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Abstract 

 

In computational materials science, many atomistic methods hinge on an interatomic potential 

to describe the material properties. In alloys, besides a proper description of problem specific 

properties, a reasonable reproduction of the experimental phase diagram by the potential is 

essential. In this framework, we developed two complementary methods to fit interatomic 

potentials to the thermodynamic properties of the alloy. The first method involves the zero 

Kelvin phase diagram and makes use of the concept of the configuration polyhedron. The 

second method involves phase boundaries at finite temperature and is based on the cluster 

variation method. As an example for both techniques, they are applied to the Fe-Cu, Fe-Ni 

and Cu-Ni systems. The resulting potentials are compared to those found in the literature and 

are found to reproduce the experimental phase diagram more consistently than the latter. 

 

1. Introduction 

 

The use of atomistic simulation methods is becoming increasingly important in materials 

science. First principles methods, such as density functional theory (DFT), have proven to be 

very accurate tools in describing various materials properties. However, due to their inherent 

complexity, such schemes are only applicable to small scale atomic systems (typically <103 

atoms). When mechanical properties and micro-structure are the focus of attention, 
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simulations have to be simple enough to deal with a large number of atoms (typically 105-107 

atoms), thus capturing the length scale that is relevant for this class of problems. For such a 

purpose, classical short-ranged cohesive energy models remain an unavoidable constraint. 

Historically, the first approach used to describe atomic interactions was by simple pair 

potentials. Although this scheme is suitable for rare-gas solids, it shows a number of 

deficiencies when applied to metals [1, 2]. The solution to these problems was the 

introduction of an additional many-body term, dependent on a variable describing the local 

atomic coordination (henceforth density). Based on different physical grounds, and 

independently from each other, three groups implemented such a scheme, namely, the “glue 

model” (GM) developed by Ercolessi et al. [3-5], the “embedded atom method” (EAM) 

developed by Daw and Baskes [6, 7] and the “Finnis-Sinclair” (FS) formalism developed by 

Finnis and Sinclair [1]. From a computational point of view, all three schemes are identical 

with a performance of the same order as simple pair potentials. In what follows we refer to the 

three formalisms as many-body central force potentials. In the literature, several extensions 

based on many-body central force potentials exist, introducing for example bond-angle 

dependences [8-11] or local concentration dependences [12, 13]. For most transition metals 

and their alloys, however, many-body central force potentials are still widely used. 

In the literature, a number of many-body central force potentials are available for pure 

elements (see for example [14-17]) and, especially in the last few years, also multi-component 

potentials (mostly binary) have been developed (see for example [14, 18-21]). In most cases, 

besides problem-specific properties (e.g. point defect interaction energies and their migration 

barriers), the mixing enthalpy at low temperature (0 K for DFT data) and/or formation energy 

of some intermetallic compounds is the only thermodynamic information included in the fit. 

Such approaches are currently considered “common practice” (see for example [11, 22-25]) 

and are also applied to the potentials fitted here. The mixing enthalpy determines the alloy's 

thermodynamics in the high temperature limit, and can thus be a sufficient description for 

disordered alloys. The formation energy of intermetallic compounds, on the other hand, gives 

the absolute stability of the compound, but can hardly control the stabilization of other 

(unphysical) compounds. It is thus clear that, for many alloys of technological interest, a fit to 

the mixing enthalpy or formation energy of some intermetallic compounds does not suffice, 

and that more elaborate methods to fit thermodynamic information is necessary. 

In this paper we develop two methods to account for the experimental phase stabilities. 

The first method, based on the probability polyhedron [26, 27], aims at controlling the 
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allowable ground states. This method is of particular interest when intermetallic compounds 

appear in the phase diagram. The second method is based on the cluster variation method 

(CVM) [28] and aims at fitting the experimental solid phase boundaries at finite temperature.  

As an illustration of the performance of both methods, they are applied to the Fe-Cu, 

Fe-Ni and Cu-Ni binary systems, which together form a ternary Fe-Cu-Ni potential. The Fe-

Cu and Fe-Cu-Ni systems are model alloys for reactor pressure vessel (RPV) steels. 

Experimentally it is known that nano-metric Cu-rich precipitates cause hardening and 

embrittlement in such steels [29-38]. It is thus essential that the potential closely reproduces 

the Cu solubility, a demand handled with our second technique above. The Fe-Ni system, 

developed as a part of the ternary Fe-Cu-Ni system, on the other hand, also serves as a model 

alloy for austenitic steels, as used for example in current reactor's internal components. 

Experimentally, this system consists of a ferritic Fe rich phase, an austenitic Ni rich phase 

and, in-between, two fcc based L10 FeNi and L12 FeNi3 intermetallic phases [39]. Here it is 

thus essential to correctly reproduce the stability of observed intermetallic phases, a demand 

handled with our first technique. The Cu-Ni potential on the other hand is a by-product of our 

ternary Fe-Cu-Ni potential, but for reasons of consistency it was also fitted to the 

experimental phase diagram. The phase diagram consists of a miscibility gap of two austenitic 

phases with total miscibility above a critical temperature [40-43]. As a first approximation 

this alloy can be considered disordered, and therefore we use it as an illustration of a case in 

which fitting to the mixing enthalpy only gives already a reasonable result. 

All of the above potentials were fitted to many other properties (mostly defect 

properties), besides thermodynamic data. As an illustration of the methods, however, here we 

only present the thermodynamic aspects and compare them against experiments and other 

potentials found in the literature. For more details on the other properties, the reader is 

referred to [20, 21, 44]. To conclude, a closing discussion on the applicability and limitations 

of the developed fitting techniques is given. 

 

2. Potential formalism 

 

For the sake of definiteness, the interactions are expressed using the EAM scheme. We note, 

however, that the fitting techniques are not restricted to this formalism and can in fact be 

applied using other ones, including bond-angle dependent and concentration dependent 

formalisms. Within EAM, in addition to a pair interaction term, V, a so-called embedding 

term, F, dependent on the electron density ρ,  is included. The latter contribution 
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approximates the many-body interaction with the surrounding neighbours. The total energy is 

thus given as, 

 

, 1 1

1
( ) ( )

2 i j i

N N

t t ij t i

i j i
j i

E V r F r
= =

¹

= +å å .        (1) 

 

Here N represents the total number of atoms in the system, rij is the distance between atoms i 

and j, and ti denote atomic species. The electron density around atom i, contributed from its 

neighbours is in turn given as, 

 

1

( )
j

N

i t ij

j
j i

rr j
=
¹

= å ,           (2) 

 

where ϕ denotes the electron density function of the considered element. The form of V, F 

and ϕ is, however, not uniquely determined. Two transformations [1, 2, 18], 1̂T  and 2̂T , exist 

that leave the total energy invariant, 

 

1

( ) ( )ˆ
( ) ( / )

r S r
T

F F S

j j

r r

ì ®ïïíï ®ïî
          (3) 

 

2

( ) ( )ˆ
( ) ( ) 2 ( )

F F C
T

V r V r C r

r r r

j

ì ® +ïïíï ® -ïî
,         (4) 

 

with C and S arbitrary constants. Therefore, the units of the electron density are arbitrary for 

the pure species, but contribute to each other’s embedding energy in the alloy case. 

In what follows, we assume that the potentials for the pure species are given, and only 

the cross pair interactions VAB and relative weight between the electron densities  ρA/ρB need 

to be determined. During the fitting of the alloy properties, transformation 1̂T  is used to 

change the relative weight between the electron densities ρA/ρB. The mixed pair interaction 

VAB, on the other hand, is parameterized by the spline expansion, 
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3

1

( ) ( ) ( )
pN

ij k k k

k

V r a r r H r r
=

= - -å ,        (5) 

 

where Np denotes the number of knots, ak are the fitting parameters and H denotes the 

Heaviside unit step function. 

 

3. Fitting procedure 

 

The fitting of an interatomic potential can be viewed as a problem of finding the potential 

parameters that allow the latter to optimally reproduce a given data set, presently, 

thermodynamic data. Mathematically, it can be formulated as the minimization of the overall 

squared deviation, so called objective function (OF), between predicted and reference data, 

possibly including some constraints. Simple thermodynamic properties, such as the random 

mixing enthalpy, or formation energy of intermetallic compounds, are relatively easy to 

express. Moreover, if relaxation effects can be neglected, Equation (5) leads essentially to a 

quadratic programming problem [45] to determine the parameter set {ak}. Otherwise, if 

relaxation effects matter, the intermetallic compound structures need first to be relaxed for 

each trial parameter set, thereby leading to nested optimizations. In the same context, for 

mimicking the random alloy, one may use relatively small so-called special quasi-random 

structures (SQSs) [46]. Thus, more elaborate minimization routines would be necessary.  The 

two fitting techniques proposed below are of the latter kind; it will also be shown that 

relaxations are not the only cause of complexity in the optimization procedure. 

 

3.1. Ground States 

 

At low temperature, the phase diagram is determined by the static properties of the alloy. For 

disordered alloys this is the random mixing enthalpy while for intermetallic phases this is the 

formation energy of intermetallic compounds. In the absence of intermetallic compounds a fit 

to the random mixing enthalpy can be sufficient to describe randomly disordered alloys, but 

for alloys governed by intermetallic phases a more elaborate approach is necessary. Besides 

fitting the formation energy of the intermetallic compounds of interest, constraints must be 

applied to control the relative stability with respect to other possible intermetallic compounds. 

Such a procedure is necessary to guarantee that the compounds of interest are the only ground 

states of the system, so that no unwanted (unphysical) phases appear in the phase diagram. On 
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the other hand, if no intermetallics should be expected, such constraints are used to ensure that 

no intermetallic compounds are stabilized by the potential.  

 For a binary alloy with a given lattice symmetry, there exist 
1

2
M

n

n=
å  possible ordered 

compounds for a unit cell containing up to M atoms. These ordered compounds can easily be 

enumerated as described in [47], but it is clear that the total number of compounds increases 

fast with M, among which only a selected few represent possible ground states of the system 

under investigation. It is thus desirable to sample only the compounds that are candidate 

ground states rather than enumerating all. A way to perform this is based on the configuration 

polyhedron [26, 27]. In short, given a lattice and a (set of) maximal clusters upon it, the 

configuration polyhedron is a convex region in the correlation functions (CF) space where the 

probability of any specified cluster configuration is assured to be non-negative (c.f. next 

section for further details). Since the configurational energy on a rigid lattice can be written as 

a linear cluster expansion in CF space [26, 27, 48], the vertices of such a polyhedron are 

candidates to system's ground states, though not all of the associated ordered compounds are 

feasible, i.e., physically possible for the given lattice. In what follows we understand this 

concept in the latter more restricted sense of feasible vertices, denoting also the mth CF for a 

cluster comprising n sites as ξn,m. 

 Finel [49] studied the bcc lattice by using two maximal clusters, the standard 

octahedron and the cubic unit cell, so distances up to 5th nearest neighbour (5nn) were 

considered, except 4nn. In that work a polyhedron of 28 vertices (with 97 faces in the 5-D 

space spanned by the CFs ξ1, ξ2,1, ξ2,2, ξ2,3 and ξ2,5) was constructed and the vertices were 

identified with the associated ordered compounds. We have enlarged this polyhedron by 

selecting ordered compounds from previous ATAT [50, 51] runs, used to construct the Fe-Cu 

phase diagram [20]. For each of these compounds the respective CFs were determined in 6-D 

space spanned by the point correlation function ξ1 and five doublets up to 5nn: ξ2,1,ξ2,2,ξ2,3,ξ2,4 

and ξ2,5. Then these CFs were checked for convexity against the 28 original vertices given by 

Finel, with the result that the number of vertices of the polyhedron was raised to 99 (with 

1750 faces in 6-D space). The ordered compounds corresponding to these vertices are referred 

to as BCC-99 and serve to sample possible ground states. 

Similarly, Kanamori and Kakehashi [52] studied the fcc lattice using a different method 

from Finel’s, and reported a set of 87 ordered compounds, referred to as FCC-87, relevant to 

interactions up to 4nn (although they do not exhaust all the possibilities according to Finel 

[49]). It was checked that they can be taken as vertices of a polyhedron possessing 691 faces 
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in the 6-D space spanned by the point and the doublets up to 5nn (174 if up to 4nn, but then 

14 compounds lay on the boundary without being vertices; they are numbers 2,4,27,28,32,36 

and 37 (and the complementary ones) of reference [52]). 

Given the compounds corresponding to the BCC-99 and FCC-87, we impose by 

constraints that the formation energy of all of them for a trial potential should lay above the 

convex hull of formation energies of the experimentally observed intermetallic compounds. 

This procedure leads thus to 186 constraints during the optimisation of the potential 

parameters. 

 

3.2. Phase boundaries at finite temperature 

 

The main problem of fitting a potential to the experimental phase diagram at finite 

temperature is precisely the evaluation of the phase diagram corresponding to the trial 

potential. In the literature, many Monte Carlo and molecular dynamics based algorithms are 

available to compute the solid state phase diagram for a given potential [51, 53-56], but their 

computation time is prohibitive for their use during potential fitting. An alternative, 

computationally feasible procedure to estimate the solid state phase diagram is to use CVM to 

obtain the free energy together with the common tangent method [57] to track the phase 

boundaries. 

According to general statistical mechanics principles, free energies can be expressed as 

variational problems in a configuration (site occupation) space [26, 27]. Particularly, for rigid 

periodic lattices the Helmholtz free energy per site, f(T,c), may be written as, 

 

min ( ) ln ( )
M M

Bf m E k T m a p pa a a a a a a
x

a a a a s

x s s
Í Í

ì üï ïï ï= +í ýï ïï ïî þ
å å å ,    (6) 

 

where the first term represents the internal energy and the second one embodies the 

configurational entropy. The outer sums extend over the symmetry-equivalent clusters of 

sites, that are subsets of a (family of) chosen maximal ones, αM. The multiplicity of these 

clusters is mα; aα are coefficients related to crystal symmetry and computed within the 

framework of the CVM theory; pα are cluster probability distribution functions depending on 

the system configuration σ ; the variational parameters, ξ = {ξα}, i.e. CFs, are in turn linearly 

related to pα; finally, Eα are the coefficients of the energy expansion upon the cluster basis 
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used, thus carrying the specific interaction model. Regarding the entropy term, many 

calculations of phase diagrams using the CVM have been performed with relatively small αM 

clusters, which nevertheless were able to obtain rather non trivial phase diagram structures. 

These are mainly the tetrahedron-octahedron approximation for the fcc lattices, and the 

tetrahedron approximation for the bcc ones, which are used here in their expressions for 

disordered alloys [26, 27]. The minimization in Equation (6) is constrained to a convex region 

in CF space where 0 1p
a

£ £ , which is the configuration polyhedron as presented above.  

Once the free energy is obtained, the experimental solubility limits xα and xβ for the 

phases α and β, respectively, at a given temperature T, are fitted through the common tangent 

equations, 

 

' '

' '

a b

b a

f x f f x f

f x f f x f

a a b b

a a b b

ìï - = -ïïíï + = +ïïî
.         (7) 

 

Here fα is the free energy per atom at temperature T for concentration xα, and f'α represents the 

derivative with respect to x taken in the point xα (and similar for the β-phase). This procedure 

can be applied to fit as many experimental phase boundary points as wished. 

The constrained minimization in Equation (6) with respect to ξ is complicated because, 

(i) each face of the configuration polyhedron introduces an inequality constraint; (ii) the 

cluster expansion for the energy may require more ξα than required for the CVM entropy 

(leading to instabilities in the resulting free energy). Although approximate solutions exist for 

the latter [58], for large configuration polyhedrons, as is the case here, the minimization is 

unmanageable.  

A technique that largely overcomes these problems reverts to the so called barycentric 

coordinates, namely, each point within the CF polyhedron can be expressed as, 

 

i i

i

l= åξ V ,           (8) 

 

where (1) ( , ){ ,..., }n m

i i i
V V=V  are the coordinates (vector in CF space) for each vertex i of the 

configuration polyhedron. The barycentric coordinates, λi (99 for the bcc lattice and 87 for the 

fcc one) comply to the relations, 
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 0
i

l ³  and 1
i

i

l =å .          (9)  

 

Such a representation is generally non unique, but this is inconsequential for our purposes. 

Notice that 
i

V  can be determined up to the number of dimensions desired from the associated 

intermetallic compound.  

The barycentric coordinates are a very convenient tool to handle CFs, in fact, the latter 

are strictly needed only to express the entropy within the CVM approach, not the energy. 

First, it is important to realize that the positive combination of Equation (8) represents a 

positive combination of feasible probability distribution functions, and thus also a new 

feasible probability distribution function. Second, because the vertices themselves can include 

as many CFs as needed to cluster expand the energy, the latter is given by the same linear 

combination of vertex energies for any point belonging to the polyhedron. Therefore, the 

energy can also be expanded as, 

 

( )
i i

i

E El= åξ .           (10) 

 

Here Ei is the energy of compound corresponding to vertex 
i

V , that was optimised using the 

trial potential. Also, constraints on the barycentric coordinates, Equation (9), are easier to 

implement than on CFs, and their meaning is more transparent due to the direct relationship to 

individual compounds. In summary, the use of barycentric coordinates makes the 

minimization more stable and the resulting free energy more reliable. 

 

4. Applications 

 

4.1. Iron-nickel model alloy 

 

In this section we take our Fe-Ni potential from [21] to illustrate the importance of applying 

the first of the above described fitting techniques. This fact is highlighted by comparing with 

two potentials found in the literature. The first one was developed by Meyer and Entel [59] in 

the EAM formalism for the purpose of studying the austenite-martensite transformation by 

varying Ni content and employing MD techniques. The second potential, by Mishin et al. 

[11], was developed mainly to study the phase stability of ordered Fe1−xNix compounds, and 
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is based on the, so called, angle dependent potential (ADP) formalism [11]. The latter is an 

extension of EAM, but includes bond-angle contributions, that in principle allow for a more 

accurate fitting to DFT data available on intermetallic compounds. In what follows the two 

potentials are referred to as MEY and MISH, respectively. 

In Figure 1 the lowest energies of the BCC-99 and FCC-87 compounds, computed with 

the three different potentials are compared. The figure clearly shows the importance of the 

constraints on the possible intermetallic compounds introduced in the fitting procedure. For 

the MISH potential, as already reported [11], the formation energy of the compounds C11f at 

33.33 and 66.67 at.% Ni lay on and just above the hull, respectively, while the compound at 

88.75 at.% Ni ( Ca7Ge type ) lays below the hull and thus represents an (unwanted) ground 

state of the system. Note also that the examination of the BCC-99 and FCC-87 structures 

reveals the existence of many other ordered compounds, especially between 50 and 100 at.% 

Ni, with a formation energy only a few meV above the convex hull of truly ground states. 

These are metastable states that could become of importance at finite temperature. Turning to 

the MEY potential, it appears that the experimentally observed intermetallics L10 FeNi and 

L12 FeNi3 are not even ground states of the system. As shown in the figure, the phase diagram 

consists in this case of over ten compounds, none of which is L10 FeNi or L12 FeNi3. In 

summary, we see that the here fitted potential is the only one capable of reproducing the 

experimental phase diagram at 0 K, being at the same time derived within the relatively 

simple EAM formalism, thanks to the application of the fitting procedure described in Section 

3.1. 

 

4.2. Iron-copper model alloy 

 

Our Fe-Cu potential published in [20] provides an example of application of the second of the 

above-described fitting techniques. The thermodynamic reliability of the potential is here 

contrasted to experimental data and to similar results obtained with two potentials from the 

literature. The first of these was developed by Ackland et al. [60] using the FS formalism to 

study point defect properties in low Cu ferritic RPV steels. The second one was developed by 

Ludwig et al. [61] in the EAM formalism to study the interface between Cu precipitates and 

the Fe matrix, as well as their effect on the dislocation core structure. In what follows they are 

referred to as ACK and LUD, respectively. 

 Figure 2 shows the Cu solubility in Fe obtained from all three potentials. The curves for 

both ACK and LUD are taken from [62] and [63], respectively. The phase boundaries 
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obtained in these works are based on a full thermodynamic integration accounting for all 

components in the free energy. In the case of our potential, however, the vibrational entropy 

was verified to be negligible and was consequently not included in the phase diagram 

computation. The experimental data from Salje and Feller-Kniepmeier [64] and from Perez et 

al. [65] are also included in the figure. The former were obtained from the diffusion profile 

measurements of a thin Cu deposit onto an Fe substrate. The latter were obtained from 

thermoelectric power and small angle X-ray scattering measurements in thermally aged Fe-Cu 

alloys, where Cu precipitation was thereby induced. In fact, the latter points correspond to 

equation (10) from Ref. [65] evaluated at the measuring temperatures. Clearly, our potential 

follows the experimental results very well, perhaps with a little over/under-estimated 

solubilities for temperatures below/above 1000 K. The other two potentials, on the other hand, 

give too high solubility, particularly ACK. In summary, we see that the here fitted potential 

obtains a better fit to the experimental phase boundary at all temperatures, than if only the 

mixing energies at 0 K were used as data to be fitted. 

 

4.3. Copper-nickel model alloy 

 

Our Cu-Ni potential, on which further details can be found in [44], provides an example of 

potential fitted to the random solution mixing enthalpy only. The phase diagram predicted by 

our potential is compared to Calphad calculated data [66] and to the phase diagram from two 

potentials found in the literature. The first of these potentials was developed by Asta et al. 

[23] in the EAM formalism. The authors studied the structural and thermodynamic properties 

of solid solutions using a computational approach which combines the EAM description of 

alloy energetics with a second-order-expansion treatment of compositional and displacive 

disorder. The second potential is the work of Lee and Shim [25] and uses the modified 

embedded atom method (MEAM). It was developed to comply with the basic thermodynamic 

properties of Cu-Ni. The latter potential was quoted to be a part of a long term project to 

construct a ternary Fe-Cu-Ni potential to investigate the primary damage defect creation in 

RPV steels, although to date the ternary Fe-Cu-Ni potentials remains unpublished to our 

knowledge. In what follows, these two potentials are referred to as AST and LEE, 

respectively. 

 In Figure 3 the miscibility gap calculated for all three potentials is compared with the 

most recent Calphad parameterizations [42, 43]. The miscibility gap predicted by both the 

AST and LEE potential were taken from [23] and [25], respectively, which claim to account 
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for all components in the free energy. In the case of our potential, the vibrational entropy was 

verified to be negligible and was consequently not included in the phase diagram 

computation. Prior to comparing the miscibility gaps obtained from the potentials with each 

other and with the Calphad computed phase diagrams, a comment regarding the uncertainties 

in the latter is necessary. Experimentally, the existence of a Cu-Ni miscibility gap has been 

confirmed. However, disagreement exists regarding its composition and temperature range, so 

the corresponding Calphad phase diagram is mostly based on (speculative) thermodynamic 

calculations (see [42] and references therein). Therefore, the Calphad curves should be taken 

here as indicative curves, rather than experimentally verified phase boundaries. Taking this 

comment into account, the agreement of the miscibility gaps computed from all potentials is 

in reasonable agreement with the Calphad parameterizations. The asymmetry in the 

miscibility gap, however, is only reproduced by the AST potential, while the miscibility gaps 

resulting from our potential and LEE exhibit the opposite and no symmetry, respectively.  

 Thus, in this case, where no special care was taken to reproduce specific structure 

stability or phase diagram boundary, our potential performs similarly to existing ones. It 

should be noted, that the relative weight of the electron densities ρCu/ρNi in our potential was 

already fixed during the fitting of the Fe-Ni and Fe-Cu potentials. Allowing for this weight to 

change and applying our second fitting technique, the correct asymmetry and a closer fit to 

one of the Calphad calculated miscibility gaps could be obtained. This would be, however, at 

the cost of compatibility with the Fe-Ni and Fe-Cu potentials. Thus, for reasons of 

compatibility and in view of the experimental uncertainties, we opted to fix ρCu/ρNi as 

determined by the Fe-Ni and Fe-Cu binaries so that all three binaries together form a ternary 

EAM potential. 

 

5. Discussion 

 

 Both methods presented above are generally applicable to a wide range of systems. In 

some cases, however, the peculiarities of the system make our techniques unsuitable. An 

example of this is the Fe-Cr system, that may exhibit intermetallic compounds, and certainly 

exhibits short-range order in the Fe-rich limit, i.e. <10 at.% Cr [67-69]. The BCC-99 (and also 

FCC-87) compounds presented above do not exhaust unit cells larger than about nine atoms. 

In principle, this problem can be solved by increasing the unit cell size to describe a 

concentration range below 10 at.% Cr. In practice, however, such a probability polyhedron (in 

6-D) will consist of over 10,000 vertices, which are all constraints to be accounted for in the 
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potential and CVM optimization. Moreover, many physically different structures would be 

degenerate within our current 6-D coordinates, thus leading to the need of non-pair 

coordinates, and possibly, for consistency reasons, to more complicated (and untested) 

expressions of the CVM entropy. Clearly, this greater complexity and prohibitive high 

number of constraints limits the method's applicability. In particular, systems exhibiting 

intermetallic compounds in their dilute limits may not be handled. 

 For all three example systems, information regarding the random mixing enthalpy was 

included in the fit. Currently, this is performed by a mean field expansion of the mixing 

enthalpy as a function of composition [70] that neglects relaxations. Such a strategy proved 

sufficiently accurate, but for systems where relaxation effects are an issue, SQSs can be used 

to mimick the randomly disordered alloys. These structures in turn can be optimized in the 

same way as the BCC-99 and FCC-87 compounds. Also, for none of the current systems 

vibrational entropy was considered. If necessary, however, the method is easily extendable to 

fit vibrational entropy. Once the relaxed structure of an SQS, BCC-99 or FCC-87 compound 

is obtained, the Hessian matrix is calculated, from where the vibrational entropy in the 

harmonic approximation [71] can be obtained. With these remarks, we cover the most 

important aspects to included when fitting many-body potentials consistent with 

thermodynamics. 

To finalize, it is worth emphasizing that the application of both our proposed techniques 

(and possible extensions) require optimizers able to work with function values only, of 

unkown or even ill defined derivatives. Firstly, SQSs and/or the compounds associated with 

the BCC-99 or FCC-87 polyhedrons are optimized for each trial parameter set {ak}, then the 

latter is varied to optimize the OF, thus introducing a nested minimization. When applying the 

second method, still an additional constrained minimization with respect to correlation 

functions is necessary to obtain the free energy. Among the optimizers available in the 

literature, we found the (freely available) deterministic one by Powell [72] (COBYLA) to be a 

good compromise between computation time and quality of results. 

 

6. Summary and conclusions 

 

We have presented and described in some detail two advanced methods to fit the 

thermodynamic properties of alloys when developing classical interatomic potentials. The 

first method involves the zero Kelvin phase diagram and uses the configuration polyhedron. It 

is especially suitable to fit potentials that reproduce experimentally observed intermetallic 
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phases. The second method involves the phase boundaries at finite temperature and is based 

on the cluster variation method. It is especially suitable to closely reproduce the experimental 

phase boundaries. 

 Both methods were successfully applied to the Fe-Cu, Fe-Ni and Cu-Ni systems that 

together form a ternary Fe-Cu-Ni potential. It was shown that all potentials reasonably agree 

with the experimental phase diagram and equally (Cu-Ni case) or more consistently (when the 

presented procedures are used) with experiments than recent potentials found in the literature. 
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Figure caption 

 

Figure 1 - Overall view of the formation energies of low energy compounds. 

Figure 2 - Fe-rich phase boundary of the Fe-Cu system. 

Figure 3 - Phase diagram of the Cu-Ni system. 
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