisely, from (21),

∑

i
ci = 1 and:

∀a, b ∈ A, ∃αi ∈ A/ αi = ci a+ (1− ci) b

So ci must be real too. By induction, defining β0 = a, the real number βk = ci βk−1+(1−ci) b is also in

A, ∀k > 0. Yet, the writing βk = b+cki (a−b) shows that either ci = 0, or |ci| = 1, otherwise the series
would generate infinitely many distinct symbols in A. So we have proved so far that ci ∈ {−1, 0, 1},
∀i, 1 ≤ i ≤ P . If ci ∈ {0, 1}, ∀i, then again from

∑

i ci = 1, there is a single nonzero entry in c, and
c is eventually trivial. So the last case to consider is: ∃ci = −1, 1 ≤ i ≤ P . This case is irrelevant. In
fact, β = b + ci(a − b) ∈ A for any pair (a, b) ∈ A2; in particular for ci = −1, a = xM and b = xm,
the symbol β = xm− (xM −xm) should belong to A. But xM > xm ⇔ β < xm, which contradicts the
definition of xm.

Stage 2: Complex case with G = {1}
• If d = 2, the problem is equivalent to a particular case of real alphabet. This case has been

consequently already addressed.
• Now assume d > 2, and choose a symbol b on the convex hull of A. Since d > 2, b always has two

distinct neighbors on the convex hull (unless symbols are real, but this has been already examined).
So choose one of the two neighbors on the convex hull, denoted a, in order to also have a+(P−1)b 6= 0
(equality cannot hold for both). Result (23) then applies. Since

∑

i ci ∈ G, (23) yields

a+ (P − 1)b

P
=

1

P

∑

i

αi (24)
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Let us prove first that α cannot be proportional to 1. Assume α = ao 1 for some ao ∈ A. Then from
(24), ao = 1

P
a+ P−1

P
b. Therefore symbol ao is also on the convex hull of A, and is closest to b than

a was. This contradicts the fact that a was one of its two neighbors of b.
So assume now that vector α contains at least two distinct symbols. If these symbols are a and b,

then we necessarily have 1 time a and (P − 1) times b, and c is trivial, as already seen. If all symbols
of α are real, this case is equivalent to stage 1, and has been already treated. Thus assume there is in
α a third symbol x distinct from a and b, being not a real linear combination of a and b. From (23),
there must be at least another symbol x′ on the other side of the line spanned by {a, b}. But then
one of them lies outside the convex hull of A. This contradicts the fact that both x and x′ are in A.

Stage 3: Case G 6= {1}
This is the general case. We have seen in section 3.2 that 1 indeed always belongs to G, but that there
may be other complex numbers γ such that γA ⊂ A. We pointed out that these numbers must be
roots of unity, which means that if

∑

i
ci ∈ G, then there necessarily exists a number γ ∈ G such that

γ
∑

i
ci = 1. Let c′i = γ ci. All the previous reasoning then applies with c′i instead of ci.

We have proved that vector c must be trivial in all cases of complex finite alphabets.
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