Clandestine Simulations in Cellular Automata
Pierre Guillon, Pierre-Etienne Meunier, Guillaume Theyssier

To cite this version:

HAL Id: hal-00541996
https://hal.archives-ouvertes.fr/hal-00541996
Submitted on 1 Dec 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
CLANDESTINE SIMULATIONS IN CELLULAR AUTOMATA

PIERRE GUILLON 1, PIERRE-ÉTIENNE MEUNIER 2, AND GUILLAUME THEYSSIER 2

1 Department of Mathematics, University of Turku, 20014 Turku, Finland
 E-mail address: piegui@utu.fi

2 LAMA (CNRS, Université de Savoie), Campus Scientifique, 73376 Le Bourget-du-Lac Cedex, France
 E-mail address, P.-E. Meunier: pierreetienne.meunier@univ-savoie.fr
 E-mail address, G. Theyssier: guillaume.theyssier@univ-savoie.fr

Abstract. This paper studies two kinds of simulation between cellular automata: simulations based on factor and simulations based on sub-automaton. We show that these two kinds of simulation behave in two opposite ways with respect to the complexity of attractors and factor subshifts. On the one hand, the factor simulation preserves the complexity of limits sets or column factors (the simulator CA must have a higher complexity than the simulated CA). On the other hand, we show that any CA is the sub-automaton of some CA with a simple limit set (NL-recognizable) and the sub-automaton of some CA with a simple column factor (finite type). As a corollary, we get intrinsically universal CA with simple limit sets or simple column factors. Hence we are able to 'hide' the simulation power of any CA under simple dynamical indicators.

Introduction

Since the introduction of the model in the 40s, cellular automata have been studied both as dynamical systems and as a computational model. In both aspects, they can show very complex behaviors, be it through their topological dynamics [Kur03] or through their ability to compute [vN66, Oll03]. As such, they constitute a good model to tackle one of the major question of natural computing: what kind of dynamical behavior allows to support computation, and reciprocally, what does the ability to compute imply on the dynamical behavior of a system?

In this paper, we focus on asymptotic dynamics of cellular automata (notion of limit set [CPY89]), and on their unprecise observation (notion of column factors [Kur97]). Intuitively, the limit set is the set of configuration that can appear arbitrarily far in the evolution of the system, and the column factor is the set of sequences of states that a cell (or group of cells) can take in a valid orbit of the
system. These notions have been intensively studied in the literature as indicators of the dynamical complexity of cellular automata [Hur90, Kar94, BM97, CFG10].

Concerning limit sets of cellular automata, the initial (wrong) intuition was that a universal CA should necessarily have a non-recursive limit set (such a statement appears in [CPY89]). Later, a Turing-complete CA with a simple limit set was constructed in [GMM93]. This result gives a first hint concerning the absence of correlation between the complexity of the limit set and the ability to handle computations. However, the construction goes through a slow simulation of two-register machines where registers are encoded in unary. Therefore, this results is

1. Definitions

Let us note $\mathbb{N}_+ = \mathbb{N} \setminus \{0\}$. If $i, j \in \mathbb{Z}$, we note $[i, j]$ the interval of integers k such that $i \leq k \leq j$, $[i, j] = [i, j - 1]$, $]i, j[= [i + 1, j - 1]$ and so on. Consider a fixed finite alphabet Σ. If $x \in \Sigma^Z$ and $[i, j] \subset \mathbb{Z}$, then we note $x_{[i,j]} \in \Sigma^{|i+1|}$ the pattern corresponding to the sequence of letters $x_i \ldots x_j$ (and similarly for other kinds of intervals).

If $U \subset \Sigma^k$ for some $k \in \mathbb{N}$ and $i \in \mathbb{Z}$, the cylinder $[U]$, will denote the set of configurations $x \in \Sigma^Z$ such that $x_{[i,i+k]} \in U$. We also note $[U] = [U]_0$. If $a \in \Sigma$, let a^ω be the configuration $x \in \Sigma^Z$ such that $x_i = a$ for any $i \in \mathbb{Z}$.

A dynamical system is a pair (X, F) where X is a compact space and F is a continuous self-map of X. We can then study iterations F^t for any time step $t \in \mathbb{N}$.

Let M stand either for \mathbb{N} or for \mathbb{Z}. The shift map σ is defined for any $z \in \Sigma^M$ and any $i \in M$ by $\sigma(x)_i = x_{i+1}$. A subshift is a dynamical system (Σ, σ), or simply Σ, that is a subset of Σ^M which is closed under the usual Tychonoff topology and invariant by the shift map. Equivalently, it is the set $\{ z \in \Sigma^M | \forall [i, j] \subset M, z_\square \notin \mathcal{F} \}$ of infinite words that avoid the finite patterns from some given family \mathcal{F}. If this family can be taken finite, then Σ is called a subshift of finite type (SFT). If it can be taken among words of length $k \in \mathbb{N}_+$, it has order k. The language $L(\Sigma)$ of a subshift Σ is the set $\{ z_\square | z \in \Sigma \text{ and } [i, j] \subset M \}$ of patterns appearing in the infinite words of Σ. If this language is regular, then we say that Σ is a sofic subshift. Equivalently
thanks to the Weiss theorem \cite{Wei73}, it is obtained from an SFT by a letter-to-letter projection.

A cellular automaton (CA) is a dynamical system \((\mathbb{Z}, F)\) which commutes with the shift, \(i.e., \sigma F = F \sigma\). Equivalently, thanks to the Curtis-Hedlund-Lyndon theorem, it is obtained by some local map \(f : A^{2r+1} \to A\) for some radius \(r \in \mathbb{N}\), \(i.e., \) for any \(x \in A^\mathbb{Z}\) and \(i \in \mathbb{Z}, F(x)_i = f(x_{[i-r,i+r]})\). \(F\) admits a spreading state \(0 \in A\) if it admits a local rule \(f : A^{2r+1} \to A\) with \(r \in \mathbb{N}\) and \(f(u) = 0\) whenever there exists \(i \in [0,2r]\) such that \(u_i = 0\).

An SFT \(\Sigma\) is irreducible if for any two words \(u, v \in L(\Sigma)\), there exists a word \(w\) such that \(uvw \in L(\Sigma)\). CA can actually be applied in a very natural way to these subshifts: a partial CA will be a dynamical system over some irreducible SFT that commutes with the shift. It is known from \cite{Fio00} that any injective partial CA is bijective and reversible (the inverse is also a partial CA).

1.1. Simulations

The central notion studied in this paper is that of simulation between dynamical systems and more specifically cellular automata. We will distinguish two families of simulation relations based on the following notions.

Definition 1.1 (Factors and sub-systems).

- A factor map between two dynamical systems \((X, F)\) and \((Y, G)\) is a continuous onto map \(\Phi : X \to Y\) such that \(\Phi F = G \Phi\). In that case, we say that \(G\) is a factor of \(F\).
- A sub-system of a dynamical system \((X, F)\) is a dynamical system of the form \((Y, G)\) where \(Y \subseteq X\) (\(Y\) is closed) and \(F(Y) \subseteq Y\).

Note that a factor map \(\Phi\) between two subshifts \(\Sigma\) and \(\Gamma\) respect the Curtis-Hedlund-Lyndon theorem: there exist a radius \(r \in \mathbb{N}\) and a local rule \(\phi : L_{2r+1}(\Sigma)\) such that \(\Phi(x)_i = \phi(x_{[i-r,i+r]})\) for any \(x \in \Sigma\) and any \(i \in \mathbb{Z}\). We say that the factor map between two subshifts is a coloring if the radius can be taken \(r = 0\).

If \((X, F)\) and \((Y, G)\) are cellular automata, we say that \((X, F)\) simulates \((Y, G)\) by factor if there is a factor map \(\Phi\) from \((X, F)\) onto \((Y, G)\) which is also a factor map from \((X, \sigma X)\) onto \((Y, \sigma Y)\). Besides, when \((X, F)\) is a cellular automaton and \(Y\) is a full-shift included in \(X\), then \((Y, F)\) is a sub-automaton of \((X, F)\).

These two relations (factor and sub-system) are restrictive since they don’t allow entropy to increase: a factor or a sub-system of a given system has always a lower entropy. As a consequence, they don’t support universality (existence of a system able to simulate any other) since it is not difficult to build systems of arbitrarily large entropy. Hence, in the literature, other ingredients were introduced to obtain richer notions of simulation: for instance, in cellular automata, operations of space and time rescaling added to the notion of sub-automaton lead to a notion of simulation supporting universality \cite{DMOT10a,DMOT10b}.

In this paper, such kind of spatio-temporal transformations are not considered explicitly for two reasons:

- our results about factor simulation (Section 2) involve properties (complexity of the subshifts) which are invariant by space and time rescaling, hence the results still hold when considering rescaling as part of the simulation relation;
• our results about sub-system simulation (Section 3) are of the form "any CA is the sub-automaton of a CA with some given property", which is actually the most general we can get, and remain true when replacing "sub-automaton" by more general notions of sub-system (such as sub-system, or simulated system in the sense of [DMOT10]).

1.2. Complexity of limit sets and column factors

Many different points of view have been adopted to study the complexity of CA. We here use symbolic dynamics, and consider the complexity, as subshifts, of the limit set on the one hand, or the column factors on the other hand, as representing the actual complexity of the CA.

The limit set of the dynamical system is the nonempty closed subset \(\Omega_F = \bigcap_{t \in \mathbb{N}} F^t(X) \). Its limit system is the maximal surjective subsystem, \((\Omega_F, F)\). It basically represent the asymptotic dynamics of the system.

With respect to CA limit sets, it is not difficult to see that the corresponding language is always corecursively enumerable (it is an effective subshift). However, there are known examples of non-recursive ones [Hur90]. Moreover, simple additional remarks [Taa07, Kur03, Nas95] give the following hierarchy:

\[
F \text{ injective } \Rightarrow F|_{\Omega_F} \text{ injective } \Rightarrow \Omega_F \text{ is an SFT } \Rightarrow F \text{ is stable } \Rightarrow \Omega_F \text{ is sofic } \Rightarrow \ldots
\]

The column factor of a dynamical system \((A^Z, F)\) upon interval \([i, j] \subset \mathbb{Z}\) is the set \(\tau_F^{[i,j]} = T_F^{[i,j]}(A^Z) \), where \(T_F^{[i,j]} : A^Z \to (A^{[i,j]})^\mathbb{N} \). It is a factor subshift since \(\sigma T_F^{[i,j]} = T_F^{[i,j]} F \). It can represent an observation of the system made by a measuring device with a finite precision (that cannot see cells which are far away). It can be seen that any factor subshift is essentially a factor of some column factor [Kur97].

In the case of CA, shift-invariance allows to consider only the central column factors \(\tau_F^{[k,k]} \) for radius \(k \in \mathbb{N}_+ \). It is known [Gli88] that these CA column factors always have a context-sensitive language; they may actually be strictly context-sensitive. In [Kur97], strong links with topological notions are stated: finite column factors is equivalent to equicontinuity, SFT column factors imply the shadowing property which in turn imply sofic column factors.

2. Factor simulations

The two hierarchies that we have just defined, based on subshift classifications, are then very robust to factor simulations, as we can see in this section. Taking the vocabulary of order theory, we say that a class \(\mathcal{C} \) of systems is an ideal for factor simulation if, whenever \((X, F)\) is a factor of \((Y, G)\), we have: \((Y, G) \in \mathcal{C} \Rightarrow (X, F) \in \mathcal{C}\).

Proposition 2.1. If \(\Phi \) is a factor map from \((X, F)\) onto \((Y, G)\), then \(\Omega_G = \Phi(\Omega_F) \).

Proof. For any \(t \in \mathbb{N} \), \(\Phi F^t(X) = G^t(Y) \). First note that \(\Phi(\bigcap_{t \in \mathbb{N}} F^t(X)) \) is included in \(\bigcap_{t \in \mathbb{N}} \Phi F^t(X) = \bigcap_{t \in \mathbb{N}} G^t(Y) \). Conversely, let \(y \in \bigcap_{t \in \mathbb{N}} G^t(Y) \) and, for \(t \in \mathbb{N} \), \(X_t = \Phi^{-1}(y) \cap F^t(X) \). Note that \(X_t \) is closed (since \(\Phi \) and \(F \) are continuous, and \(X \) is compact) and nonempty (since \(\Phi \) is onto). By compactness, the intersection \(\bigcap_{t \in \mathbb{N}} X_t = \Phi^{-1}(y) \cap \Omega_F \) is not empty, i.e. \(y \in \Phi(\Omega_F) \). We have proven that \(\Phi(\Omega_F) = \Omega_G \).
Moreover, we can note that $\Omega_{F^n} = \Omega_F$, since if $n \in \mathbb{N}_+$, then $F^{nt}(X) = \bigcap_{(n-1)t < j \leq nt} F^j(X)$. In the following we will no longer mention time and space rescaling, which does not essentially alter the results.

Corollary 2.2. The class of stable systems is an ideal for factor simulation.

Proof. If Φ is a factor map from (X, F) onto (Y, G), and $\Omega_F = F^t(X)$ for some $t \in \mathbb{N}$, then $\Omega_G = \Phi(\Omega_F) = \Phi F^t(X) = G^t(X)$.

We can also derive the two following results.

Proposition 2.3. The class of CA whose limit set (resp. factor subshifts) is sofic (resp. context-free, context-sensitive, recursive) is an ideal for factor simulation.

Proof. It is known that each of the corresponding classes of subshifts is preserved by factor maps. Proposition 2.1 states that the limit set of the simulated CA is a factor of the limit set of the simulating CA.

Moreover, note, thanks to the transitivity of the notion of factor, that a factor subshift of the simulated CA is also a factor subshift of the simulating CA.

The following slightly generalizes a result in [The05].

Proposition 2.4. The class of reversible partial CA is an ideal for coloring.

Proof. Let Φ be a factor map based on some radius-0 local rule $\phi : A \rightarrow B$, from a partial CA (Σ, F) onto another one (Γ, G), where $\Sigma \subset A^Z$ and $\Gamma \subset B^Z$ and there exists some partial CA $F^{-1} : \Sigma \rightarrow \Sigma$ such that FF^{-1} is the identity. By surjectivity of Φ, for any letter $b \in B$, there exists a letter, denoted abusively $\phi^{-1}(b) \in A$ such that $\phi(\phi^{-1}(b)) = b$. If F^{-1} represents the parallel application of ϕ^{-1} to B^Z, we obtain that ΦF^{-1} is the identity of Γ. We can define the map $G^{-1} = \Phi F^{-1} \Phi^{-1}$, in such a way that GG^{-1} is the identity of Γ. G^{-1} is an injective partial CA, hence it is reversible, and it is the actual inverse map of G.

As far as we know though, it is unknown whether the class of injective CA is still an ideal for factor simulation.

Corollary 2.5. The class of CA which are reversible over the limit set is an ideal for coloring.

Proof. Consider such a CA. From [Taa07], it is stable and its limit set is an irreducible SFT. Now if it is linked to some other CA by some coloring, then by Proposition 2.1 so are the two limit systems (that are partial CA), which then respect the hypotheses of Proposition 2.4.

From the previous, we can see that any universal CA for factor simulation (up to rescaling) must have a non-recursive limit set and strictly context-sensitive factor subshifts (and of course must not be injective), but the existence of such a CA is still open.

3. Sub-system simulations

We will see in this section that, contrary to factor simulations, sub-system simulations allow to hide the complexity of the simulated CA into the simulator CA.
3.1. Hiding the column factors

If \(G \) is a CA over alphabet \(C \) of radius \(r > 0 \), local rule \(g \), then let us define the CA \(\tilde{G} \) over alphabet \(D = \{-1, 0, 1\} \times C \) with the same radius \(r \) as \(G \) and local rule:

\[
\tilde{g} : \quad D^{2r+1} \to D \\
(\varepsilon_{-r}, c_{-r}) \ldots (\varepsilon_{r}, c_r) \mapsto \begin{cases}
(\varepsilon_0, c_{\varepsilon_0}) & \text{if } \varepsilon_0 \neq 0 ; \\
(0, g(c_{-r} \ldots c_r)) & \text{otherwise}.
\end{cases}
\]

Clearly, \(G \) is a sub-automaton of \(\tilde{G} \) (up to state renaming) corresponding to the sub-alphabet \(\{0\} \times C \).

Theorem 3.1. Any cellular automaton \(G \) is a sub-automaton of some CA whose column factors are SFT of order 2.

Proof. Let us take a CA \(G \) over alphabet \(C \), of radius 1. Let \(\tilde{G} \) be defined as above over alphabet \(\tilde{C} = \{-1, 0, 1\} \times C \), \(k \in \mathbb{N}_+ \) and \(\Sigma \) its column factor of width \(k \). Of course, \(\Sigma \) is included in its \(2 \)-approximation

\[
\mathcal{A}_2(\Sigma) = \left\{ z = (z'_t)_{t \in \mathbb{N}} \in (\tilde{C}^k)^{\mathbb{N}} \mid \forall t \in \mathbb{N}, \exists x^t \in [z^t] \cap \tilde{G}^{-1}([z^{t+1}]) \right\}.
\]

Let us show that they are actually equal. Let \(z = (z'_t)_{t \in \mathbb{N}} \in (\tilde{C}^k)^{\mathbb{N}} \) be such that for any \(t \in \mathbb{N} \) there exists some configuration \(x^t \in [z^t] \) with \(\tilde{G}(x^t) \in [z^{t+1}] \), and \(x \) defined by:

\[
x_i = \begin{cases}
x^0_i & \text{if } 0 \leq i < k \\
(-1, c) & \text{if } i < 0 \text{ and } x^{i-1}_{i-1} = (\varepsilon, c) \\
(1, c) & \text{if } i \geq k \text{ and } x^i_{k+i-k} = (\varepsilon, c).
\end{cases}
\]

An inductive application of the local rule gives that for any \(t \in \mathbb{N} \), we have:

\[
\tilde{G}^t(x)_i = \begin{cases}
x^t_i & \text{if } 0 \leq i < k \\
(-1, c) & \text{if } i < 0 \text{ and } x^{t-1}_{i-1} = (\varepsilon, c) \\
(1, c) & \text{if } i \geq k \text{ and } x^t_{k+i-k} = (\varepsilon, c).
\end{cases}
\]

In particular, \(z = T^k_G(x) \in \Sigma \). We have proven that \(\Sigma \) is an SFT of order 2. If \(G \) does not have radius 1, then it is easy to widen the radius of \(\tilde{G} \) (and increase the speed of the shifts) to get the same result. \(\blacksquare \)

3.2. Hiding the limit set

The main result of this section is based on the existence of a firing-squad CA with specific properties expressed by Lemma 3.2. We actually refer to the firing-squad CA defined in [Kar94], that we denote by \(S \), and prove additional properties in Section 4. This CA admits a so-called firing state \(\gamma \) and a spreading state \(\kappa \). Let \(r_S \) the radius of \(S \), \(s \) its local rule, \(Q \) its state set, and \(Q' = Q \setminus \{\kappa, \gamma\} \). Consider the set \(X_S \) of configurations having an infinite history avoiding \(\kappa \) and \(\gamma \):

\[
X_S = \left\{ y \in Q^Z \mid \exists (y'_t)_{t \in \mathbb{N}} \in (Q^Z)^{\mathbb{N}}, y^0 = y \text{ and } \forall t \in \mathbb{N}_+, y^t \in Q' \text{ and } S(y^t) = y^{t-1} \right\}.
\]

Lemma 3.2. \(S \) satisfies the following:

1. \(\infty_S \in X_S \);
2. \(\Omega_S \cap [\gamma] \subseteq \{\kappa, \gamma\}^Z \);
3. \(X_S \) is \(NL \)-recognizable.
contribution of the additional component to the final limit set.

This construction allows to state the following theorem, proven at the end of the subsection.

Theorem 3.3. Any CA is a sub-automaton of some CA whose limit set is NL- recognizable.

By the existence of intrinsically universal CA for a simulation containing the sub-automaton relation (see for instance [Oli03]) and the transitivity of simulations, we can directly derive the following.

Corollary 3.4. There exists an intrinsically universal CA whose limit set is NL- recognizable.

The idea of the construction is the following: given some CA F over alphabet A, we add an extra (firing-squad) component which is able to generate any configuration of $A^\mathbb{Z}$ arbitrarily far in the future. The complexity of the limit set of F is thus completely flooded into the full-shift $A^\mathbb{Z}$. All the technical difficulty is to control the contribution of the additional component to the final limit set.

Let F be a CA of radius r_F, local rule f over alphabet A with a spreading state $0 \in A$. We define a CA $\Delta_{F,S}$ of local rule $\delta_{F,S}$ defined on alphabet $C = A \sqcup (A \times Q)$ with radius $r = \max(r_F, r_S)$ by:

$$
\delta_{F,S} : c \mapsto \begin{cases}
 f(a_{-r_F} \ldots a_{r_F}) & \text{if } c = a_{-r} \ldots a_r \in A^{2r+1} ; \\
 a_0 & \text{if } c = (a_{-r}, \gamma) \ldots (a_r, \gamma) \in (A \times \{\gamma\})^{2r+1} ; \\
 (a_0, s(b_{-r_S} \ldots b_{r_S})) & \text{if } c = (a_{-r}, b_{-r}) \ldots (a_r, b_r) \in (A \times Q')^{2r+1} ; \\
 0 & \text{otherwise.}
\end{cases}
$$

Basically, this CA freezes the first component while applying the firing squad on the second component until some firing state appears, which then frees this second component and starts the application of F. When the configuration is not coherent, or when κ appears, 0 begins to spread. Clearly, F is a sub-automaton of $\Delta_{F,S}$.

The structure of the corresponding limit set will be given by the following lemmas.

Lemma 3.5. $A^\mathbb{Z} \subset \Omega_{\Delta_{F,S}}$.

Proof. Properties (1) and (2) are proven in [Kar94]. Property (3) is given by Proposition 4.10 below.

Let $x \in A^\mathbb{Z}$. From Point 1 of Lemma 3.2 there is a sequence $(y^t)_{t \in \mathbb{N}}$ with $y^0 = \gamma^\infty$ and for any $t \in \mathbb{N}_+$, $y^t \notin \{\gamma, \kappa\}$ and $S(y^t) = y^{t-1}$. Consider now the configurations $x^t = (x_i, y_{i+1}^t)_{i \in \mathbb{Z}}$ for $t \in \mathbb{N}_+$. By a quick induction on $t \in \mathbb{N}_+$, we can see that for any cell $i \in \mathbb{Z}$, only case (3) of the local rule is used, and $x^0 = \Delta_{F,S}(x^1)$. At time -1, since the second component of x^{-1} is γ^∞, case (2) of the rule is applied in every cell, which gives $x = \Delta_{F,S}(x^{-1}) = \Delta_{F,S}(x^0)$ for any $t \in \mathbb{N}_+$.

Lemma 3.6. Let $x \in \Omega_{\Delta_{F,S}}$ and $i, j \in \mathbb{Z}$ such that $i \neq j$ and $x_i = (a_i, \gamma), x_j = (a_j, b_j) \in A \times Q$. Then $b_j \notin \{\gamma, \kappa\}$.

Proof. We can assume, by symmetry, that $i < j$, and for the sake of contradiction that $b_j \notin \{\gamma, \kappa\}$. Let $(x^t)_{t \in \mathbb{Z}}$ be a bi-orbit of $x = x^0$, i.e. a bisequence of configurations such that $\forall t \in \mathbb{Z}, \Delta_{F,S}(x^t) = x^{t+1}$. By an easy recurrence and the fact that $x_i \in A \times Q$ can only be obtained through case (3) of the rule, we can see that for any $t \in \mathbb{N}$, $x_{i-rt+i+rt}^{-t} \ldots (a_{i-rt}, b_{i-rt}) \in \mathbb{Z}$. All the technical difficulties are to control the contribution of the additional component to the final limit set.

Let F be a CA of radius r_F, local rule f over alphabet A with a spreading state $0 \in A$. We define a CA $\Delta_{F,S}$ of local rule $\delta_{F,S}$ defined on alphabet $C = A \sqcup (A \times Q)$ with radius $r = \max(r_F, r_S)$ by:

$$
\delta_{F,S} : c \mapsto \begin{cases}
 f(a_{-r_F} \ldots a_{r_F}) & \text{if } c = a_{-r} \ldots a_r \in A^{2r+1} ; \\
 a_0 & \text{if } c = (a_{-r}, \gamma) \ldots (a_r, \gamma) \in (A \times \{\gamma\})^{2r+1} ; \\
 (a_0, s(b_{-r_S} \ldots b_{r_S})) & \text{if } c = (a_{-r}, b_{-r}) \ldots (a_r, b_r) \in (A \times Q')^{2r+1} ; \\
 0 & \text{otherwise.}
\end{cases}
$$

Basicallly, this CA freezes the first component while applying the firing squad on the second component until some firing state appears, which then frees this second component and starts the application of F. When the configuration is not coherent, or when κ appears, 0 begins to spread. Clearly, F is a sub-automaton of $\Delta_{F,S}$.

The structure of the corresponding limit set will be given by the following lemmas.

Lemma 3.5. $A^\mathbb{Z} \subset \Omega_{\Delta_{F,S}}$.

Proof. Let $x \in A^\mathbb{Z}$. From Point 1 of Lemma 3.2 there is a sequence $(y^t)_{t \in \mathbb{N}}$ with $y^0 = \gamma^\infty$ and for any $t \in \mathbb{N}_+$, $y^t \notin \{\gamma, \kappa\}$ and $S(y^t) = y^{t-1}$. Consider now the configurations $x^t = (x_i, y_{i+1}^t)_{i \in \mathbb{Z}}$ for $t \in \mathbb{N}_+$. By a quick induction on $t \in \mathbb{N}_+$, we can see that for any cell $i \in \mathbb{Z}$, only case (3) of the local rule is used, and $x^0 = \Delta_{F,S}(x^1)$. At time -1, since the second component of x^{-1} is γ^∞, case (2) of the rule is applied in every cell, which gives $x = \Delta_{F,S}(x^{-1}) = \Delta_{F,S}(x^0)$ for any $t \in \mathbb{N}_+$.

Lemma 3.6. Let $x \in \Omega_{\Delta_{F,S}}$ and $i, j \in \mathbb{Z}$ such that $i \neq j$ and $x_i = (a_i, \gamma), x_j = (a_j, b_j) \in A \times Q$. Then $b_j \notin \{\gamma, \kappa\}$.

Proof. We can assume, by symmetry, that $i < j$, and for the sake of contradiction that $b_j \notin \{\gamma, \kappa\}$. Let $(x^t)_{t \in \mathbb{Z}}$ be a bi-orbit of $x = x^0$, i.e. a bisequence of configurations such that $\forall t \in \mathbb{Z}, \Delta_{F,S}(x^t) = x^{t+1}$. By an easy recurrence and the fact that $x_i \in A \times Q$ can only be obtained through case (3) of the rule, we can see that for any $t \in \mathbb{N}$, $x_{i-rt+i+rt}^{-t} \ldots (a_{i-rt}, b_{i-rt}) \in \mathbb{Z}$. All the technical difficulties are to control the contribution of the additional component to the final limit set.
(A × Q)^{1+2rt} and s^t(b_{−rt, j} \dotsc b_{+rt, j}) = b_j; in the same way, x_{[−rt,j+rt]}^t can be written \((a_{−rt, j} \dotsc a_{+rt, j})\) and \((b_{−rt, j} \dotsc b_{+rt, j}) = b_j\). Then for any \(t > \frac{2−1}{2r}\), \(x_{[−rt,j+2rt]}^t\) is in \((A × Q)^{1+2rt}\) and the image \(s^t(x_{[−rt,j+2rt]}^t)\) contains \(b_i\) and \(b_j\). In other words, the cylinder \([b_i Q^{l−i−1} b_j]\) intersects \(S^t(Q^2)\) for any \(t\), and by compactness intersects \(Ω_s\), which contradicts Point 2 of Lemma 3.2.

If \(Σ \subset A^Z\) is a subshift and \(0 \in A\), then we consider the subshift \(0 • Σ • 0 = \bigcup_{−∞ ≤ l ≤ m ≤ +∞} \{ x ∈ A^Z | ∀i /∉ llbracket l, m llbracket, x_i = 0 \& ∀y ∈ Ω, x|l,m[= y|l,m[\}\} of configurations or pieces of configurations of \(Σ\) surrounded by 0.

Lemma 3.7. \(Ω_{Δ,F,S} \setminus A^Z \subset 0 • (A × Q)^2 • 0\).

Proof. By shift-invariance, it is sufficient to prove that \(Ω_{Δ,F,S} ∩ [A × Q]_0 \subset 0 • (A × Q)^2 • 0\). Let us prove by induction on \(n \in N\) that the patterns of \((A × Q)(A^{2n} \setminus \{0^{2n}\})\) are forbidden in \(Ω_{Δ,F,S}\). The base case is trivial (there are no such patterns). Now suppose it is true for \(n \in N\), and suppose there exists a configuration \(x ∈ [(A × Q)0^{2n+k}(A \setminus \{0\})]_0 ∩ Ω_{Δ,F,S}\) with \(1 ≤ k ≤ 2r\). Consider a preimage \(y ∈ Ω_{Δ,F,S}\) of \(x\). On the one hand, in cell 0 of \(y\), we must have applied case (3), so \(y_{[−rt,j]} \in (A × Q)^{2r+1}\), and this word does not involve \(γ\). On the other hand, if we have applied case (1) in cell \(2nr + k + 1\) of \(y\), then \(y_{[(2n−1)r+k+1, (2n+1)r+k+1]} \in (A \setminus \{0\})^{2r+1}\), but the space between these two neighborhoods is \(2n−1)r + k + 1 − r − 1 ≤ 2nr − 1\), which contradicts the induction hypothesis. The other possibility was that we have applied case (2) in cell \(2nr + k + 1\), which involves a state \(γ\) among cells of \(y_{[(2n−1)r+k+1, (2n+1)r+k+1]}\), which contradicts Lemma 3.6. In the limit, and with a symmetric argument on the left, we obtain that all the configurations of \(Ω_{Δ,F,S} \setminus A^Z\) are in \(0 • Σ • 0\).

We shall abusively denote \(A^Z × X_S = \{(a_i, s_i)_{i ∈ Z} ∈ (A × Q)^2 \mid (s_i)_{i ∈ Z} ∈ X_S\}\).

Lemma 3.8. \(Ω_{Δ,F,S} = A^Z ∪ 0 • (A^Z × X_S) • 0\).

Proof. Thanks to Lemmas 3.7 and 3.5 it is enough to prove two inclusions for the configurations \(x ∈ C^Z\) with \(l, m ∈ [−∞, +∞]\) such that \(x_{|l,m[} ∈ (A × Q)^{m−l−1}\) and for any \(i /∉ llbracket l, m llbracket, x_i = 0\).

First, suppose that \(x ∈ Ω_{Δ,F,S}\), i.e. for any \(t ∈ Z\), there exists \(x^t \in Δ^t_{F,S}\{x\}\). By recurrence, we can see that \(x^t ∈ A × Q^t\) for all \(i ∈ [l−rt, m+rt]\) and \(t ≥ 1\) since states from \(A × Q\) are only produced by case (3) of the rule. Let \(w^t ∈ Q^{m−l+2rt+1}\) be the projection of \((x^t)_{|l−rt,m+rt[}\) on its second component. Clearly, \(w^0\) is in the language of \(X_S\). We deduce that \(x = x^0 ∈ 0 • (A^Z × X_S) • 0\).

Conversely, suppose that \(x \in 0 • (A^Z × X_S) • 0\), i.e. there is a sequence \((y^t)\) with, for \(t ≥ 1\), \(y^t ∈ Q^Z\) and \(y^t = S(y^{t−1})\) and, for any \(t ∈ N\) and any \(i /∉ llbracket l, m llbracket, x = (a_i, s_i^t(y^t)_i)\) for some \(a_i ∈ A\). Now take the configuration \(y^t ∈ C^Z\) such that for any \(i /∉ llbracket l−rt, m+rt llbracket, \(y^t_i = 0\) and for any \(i ∈ llbracket l−rt, m+rt llbracket, \(y^t_i = (b_i, y^t_i)\) with \(b_i ∈ A\), and \(a_i = a_i\) if \(i /∉ llbracket l, m llbracket\). By a direct recurrence, for any \(j < t\) and any \(i /∉ llbracket l−rt+j, m+rt−rj llbracket\), we have \(Δ^t_{F,S}(y^t)_i = 0\) and for any \(i ∈ llbracket l−rt+j, m+rt−rj llbracket\), we have \(Δ^t_{F,S}(y^t)_i = (b_i, s^t(y^t)_i)\) (since \(y_j ∈ Q′ \in Z\) case 3 of the definition of \(Δ^t_{F,S}\) applies at position \(i\) of \(y^t\)). This gives that \(Δ^t_{F,S}(y^t) = x\).

We have proven that \(Ω_{Δ,F,S} ∩ 0 • (A × Q)^2 • 0 = 0 • (A^Z × X_S) • 0\).
The complete list of transitions is given in [Kar94]. From Corollary 3.9 the corresponding limit set has an NL-recognizable language.

Corollary 3.9. \(\Omega_{\Delta_{F,S}} \) has an NL-recognizable language.

Proof. From Lemma 3.8 and Point 3 of Lemma 3.2 the language of the limit set is the finite boolean combination of finite concatenation of NL-recognizable languages.

Proof of Theorem 3.3. Let \(F \) be a CA on some alphabet \(A \). We can artificially add some spreading state \(0 \notin A \) to build a CA \(\tilde{F} \) on alphabet \(A \cup \{0\} \) which admits \(F \) as a sub-automaton. Now we have seen that \(\tilde{F} \) is a sub-automaton of \(\Delta_{F,S} \). From Corollary 3.9 the corresponding limit set has an NL-recognizable language.

4. Analysis of a firing-squad CA

More precise proofs can be found in [GMT10].

Let \(S \) be the firing-squad CA defined in [Kar94]. It has a state set \(Q \) of size 16, including a killer state \(\kappa \), radius 1 and is defined by the transitions appearing in Figure 1 precisely, any transition which is not in the space-time diagram of the figure produces the killer state \(\kappa \). The complete list of transitions is given in [Kar94].

We are interested in history diagrams in \(X_S \), *i.e.* mapping from \(\mathbb{Z} \times \mathbb{N} \) to \(Q \) of the form: \((z, t) \mapsto x^t(z)\) where \((x^t)\) is a sequence of configuration in \(X_S \) such that \(S(x^{t+1}) = x^t \). We call them *valid* history diagrams.

When restricted to \(X_S \), the behavior of \(S \) is easier to understand via a signal/collision evolving in a quiescent background. More precisely, the background is uniform and made of blank states (denoted \(B \) in the sequel) and the signals involved are:

![Figure 1: The 16-state firing squad of [Kar94]. Empty spaces represent the blank state.](image-url)
The valid collisions are:

\[L_1 + R_1 \rightarrow l_1 + r_1 \quad \quad l_2 + r_2 \rightarrow \# \]
\[l_1 + r_2 \rightarrow l_1 + r_2 \quad \quad l_1 + \#' + r_1 \rightarrow \# \]
\[r_1 + l_2 \rightarrow r_1 + l_2 \quad \quad \# \rightarrow L_1 + l_2 + \#' + r_2 + R_1 \]

Any other intersection of signal is invalid (it raises a κ state). Moreover, the last collision rule (starting from a single \#) is valid only if the \# is distant from any other \# by at least 3 cells: if they are 1 cell away, 3 adjacent \#' are generated; if they are 2 cells away, a κ is generated 2 steps later.

To simplify proofs, we will often make reasonings over (portions of) “Euclidean” versions of history diagrams. A Euclidean history diagram is a set of labelled points and labelled (half-)lines or segments in \mathbb{R}^2 satisfying the following rules:

- points are only at integer coordinates (\mathbb{Z}^2) and labelled by \#;
- (half-)lines and segments correspond to signals listed above (label and slope correspond);
- any intersection between lines or segments follow the collision rules above.

Lemma 4.1. To each history diagram D, we can associate a valid Euclidean history diagram E such that, at any integer coordinate of E containing a point (\#) or a single signal, the label gives the state of the corresponding position in D.

This lemma allows the following proof scheme (used several times below): supposing by sake of contradiction that some word w occurs in a history diagram, we make a reasoning on the corresponding Euclidean diagram, we get a contradiction and finally deduce that no history diagram exists which contain the word w, and therefore that w is not in the language of X_S.

S satisfies points (1) and (2) of Lemma 3.2 as shown in [Kar94, Prop. 4.3]. We give below a complete characterization of the language of X_S which shows that it is NL-recognizable.

Lemma 4.2. Consider a history diagram containing a word $w \in \#Q^*\#'$ at time t_0. Let z_1 (resp. z_2) be the cell where the first (resp. the last) letter of w occurs. We suppose in addition that the left \# of w was created by a l_1 signal. Let t_1 be the first time step in the past when the cell z_1 is in state \#, and t_2 be the first time step in the past when the cell z_2 is in state \#. Then, both t_1 and t_2 exist.

We denote by Σ the set $Q' \setminus \{\#, \#'\}$.

Lemma 4.3. There is no history diagram containing a word w of the form $\#\Sigma^*\#'$, where the left \# is created by r_1/l_1 signals.

Lemma 4.4. There is no history diagram containing a word w of the form $\#\Sigma^*\#'$, where the left \# was created by a l_2/r_2 pair of signals.

Lemma 4.5. Any configuration from X_S with at least two \# is of the following form, for some value of n: $\omega(\#B^n)^\omega$.

Lemma 4.6. Let L be the language of configurations from X_S admitting an history diagram where two \# occur at some time t in the past. Then $L \in \text{NL – recognizable in logarithmic space}$.
Lemma 4.7. The language of configurations from X_S which contain only one state in $\{\#, \#'\}$ is also in NL.

Lemma 4.8. Let L be the language of configurations from X_S with two or more $\#$ and having a history diagram with no $\#$. Then L is regular.

Lemma 4.9. The language of the configurations from X_S without any $\#$ or $\#'$ is regular.

Proposition 4.10. The language of X_S is in NL.

Proof. There are several cases, and the disjunction on configurations allows to express the language of X_S as a union of ‘simple’ NL languages.

(1) Configurations with $\#s$ or $\#s$. We can describe the set of these configurations by :

$$\omega\{L_1, l_1, B\} \{l_2, B\}^{*} A\{r_2, B\}^{*}\{R_1, r_1, B\}^{\omega}$$

where A is one of the following (possibly infinite) configurations:

(a) A has exactly one state in $\{\#, \#'\}$. We conclude in this case with Lemma 4.7.

(b) A has one $\#$, and at least one other $\#$ or $\#'$. Lemmas 4.3, 4.4 and 4.5 show that the configuration satisfy the hypothesis of Lemma 4.6 which allows to conclude.

(c) A has at least two $\#'$ but do not contain any signal. Then Lemma 4.8 conclude.

(d) A has at least two $\#'$, along with some signal(s) between two $\#'$. Denote by c the global configuration in this case. We can simply go back a few steps in the past to find out a configuration c' of case [1b]. Then we can apply Lemma 4.6 to c.

(2) Configurations without $\#s$ nor $\#'s$. This case is treated in Lemma 4.9.

Thus, since we have described above why each of the possible languages could be recognized in NL, we can just build a non-deterministic machine beginning by making a non-deterministic choice between all of these machines, then doing the computation of the chosen one.

Conclusion

We have thus achieved results implying that both limit set and column factors complexities are strongly linked to the factor simulation hierarchy; on the other hand, they are rather orthogonal to the sub-automaton simulation hierarchy.

Many open questions remain.

• We have obtained that universality was not forbidden by some rather strong constraints either on the limit set, or “orthogonally”, on the column factors. A natural question is whether we can constrain both at the same time. The two constructions may possibly be composed together, at the price of a (yet) more difficult proof of the NL-recognizability of the limit set.

• Similarly, we believe that our results still hold when alphabets are restricted to $\{0, 1\}$ but at the price of a more technical proof.

• Is there an intrinsically universal CA with an SFT limit set? Following our construction, this raises immediately the following question: is there a firing-squad CA with an SFT limit set?
• What kind of limit system can an intrinsically universal CA have? Can it be injective?
• Is injectivity, expansivity of CA preserved by factor maps?
• Is it enough, for a CA to be a factor of another CA, that the corresponding column factors with some given width be linked by a factor map?
• Is there, for some complexity level λ, an equivalence class for the sub-automaton simulation (with space-time rescalings) of which all the elements have limit sets of complexity λ?

References

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nd/3.0/