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ABSTRACT. In this paper we prove that the avalanche problem for the Kadanoff
sandpile model (KSPM) is P-complete for two-dimensions. Our proof is based on
a reduction from the monotone circuit value problem by building logic gates and
wires which work with configurations in KSPM. The proof is also related to the
known prediction problem for sandpile which is in NC for one-dimensional sandpiles
and is P-complete for dimension 3 or greater. The computational complexity of
the prediction problem remains open for two-dimensional sandpiles.

1. Introduction

Predicting the behavior of discrete dynamical systems is, in general, both the
“most wanted” and the hardest task. Moreover, the difficulty is still hard when
considering finite phase spaces. Indeed, when the system is not solvable, numerical
simulation is the only possibility to compute future states of the system.

In this paper we consider the well-known discrete dynamical system of sandpiles
(SPM). Roughly speaking, its dynamics is as follows. Consider the toppling of grains
of sand on a (clean) flat surface, one by one. After a while, a sandpile has formed.
At this point, the simple addition of even a single grain may cause avalanches of
grains to fall down along the sides of the sandpile. Then, the growth process of
the sandpile starts again. Remark that this process can be naturally extended to
arbitrary dimensions although for d > 3, the physical meaning is not clear.

The first complexity results about SPM appeared in [6, 7] where the authors
proved the computation universality of SPM. For that, they modelled wires and
logic gates with sandpiles configurations. Inspired by these constructions, C. Moore
and M. Nilsson considered the prediction problem (PRED) for SPM i.e. the problem
of computing the stable configuration (fixed point) starting from a given initial
configuration of the sandpile. C. Moore and M. Nilsson proved that PRED is in
NC? for dimension 1 and that it is P-complete for d > 3 leaving d = 2 as an open
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problem [12]. (Recall that P-completeness plays for parallel computation a role
comparable to NP-completeness for non-deterministic computation. It corresponds
to problems which cannot be solved efficiently in parallel (see [9]) or, equivalently,
which are inherently sequential, unless P =NC). Later, P.B. Miltersen improved the
bound for d = 1 showing that PRED is in LOGDCFL (C AC') and that it is not
in AC'™* for any ¢ > 0 [11]. Therefore, in any case, one-dimensional sandpiles are
capable of (very) elementary computations such as computing the max of n bits.

Both C. Moore and P.B. Miltersen underline that “having a better upper-bound
than P for PRED for two-dimensional sandpiles would be most interesting.”

In this paper, we address a slightly different problem: the avalanche problem
(AP). Here, we start with a monotone configuration of the sandpile. We add a grain
of sand to the initial pile. This eventually causes an avalanche (a sequence of topples)
and we address the question of the complexity of deciding whether a certain given
position —initially with no grain of sand— will receive some grains in the future. Like
for the (PRED) problem, (AP) can be formulated in higher dimensions. In order to
get acquainted with AP, we introduce its one-dimensional version first.

One-dimensional sandpiles can be conveniently represented by a finite sequence
of integers x1,2o,...,...,x,. The sandpiles are represented as a sequence of piles
and each z; represents the number of grains contained in pile 7. In the classical SPM,
a grain falls from pile 7 to ¢ + 1 if and only if the height difference z; — x;11 > 2.
Kadanoft’s sandpile model (KSPM) generalises SPM [10, 5] by adding a parameter
p. The setting is the same except for the local rule: one grain falls to the p — 1
adjacent piles if the difference between pile 7 and 7 + 1 is greater than p.

Assume xp = 0, for a value of k£ “far away” from the sandpile. The avalanche
problem asks whether adding a grain at pile x; will cause an avalanche such that at
some point in the future x;, > 1, that is to say that an avalanche is triggered and
reaches the “flat” surface at the bottom.

This problem can be generalized for two-dimensional sandpiles and is related to
the question addressed by C. Moore and P.B. Miltersen.

In this paper we prove that in the two-dimensional case, AP is P-complete. The
proof is obtained by reduction from the Circuit Value Problem where the circuit only
contains monotone gates — that is, AND’s and OR’s (see Section 3 for details).

We stress that our proof for the two-dimensional case needs some further hy-
pothesis/constraints for monotonicity and determinism (see Section 3). If both
properties are technical requirements for the proof’s sake, monotonicity also has a
physical justification. Indeed, if KSPM is used for modelling real physical sand-
piles, then the image of a monotone non-increasing configuration has to be monotone
non-increasing since gravity is the only force considered here. We have chosen to
design the Kadanoff dynamics for d = 2 by considering a certain definition of the
three-dimensional sandpile which does not correspond to the one of Bak’s et al.
in [1]. This hypothesis is not restrictive. It is just used for constructing the transi-
tion rules. Bak’s construction was done similarly. Nevertheless, our result depends
on the way the three dimensional sandpile is modelled. In our case, we have decided
to formalise the sandpile as a monotone decreasing pile in three dimensions where
x;; > max{x;1,2;j+1} (here z; ; denotes the sand grains initial distribution) to-
gether with Kadanoff’s avalanche dynamics ruled by parameter p. The pile (4, 7)
can give a grain either to every pile (i + 1,j),...,(: +p — 1,j) or to every pile
(t,7+1),...,(i,7 + p — 1) if the monotonicity is not violated. With such a rule
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and if we use the height difference for defining the monotonicity, we can define the
transition rules of the dynamics for every value of the parameter p.

In the case where the value of the parameter p equals 2, we find in our definition
of monotonicity something similar with Bak’s SPM in two dimensions. Actually,
both models are different because the definitions of the three dimensional piles differ.
That is the reason why we succeed in proving the P-completeness result which
remains an open problem with Bak’s definition.

The paper is organized as follows. Section 2 introduces the definitions of the
Kadanoff sandpile model in one dimension and presents the avalanche problem.
Section 3 generalizes the Kadanoff sandpile model in two dimensions and presents
the avalanche problem in two dimension, which is proved P-complete for any value
of the Kadanoff parameter p. Finally, Section 4 concludes the paper and proposes
further research directions.

2. Sandpiles and Kadanoff model in one dimension

A sandpile configuration is a distribution of sand grains over a lattice (here
7). Each pile of the lattice is associated with an integer which represents its sand
content. A finite configuration on Z can be identified with an ordered sequence of
integers “z1, s, ..., x* in which x; (resp. x,) is the first (resp. the last) pile such
that all the piles on the left of x; equal x; (resp. all the piles on the right of z,
equal x,). Given a configuration z, @ € N and j € Z, we use the notation “az;
(resp. z;a”) to say that Vi € Z, i < j = x; = a (resp. Vi € Z, i > j = x; = a).

Remark that any configuration x = “xq,2s,...,2,-1,2% can be identified with
its heights differences sequence

wO,hl = (l‘l - l‘g), .. -ahn—l = (xn—l - xn),()w s

n will be referred to as the length of the configuration and it is denoted |z|. In
other words, we associate the initial (infinite) configuration with a finite sequence
of integers hy, ho, ..., hjy—1. This latter representation is more convenient and is
widely used in the sequel. A configuration is finite if only a finite number of its
heights differences sequence has non-zero sand content.

A configuration z is monotone if the sequence of its heights differences is mono-
tone d.e. Vi € {1,2,...,|z] — 1}, h; > 0. A monotone configuration z is stable if
the sequence of its heights differences is stable, i.e. Vi € {1,2,... |z| — 1}, h; <p
i.e. if the difference between any two adjacent piles is less than Kadanoft’s param-
eter p. Let SM(n) denote the set of stable monotone configurations of the form
YTy, Ta, ..., Tp-1, 2 and of length n, for x; € N.

Consider a stable monotone configuration “zy, o, . .., 2%. Adding one more sand
grain, say at pile ¢, may cause that the pile ¢ topples some grains to its adjacent
piles. In their turn the adjacent piles receive a new grain and may also topple, and
so on. This phenomenon is called an avalanche which ends when the system evolves
to a new stable configuration.

In this paper, topplings are controlled by the Kadanoff’s parameter p € N, p > 2
which completely determines the model and its dynamics. In KSPM(p), p—1 grains
will fall from pile ¢ if h; = (z; — 2;41) > p and the new configuration becomes

Yoy (@) (@ —p A+ D) (@i + 1) (@igp2 + D) (@it + 1) (@i4p) - - 007
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0 0
0 0
0 0
0 0
0 0

Figure 1: Avalanches for p = 3 with 9 piles. Here, x;+1 (resp. z;+2) indicates that
pile i has received some grains once (resp. twice), x; — 1 that pile 7 has
given some grains according to the dynamics; a dark shaded pile indicates
the toppling pile, a light shaded pile indicates a pile that could topple in
the future. Times goes top-down.

In other words, the pile i distributes one grain to each of its (p — 1) right adja-
cent piles. Equivalently, if we measure the heights differences after applying the
dynamics, we get (hi—1 4+ p — 1)(hi = p)(his1)(hiv2) - - - (hitrp—2)(hiyp-1 + 1), and all
remaining heights do not change. In other words, the height difference h; gives raise
to an increase of (p—1) grains of sand to height h; 1, a decrease of p grains to height
h; and an increase of one grain to height h; 4, ;.

We consider the problem of deciding whether some pile on the right of pile x,,
(more precisely for zy for n < k < n + p— 1) will receive some grains according to
the Kadanoft’s dynamics. Since the initial configuration is stable, it is not difficult
to prove that avalanches will reach at most the pile n+p—1 (see Fig. 1 for example).

Remark that given a configuration, several piles could topple at the same time.
Therefore, at each time step, one might have to decide which pile or piles are allowed
to topple. According to the update policy chosen, there might be different images of
the same configuration. However, it is known [8] that for any given initial number
of sand grains n, the orbit graph is a lattice and hence, for our purposes, we may
only consider one decision problem to formalize AP:

Problem AP
Instance: A configuration z € SM(n) and k € Nst. n< k<n+p—1.
Question: Does there exist an avalanche such that z; > 17

Let us consider some examples. Let p = 3 and consider a stable configuration
whose height differences are as follows “0022022120000“. We add a single grain
at x1 (underlined in the configuration). Then, the next step should probably be
“02021222120000“. In one step we see that no avalanche can be triggered, hence
the answer to AP is negative. As a second example, consider the following sequence
of height differences (always with p = 3): ©03122122221201200%. There are several
possibilities for avalanches from the left to the right but none of them arrives to the
rightmost 0’s region. So the answer to the decision problem is still negative. To get
an idea of what happens for a positive instance of the problem, consider the initial
configuration: “0312222100“ with p = 3.
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The full proof of Theorem 2.1 is a bit technical and will only be sketched here.
Theorem 2.1. AP is in NC' for KSPM in dimension 1 and p > 1.

Sketch of the proof. The first step is to prove that, in this situation, the Kadanoft’s
rule can only be applied once at each pile for any initial monotone stable configu-
ration. Using this result one can see that a pile k£ such that hy = 0 in the initial
configuration and hg > 1 in the final one, must have received grains from pile k — p.
This pile, in its turn, must have received grains from k£ — 2p and so on until a “fir-
ing” pile @ with ¢ € [1,p — 1]. The height difference for all of these piles must be
p— 1. The existence of this sequence and the values of the height differences can be
checked by a parallel iterative algorithm on a PRAM in time O (logn). [

3. Sandpiles and Kadanoff model in two dimensions

There are several possibilities to extend the Kadanoff dynamics to two-dimen-
sional sandpiles. We first generalise the definitions introduced in Section 2.

A two-dimensional sandpile configuration is a distribution of sand grains over
the Nx N lattice. Therefore, a configuration on Nx N will be identified by a mapping
from N x N into N, giving a number of grains of sand to every position in the lattice.
Thus, a configuration will be denoted by x;; as (i,7) — N. A configuration x is
monotone if Vi, j € N x N, z; ; is such that z; ; > 0 and z;; > max{z;41;, T 1}
So we get a monotone sandpile, in the same sense as in [2]. Example 3.1 illustrates
the case which violates the condition of monotonicity of the Kadanoff dynamics.

Example 3.1. Consider the initial configuration given in the bottom left matrix

0 1 0 0
(2) 3 0 0
8 4 2 2
8 4 3 2
To
0 0 0 0 000 0
2 2 00 4, 2 20 0
—
8 [6] 2 2 8 4 3 (3]
8 4 3 2 8 4 3 2

Values count for the number of grains of a pile. We see that we cannot apply the
Kadanoft’s dynamics for a value of parameter p = 3 from the square boxed pile.
Indeed, the resulting configurations do not remain monotone neither by applying

the dynamics horizontally nor vertically (resp. 1 v and i)) A pile which violates
the condition has been highlighted by an oval box in the resulting configurations (it
might be not unique). ]

Any configuration can be identified by the mapping of its horizontal heights
differences (vesp. vertical): h_, : (i,j) +— x; j—xiy1; (vesp. hy : (4,7) = @i j—Ti41).
A configuration is finite if only a finite number of its heights differences matrices
has non-zero sand content. A monotone configuration x is horizontally stable (resp.
vertically) it Vi, j € NxN, h_y(i,7) = x5 j— 41, < p (resp. Vi,j € NxN, h(i,7) =
xi; — %i;+1 < p) and is stable if both horizontally and vertically stable.

In other words, it is a generalisation of the Kadanoff model in one dimension,
which requires the configuration to be stable if the difference between any two ad-
jacent piles is less than the Kadanoff parameter p. To this configuration, we apply
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the Kadanoff dynamics for a given integer p > 1. This can be done if and only if
the new configuration remains monotone. Said differently, prior its application the
dynamics requires to test if the local application gives a non-negative configuration.

The Kadanoff dynamics applied to pile (i, ) for a given p consists in giving a
grain of sand to any pile in the horizontal or vertical line, i.e. {(i,7 +1),....(¢,j +
p—1D}or {(i+1,7),...(0 +p—1,7)}. Notice that when considering the dynamics
defined over height differences, we work with a different lattice though isomorphic
to the initial one. Fig. 2 explains how the dark pile with coordinates (7, j) with
a height difference of p gives grains either horizontally (Fig. 2 left) or vertically
(Fig. 2 right). Fig. 2 also depicts the relationship between the sandpiles lattice and
the heights differences lattice. The local dynamics depicted by Fig. 2 will be called
Chenilles (horizontal and vertical, respectively).

For a better understanding of the dynamics, recall that in one dimension an
avalanche at pile ¢ changes the heights of piles i—1,7 and :+p—1. In two dimensions,
there are height changes on the line but also to both sides of it. The dynamics
is simpler to depict than to write down formally. An example of the Kadanoff’s
dynamics applied horizontally (resp. vertically) is given in Fig. 3. More precisely,
the Kadanoft’s dynamics for a value of parameter p = 4 is depicted in Fig. 4. Observe
that we do not need to take into account the number of grains of sand in the piles.
It suffices to take the graph of the edges adjacent to each pile (depicted by thick
lines) and to store the height differences. So, from now on, we will restrict ourselves
to the lattice and to the dynamics defined over the height differences. In Fig. 4, we
only keep the information required for applying the dynamics in the simplified view.

Example 3.2 (Obtaining Bak’s). In the case p = 2 and if we assume the real
sandpile is defined as in [2] (i.e. z;; > max{w;+1,, T j+1}), we get the templates
from Fig. 5. [

3.1. P-completeness

Changing from dimension 1 to 2 (or greater), the statement of AP has to be
adapted. Consider a finite configuration x which is non-zero for piles (7,j) with
1,7 > 0, stable and monotone and let ) be the sum of the height differences. Let
us denote by n the maximum index of non-zero height differences along both axes.
Then, SM(n) denotes the set of monotone stable configurations of the form given
by a lower-triangular matrix of size n X n (a matrix where the entries above the
main diagonal are zero). To generalise the avalanche problem in two dimensions, we
have to find a generic position which is far enough from the initial sandpile but close
enough to be attained. To get rough bounds, the following approach was followed.
For the upper bound, the worst case occurs when all the grains are arranged on
a single pile (with @ as a height difference) which is at an end of one of the axes
-at distance n from the origin- and they fall down. For the lower bound, the pile
containing the grains is at the origin and the grains fall along the main diagonal.
Thus, our decision problem can be restated:
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Problem AP (dimension 2)
Instance: A configuration x € SM(n), (k,¢) € N x N such that z;, = 0 and

gn < |k, 0)]] < n+ Q (with @ the sum of the height differences and ||.|
the standard Euclidean norm).

Question: Does there exist an avalanche (obtained by using the vertical and
horizontal chenilles) such that z;, > 17

To prove the P-completeness of AP we proceed by reduction from the monotone
circuit value problem McvP, proved P-complete under many-one NC* reduction [9,
Theorem 6.2.2]. Observe that the original proof [4] uses a logspace reduction but
it should be noted that any logspace reduction is also a NC many-one reduction [9,
page 54]. MCVP statement is: given the standard encoding of a Boolean circuit
(which ensures a topological numbering of the gates) with n inputs {a1,...,a,}, a
designated output g and logic gates AND, OR we want to decide the truth of the
output value 5 on binary input {aq,...,a,} [9, page 122]. Wlog., we also assume
that each gate of the circuit has a fan in of two and fan out of at most two and
that the gates are laid out in levels with connections only going to adjacent levels.
The problem remains P-complete with these restrictions [4]. For the reduction, we
have to construct, by using sandpile configurations, wires and turning the signal on
the grid (Fig. 7), logic AND gates (Fig. 8 (Right)), logic OR gates (Fig. 9 (Left)),
cross-overs (Fig. 8 (Left)) and signal multipliers for starting the process (Fig. 9
(Right)) and eventually doubling the output of a gate. We also need to define a
way to deterministically update the network; to do this, we can apply the chenille’s
templates in any way such that it is spatially periodic, for instance from the left to
the right and from the top to the bottom. Our main result is thus:

Theorem 3.3. AP is P-complete for KSPM in dimension two and any p > 2.

Proof. The fact that AP is in P is already known since C. Moore and M. Nilsson
paper [12]. Their proof is done by proving that the total number of avalanches
required to relax a sandpile is polynomial in the system’s size.

For the reduction, one has to take an arbitrary instance of the MCVP variant pre-
viously defined and to build an initial configuration of a sandpile for the Kadanoff’s
dynamics for p = 2 (or greater). Thus, we have to design the following gadgets:

e a wire and how to turn the signal (Fig. 7);

e the crossing of information (Fig. 8 (Left));

e a AND gate (Fig. 8 (Right));

e a OR gate (Fig. 9 (Left));

e a signal multiplier (Fig. 9 (Right)).
Simulated gates can be made up like classical gates (up to an additive constant
depending upon their size) with a fan in of two parallel wires and a fan out upper-
bounded by two. The sandpile circuit is built directly from the standard encoding
of the instance of the MCcvP variant. This construction can be done by a NC algo-
rithm [4, 9].

The construction of each gadget is shown graphically for p = 2 but can be done
for greater values. As an example, we give the construction for the AND gate for
p =3 in Fig. 6. Generalising for greater values of p is not hard though tedious and
would have exceeded the number of pages. For p = 2, the horizontal and vertical
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chenilles are given in Fig. 5. Recall that the decision problem only adds a sand grain
to one pile, say (0,0). To construct the entry vector to an arbitrary circuit we have
to construct from the starting pile wires to simulate any variable o; = 1. (If a; =0
nothing is done: we do not construct a wire from the initial pile. Else, there will be
a wire to simulate the value 1). Also remark that the signal propagation does not
require a global synchronising clock. Actually, this helps for designing the circuit
since one signal arriving at a logical gate can “wait” for the second signal to arrive.

Then, by construction, positive instances of the MCVP variant are in 1:1 corre-
spondence with positive instances of AP. [

Remark 3.4. In the case p = 2, KSPM corresponds to Bak’s model [1] in two
dimensions with a sandpile such that x; ; > max{x; 1 ;, i j+1}.

4. Conclusion and future work

We have proved that the avalanche problem for the KSPM model in two di-
mensions is P-complete with a sandpile defined as in [2] and for every value of the
parameter p. Let us also point out that in the case where p = 2, this model cor-
responds to the two-dimensional Bak’s model with a pile such that z;; > 0 and
x;; > max{x;11,,%; j+1}. In this context, we also proved that this physical ver-
sion (with a two dimension sandpile interpretation) is P-complete. It is important
to notice that, by directly taking the two-dimensional Bak’s tokens game (given a
graph such that a vertex has a number of token greater or equal than its degree, it
gives one token to each of its neighbors), its computation universality was proved
in [7] by designing logical gates in non-planar graphs. Furthermore, by using the
previous construction, C. Moore et al. proved the P-completeness of this problem
for lattices of dimensions d with d > 3. But the problem remained open for two-
dimensional lattices. Furthermore, it was proved in [3] that, in the latter case, it
is not possible to build circuits because the information is impossible to cross. The
two-dimensional Bak’s operator corresponds, in our framework, to the application
of the four rotations of the template (see Fig. 10). But this model is not anymore
the representation of a two-dimensional sandpile as presented in [2], that is with
x;; > 0 and z; ; > max{x;y1 , i j11}-

To define a reasonable two-dimensional model, consider a monotone sandpile de-
creasing for ¢ > 0 and j > 0. Over this pile we define the extended Kadanoff’s model
as a local avalanche in the growing direction of the ¢ —j axis such that monotonicity is
allowed. Certainly, one may define other local applications of Kadanoft’s rule which
also match with the physical sense of monotonicity. For instance, by considering
theset (i +1,7), (i + 1,7+ 1),(i,7 + 1) as the piles to be able to receive grains from
pile (7, 7). In this sense it is interesting to remark that the two-dimensional sandpile
defined by Bak (i.e for nearest neighbors, also called the von Neumann neihborhood,
a pile gives a token to each of its four neighbors if and only if it has enough tokens)
can be seen as the application of the Kadanoff rule for p = 2 by applying to a pile,
if there are at least four tokens, the horizontal (—) and the vertical ({) chenille
simultaneously (see Fig. 10). Similarily, for an arbitrary p, one may simultaneously
apply other conbinations of chenilles which, in general, allows us to get P-complete
problems. For instance, when there are enough tokens, the applications of the four
chenilles (i.e. <—,—,T and |) give raise to a new family of local templates called
butterflies (because of their four wings). It is not so difficult to construct wires
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and circuits for butterflies. Hence, for this model, the decison problem will remain
P-complete. One thing to analyze from an algebraic and complexity point of view is
to classify every local rule derivated from the chenille application. Further, one may
define a more general sandpile dynamics which contains both Bak’s and Kadanoft’s
ones: i.e given an integer p > 2, we allow the application of every Kadanoft’s update
for ¢ < p. That means that an active pile with more than p grains can distribute
up to ¢ grains to the adjacent piles. We are studying this dynamics and, as a first
result, we observe yet that in one dimension there are several fixed points and also,
given a monotone circuit with depth m and with n gates, we may simulate it on a
line with this generalized rule for a given p > m + n.

For the one-dimensional avalanche problem as defined in Section 2, it can be
proved that it belongs tho the class NC for p = 2 and that it remains in the same
class when the first p piles contain more than one grain (i.e. that there is no hole in
the pile). We are in the way to prove the same in the general case.

Acknowledgements

We thank Pr. Enrico Formenti for helpful discussions and comments while
Pr. Eric Goles was visiting Nice and writing this paper.

References

[1] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality. Phys. Rev. A, 38(1):364-374,
1988.

[2] E. Duchi, R. Mantaci, H. Duong Phan, and D. Rossin. Bidimensional sand pile and ice pile
models. Pure Math. Appl. (PU.M.A.), 17(1-2):71-96, 2006.

[3] A. Gajardo and E. Goles. Crossing information in two dimensional sand piles. Theoretical
Computer Science, 369(1-3):463-469, 2006.

[4] L.M. Goldschlager. The monotone and planar circuit value problems are log space complete
for P. ACM sigact news, 9(2):25-29, 1977.

[5] E. Goles and M. Kiwi. Sand pile dynamics in one dimensional bounded lattice. In N. Boccara
et al, editor, Cellular Automata and Cooperative Systems, volume 396 of NATO-ASI, pages
203—-210. Ecole d’Hiver, Les Houches, Kluwer, 1993.

[6] E. Goles and M. Margerstern. Sand piles as a universal computer. Journal of Modern Physics-
C, 7(2):113-122, 1996.

[7] E. Goles and M. Margerstern. Universality of the chip firing game on graphs. Theoretical
Computer Science, 172:121-134, 1997.

[8] E. Goles Ch., M. Morvan, and Ha Duong Phan. The structure of a linear chip firing game and
related models. Theor. Comput. Sci., 270(1-2):827-841, 2002.

[9] R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. Limits to parallel computation. Oxford University
Press, 1995.

[10] L.P. Kadanoff, S.R. Nagel, L. Wu, and S. Zhou. Scaling and universality in avalanches. Phys.
Rev. A, 39(12):6524-6537, 1989.

[11] P. B. Miltersen. The computational complexity of one-dimensional sandpiles. Theory of Com-
puting Systems, 41:119-125, 2007.

[12] C. Moore and M. Nilsson. The computational complexity of sandpiles. Journal of statistical
physics, 96(1-2):205-224, 1999.



130 E. GOLES AND B. MARTIN

+1

p-1
Bl
K +1 +1 .. +1
+FI\./F®® . @“
i -1 -1 M -1

horizontal

vertical

Figure 2: Horizontal resp. vertical (on the left resp. on the right) chenilles in the N x
N lattice for arbitrary parameter p > 2. The pile (4, 7) —denoted by a black
bullet— gives one grain of sand to the pile (7 + p — 1, j) horizontally resp.
one grain of sand to the pile (7,7 + p — 1) vertically. The figure gives the
height differences of this dynamics and the change of the lattice structure
between the dynamics on the grains and the corresponding dynamics on
the height difference. In the sequel, we will adopt the representation on
the left and on the bottom for defining the templates.

! f
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Figure 3: Horizontal and vertical chenilles for p = 4. Shaded squares count the
number of grains on each pile and the hexagons between the squares the
height difference between the corresponding two adjacent piles. The initial
configuration is on the bottom-left. The Kadanoff’s dynamics is applied
from the shaded pile labelled a horizontally or vertically (resp. 1TV and

£>) to get the resulting configurations.
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Figure 4: Horizontal and vertical chenilles for p = 4. The dynamics is applied to the
dark-shaded pile (the leftmost one on the left part of the figure and the
lowest one on the right part of the figure). The numbers express the height
differences after the application of the dynamics. The two simplified views
remove the number of sand grains information and only keeps the height
difference information. It corresponds to a change in the lattice structure
if the grains are considered or the height difference.

1 2

3
input 2

Figure 6: The logic AND gate for two inputs for p = 3. The circled “2” is put in
order to get enough tokens for the horizontal and vertical inputs.

Figure 7: Information propagation in a wire for p = 2 at times ¢ = 0 and ¢ = 1 using
the templates for Baks dynamics (recalled on the left of the figure) and
wire for turning the information to the right.
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Figure 8: (Left) Crossing over two wires for p = 2; arrows show the directions of
propagation. (Right) A logic AND gate with two inputs for p = 2. The
upcoming “2” has to reach the horizontal “2” to change the value of the
boxed “0” to “1”. Then, the upcoming “2” can apply the vertical chenille
template and changes the circled “1”7 into “2”. In other words, the AND
is computed by applying 3 horizontal chenilles and 4 vertical ones.

0 2 1 1 1 1 1
0 1 1 1 1 1 1
1
input 1 1 output
_> 1 _> 1
1 1 1 1 1 1 —
1 1 0 1 1 1 1
1
2 0 1
T 1 1 1 1 1 1 —
input 2 0 1 1 1 1 1

Figure 9: (Left) A logic OR gate with two inputs for p = 2. The boxed cell indicates
the OR gate point of computation. (Right) A signal multiplier for p = 2.
The signal starts on boxed pile with value 2 (the input) and applying
the first vertical chenille ruled by the Kadanoff’s dynamics multiplies the
signal on both horizontal wires. Then, we use horizontal chenilles to move
both signals according to the arrows.
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+1 -2 +1 -2 +1 -2 +1 -2 +2 -8 +2 +1 -4 41
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+1 +1 +2

(a) (b)

Figure 10: From Bak’s to Kadanoff’s operators. All the Kadanoff’s operators be-
tween the brackets have been applied to get the pattern (a). The Bak’s
pattern (b) is obtained by eliminating the holes in (a) and by dividing
the number of tokens by two.
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