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Invariant measures and controllability of �nite

systems on compact manifolds

Philippe JOUAN∗

September 15, 2010

Abstract

A control system is said to be �nite if the Lie algebra generated by
its vector �elds is �nite dimensional.

Su�cient conditions for such a system on a compact manifold to
be controllable are stated in terms of its Lie algebra.

The proofs make use of the Equivalence Theorem of [7] and of the
existence of an invariant measure on certain compact homogeneous
spaces.

Keywords: Compact homogeneous spaces; Linear systems; control-
lability; Finite dimensional Lie algebras; Haar measure.

AMS Subject Classi�cation: 17B66; 37A05; 37N35; 93B05; 93B17;
93C10.

It has been well known for a long time that a invariant control system on a
compact Lie group is controllable if and only if it satis�es the rank condition
(see [10]). This statement remains true for linear systems on compact Lie
groups (see [16] and [4]).

On the other hand the equivalence theorem of [7] asserts that a control-
a�ne system whose vector �elds are complete and generate a �nite dimen-
sional Lie algebra is di�eomorphic to a linear system on a homogeneous
space.
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One might expect that under the rank condition a linear system on a
compact homogeneous space is as well controllable. This statement is unfor-
tunately not true, as shown by the counterexamples of Section 4.

The purpose of this paper is to state su�cient controllability conditions
for such systems, and thanks to the equivalence theorem, for systems whose
Lie algebra L is �nite dimensional. It makes use of the Poisson stability of
invariant vector �elds, and in certain cases of a�ne vector �elds, on compact
homogeneous spaces as soon as an invariant measure exists. The main result
is as follows:

On a compact manifold M consider a system that generates a �nite di-
mensional Lie algebra L, and satis�es the rank condition. It is controllable,
hence �nite time controllable, in the following cases:

• The algebra L is solvable.

• The algebra L is compact.

• Its zero-time ideal L0 is compact and its rank is maximum.

• The algebra L is semisimple and its dimension is equal to the one of
M .

• Its zero-time ideal L0 is semisimple, its dimension and its rank are
equal to the dimension of M .

It is moreover exact time controllable if and only if the rank of L0 is maxi-
mum.

These su�cient conditions of controllability hold for general, that is non
control-a�ne, systems (Theorem 2 in Section 3). However they are for tech-
nical reasons �rst proved for control-a�ne ones (Theorem 1 in Section 2).

In the two counterexamples provided in Section 4, the system algebra is
semisimple non compact. Thus the semisimplicity of L is not su�cient for
controllability, and additional conditions are required in that case.

Section 1 is devoted to some known de�nitions and facts from control
theory.
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1 Preliminaries

1.1 Lie algebras and rank condition

On a connected manifold M consider the system

(Ξ) ṗ = f(p, v)

where v belongs to a subset V of Rq, the mapping f is continuous on M ×V
and fv = f(., v) is for every v ∈ V a Ck vector �eld on M , with k ≥ 1.

The set {fv; v ∈ V } is denoted by Γ.
This family of vector �elds is said to be transitive if the orbit through

each point p of M is equal to M , that is if M is the only orbit of Γ.

Let V k(M) stand for the space of Ck vector �elds on M . It is not a Lie
algebra whenever k < +∞. But it may happen that all the Lie brackets
of elements of Γ of all �nite lengths exist and are also Ck. In that case the
subspace of V k(M) spanned by these Lie brackets is a Lie algebra denoted
by L(Γ) and we will say that the family Γ generates a Lie algebra.

Let us assume that Γ generates a Lie algebra, and let us consider the rank
of Γ at each point p ∈ M , that is the dimension of the subspace of TpM ,
the tangent space to M at p, spanned by the vectors γ(p), γ ∈ L(Γ). The
so-called rank condition asserts that the family Γ is transitive as soon as its
rank is maximum, hence equal to dimM , at each point.

More generally the family Γ is said to be Lie-determined if at each point
p ∈M , the rank of Γ at p is equal to the dimension of the orbit of Γ through
p (see for instance [11]).

We will denote by L0 the zero-time ideal of L, that is the ideal generated
by the di�erences fu − fv, u, v ∈ U .
L and L0 are related by the equality

L = Rf(., u) + L0

which holds for any u ∈ V .

1.2 Controllability

For x ∈ N and t ≥ 0, we denote by A(x, t) (resp. A(x,≤ t)) the set of points
of N that can be reached from x at time t (resp. in time less than or equal
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to t). The system is said to be

controllable if ∀x ∈ N A(x) =
⋃
t≥0A(x, t) = M

�nite time controllable if ∃T > 0 such that ∀x ∈ N A(x,≤ T ) = M
exact time controllable if ∃T > 0 such that ∀x ∈ N A(x, T ) = M

Let us recall the results of [8]:
The state space M is assumed to be compact. If System (Ξ) is controllable

then it is �nite time controllable.
In the case where the system is Lie determined, it is moreover exact time

controllable if and only if the zero-time ideal has full rank at one point.

1.3 The Lie saturate

Good references here are [5] and [11].
A vector �eld X, the �ow of which is denoted by (θt)t∈R, belongs to the

Lie saturate of Γ if it belongs to L and veri�es

∀p ∈M ∀t ≥ 0 θt(p) ∈ A(p),

where A(p) is the closure of the reachable set from the point p.

The property that will be used further is the following:
The vector �elds ±[X, Y ] belong to the Lie saturate of the system as soon

as this last contains ±X and ±Y .

1.4 The Equivalence Theorem

For more details the reader is refered to [7].
A vector �eld on a connected Lie group G is said to be linear if its �ow

is a one parameter group of automorphisms. To a linear vector �eld X one
associates the derivation D = −ad(X ) of the Lie algebra g of G. In the case
where this derivation is inner, that is D = −ad(X) for some right invariant
vector �eld X on G, the linear vector �eld splits into X = X + I∗X, where
I stands for the di�eomorphism g ∈ G 7−→ I(g) = g−1. Thus X is the sum
of the right invariant vector �eld X and the left invariant one I∗X.

An a�ne vector �eld F is obtained by adding a left invariant vector �eld
Z to a linear one X . It may be more suitable to see F as the sum of a linear
vector �eld and a right invariant one. This can be done by writing:

F = X + Z = X + Z + I∗Z − I∗Z = X̃ − I∗Z
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where X̃ = X + Z + I∗Z is linear.
Let H be a closed subgroup of G, and let F = X + Y , where Y is right

invariant, be an a�ne vector �eld. The projection of F onto the homogeneous
space G/H (manifold of left cosets of H) exists if and only if the subgroup
H is X -invariant. In that case it will be refered to as an a�ne vector �eld on
the homogeneous space G/H (see [7] for the characterization of such vector
�elds).

A linear system on a Lie group or a homogeneous space is a system

(L) ẋ = F (x) +
m∑
j=1

ujYj(x)

where F is an a�ne vector �eld and the Yj's are right invariant if the state
space is a Lie group, and projections of right invariant vector �elds if the
state space is a homogeneous space.

Let us consider the following system, de�ned on a connected (but not
compact in general) manifold M :

(Σ) ẋ = f(x) +
m∑
j=1

ujgj(x)

Equivalence Theorem [7]
We assume the family {f, g1, . . . , gm} to be transitive. Then System (Σ)

is di�eomorphic to a linear system on a Lie group or a homogeneous space if
and only if the vector �elds f, g1, . . . , gm are complete and generate a �nite
dimensional Lie algebra.

More accurately, let G (resp. G0) be the connected and simply connected
Lie group whose Lie algebra is L (resp. L0). Under the previous conditions
the rank of L0 is constant, equal to dim(M) or dim(M)− 1, and:

(i) if rank (L0) = dim(M), in particular if there exists one point p0 ∈ M
such that f(p0) = 0, then (Σ) is di�eomorphic to a linear system on a
homogeneous space G0/H of G0;

(ii) if rank (L0) = dim(M) − 1, then Σ is di�eomorphic to an invariant
system on a homogeneous space G/H of G.
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2 Controllability of control-a�ne systems

In this section the system under consideration is

(Σ) ṗ = f(p) +
m∑
j=1

ujgj(p)

where

• p belongs to a compact and connected manifold M ;

• the vector �elds f and g1, . . . , gm are Ck, k ≥ 1;

• the controls u1, . . . , um take their values in Rm;

• the admissible inputs are the piecewise constant ones. More generally
the forthcoming Theorem 1 remains true when the set of admissible
inputs is a subspace of L∞(R+,Rm) which contains the piecewise con-
stant ones.

The manifold M being compact, the vector �elds f, g1, . . . , gm are com-
plete.

In order to apply the equivalence Theorem they are moreover assumed
to generate a �nite dimensional Lie algebra L and to satisfy the rank con-
dition. According to this theorem, and with its notations, System (Σ) is
di�eomorphic to an invariant system on a homogeneous space G/H of G
if rank (L0) = dim(M) − 1 or rank (L0) = dim(M) but L0 = L, and
di�eomorphic to a linear system on a homogeneous space G0/H of G0 if
rank (L0) = dim(M) and L0 6= L.

In the second case M is as well di�eomorphic to a homogeneous space
G/H of G, and (Σ) equivalent to an invariant system on G/H. This remark
will be used when L and L0 will be solvable.

However the nature of the Lie algebras L and L0 of G and G0 are di�erent
in general, and it may be more worthwhile to consider L0 rather than L. It
will be the case when L0 will be semisimple or compact.

Notice that the system lifted on G from (Σ) cannot be controllable when-
ever L0 6= L. Indeed G is simply connected, and all the system vector �elds
are contained in a half space bounded by the Lie algebra L0 (Hypersurface
Principle, see [15]).
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System (Σ) is of course controllable as soon as the system lifted on G (or
on G0) is controllable (this includes the cases f = 0 and M di�eomorphic to
a compact Lie group).

In this paper the controllability of (Σ) will be proved by showing the
Poisson stability of the vector �eld f . The main result is the following:

Theorem 1 The vector �elds f, g1, . . . , gm are assumed to generate a �nite
dimensional Lie algebra L, and to satisfy the rank condition at every point
of M .

Then System (Σ) is controllable, hence �nite time controllable, in the
following cases:

1. The algebra L is solvable.

2. The algebra L is compact.

3. The algebra L0 is compact and its rank is maximum.

4. The algebra L is semisimple and its dimension is equal to the one of
M .

5. The algebra L0 is semisimple, its dimension and its rank are equal to
the dimension of M .

It is moreover exact time controllable if and only if the rank of L0 is maxi-
mum.

Proof. Controllability under one of the conditions 1-5 is proved in Sections
2.2, 2.3, 2.4. Let us investigate the �nite time and exact time controllability
properties. According to the results of [8], recalled in Section 1.2, System
(Σ) is �nite time controllable as soon as it is controllable, because of the
compactness of the state space. On account of the equivalence Theorem the
rank of the zero-time ideal L0 is constant and the system is Lie determined.
It is therefore exact time controllable if and only if the rank of L0 is equal
to the dimension of M .

�
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2.1 Invariant measures and Poisson stability

The idea to consider stability according to Poisson and one of its possible
causes, the invariance of a �nite measure, in order to prove controllability
goes back to [12].

Let f be a complete vector �eld, the �ow of which is denoted by (ϕt)t∈R, on
a connected manifold M . The point p ∈ M is said to be positively Poisson
stable (resp. negatively Poisson stable) (resp. Poisson stable) if for every
neighbourhood V of p and all T > 0 there exists t ≥ T such that ϕt(p) ∈ V
(resp. ϕ−t(p) ∈ V ) (resp. if it is positively and negatively stable).

The vector �eld f is said to be Poisson stable if the set of Poisson stable
points is dense in M .

A measure µ on M is said to be invariant under the action of the �ow of
f , or equivalently the vector �eld f is said to be measure preserving, if for
every measurable set A and all t ∈ R, µ(ϕt(A)) = µ(A).

Theorem A Let f be a complete vector �eld on a connected manifold M .
The �eld f is assumed to preserve a �nite Borel measure. Then the measure
of the set of non Poisson stable points of M is zero.

Proof. (See [14] for instance).

Whenever the measure of the nonempty open sets does not vanish, the
conclusion of Theorem A implies the Poisson stability of f .

Theorem B We assume that (Σ) satis�es the rank condition, and that the
vector �eld f is Poisson stable. Then the vector �eld −f belongs to the Lie
saturate of (Σ).

Proof. (See [5] for instance).

Let us assume the hypothesis of Theorem B to be satis�ed. Then the
vector �elds ±f and ±gj for j = 1, . . . ,m belong to the Lie saturate of
the system. But according to a theorem recalled in Section 1.3, the vector
�elds ±[X, Y ] belong to the Lie saturate of the system as soon as this last
contains ±X and ±Y . By an obvious induction the Lie saturate of (Σ) is
equal to L and for all p ∈M the closure of A(p) is equal to M . According to
another result to be found in [11], and under the rank condition, this implies
A(p) = M . The system is therefore controllable under the assumptions of
Theorem B.

It is henceforth of interest to answer the two following questions. Let G
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be a connected Lie group and let H be a closed subgroup of G such that the
quotient G/H is compact. A G-invariant, or invariant in short, measure on
G/H is a positive Radon measure preserved by the left action of G on G/H.

1. Does the Haar measure of G induce an invariant, �nite measure on
G/H? If such a measure exists, it is preserved by the invariant vector
�elds of G/H. The measure of the non empty open sets being positive
the invariant �elds are Poisson stable.

2. If the answer to the �rst question is positive, is the G-invariant measure
of G/H preserved by the a�ne vector �elds of G/H?

The answer to the �rst question is related to the modular function of the
group G. Let us recall its de�nition: let µl and µr be respectively the left
and right Haar measures on G. They are de�ned up to a positive constant
and verify

µr(dg) = ∆G(g)µl(dg)

where ∆G is a continuous morphism from G into the multiplicative group
R∗+, called modular function. This de�nition extends to locally compact
topological groups, and whenever G is a Lie group, we have

∀g ∈ G ∆G(g) = |det(Ad(g))|

where Ad(g) stands for the di�erential at the identity e of the mapping
x 7−→ gxg−1. The following result can be found for instance in [6] or [1].
The (left) Haar measures of G and H are respectively denoted by µG and
µH , and their modular functions by ∆G and ∆H .

Theorem C Let H be a closed subgroup of the Lie group G. There exists a
G-invariant measure on G/H if and only if

∀h ∈ H ∆G(h) = ∆H(h).

This measure, unique up to a positive constant and denoted by µG/H , is
de�ned by the following equality: for every compactly supported continuous
function θ on G,∫

G

θ(g)µG(dg) =

∫
G/H

(∫
H

θ(gh)µH(dh)

)
µG/H(d(gH)).

9



The second statement of Theorem C is related to the following lemma,
proved in [6] and which will be used in Section 2.3.

Lemma A Let Cc(G) (resp. Cc(G/H)) denote the set of compactly supported
continuous functions of G (resp. G/H). The mapping θ 7−→ P (θ) from
Cc(G) to Cc(G/H) de�ned by

P (θ)(gH) =

∫
H

θ(gh)µH(dh) (1)

is onto.

The group G is said to be unimodular if its modular function is constant,
equal to 1. Theorem C applies in particular, but not only, when the groups
G and H are unimodular. In the previously quoted references it is shown
that are unimodular:

• The groups whose adjoint group is compact, in particular the compact
and discrete groups;

• The semisimple groups;

• The connected nilpotent groups.

2.2 Proof of the solvable case

Let us �rst remark that the Lie algebra L is solvable if and only if its sub-
algebra L0 is. Indeed a subalgebra of a solvable Lie algebra is solvable.
Conversely the equality L = Rf + L0 and the stability of L0 under ad(f)
imply that the derived algebra of L is contained in L0, and therefore that L
is solvable whenever L0 is.

The algebras L and L0 being assumed to be solvable the manifold M is
di�eomorphic to an homogeneous space G/H of G, and f is equivalent to an
invariant vector �eld. According to a theorem of Mostow ([13]) a compact
solv manifold, that is a compact homogeneous space of a solvable Lie group,
has a G-invariant measure. This measure is invariant under the action of G
on G/H, hence preserved by the �ow of f . According to Section 2.1 the �eld
f is Poisson stable, and the system controllable.
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2.3 Proof of the semisimple case

Whenever the system algebra is semisimple one cannot expect to obtain
results as general as in the solvable case. The main obstruction is that the
quotient G/H of a semisimple Lie group does not always have an invariant
measure, even if it is compact. In Section 4 two examples of invariant systems
on a compact homogeneous space of a semisimple Lie group that are not
controllable, although they satisfy the rank condition, are exhibited.

However semisimple and discrete groups being unimodular, the homoge-
neous space of a semisimple group by a discrete subgroup H has an invariant
measure. The discrete subgroup H is said to be a uniform lattice if the quo-
tient G/H is compact. Borel showed in [3] that every semisimple connected
group possesses a uniform lattice. This notion is therefore relevant for our
purpose.

The algebras L and L0 cannot be both semisimple without being equal:
otherwise L0 is a codimension one ideal of L, which is impossible whenever
L is semisimple. Therefore we have to distinguish two possibilities.

1. L is semisimple and its dimension is equal to the one of M . In that
case M is di�eomorphic to a quotient of G by a uniform lattice H, and
(Σ) to an invariant system on G/H. As G/H has an invariant measure,
this invariant system is controllable, and even exact time controllable
since L0 = L.

2. L0 ( 6= L) is semisimple, its dimension and its rank are equal to the
dimension of M . In that case M is di�eomorphic to the quotient of
G0 by a uniform lattice H, and (Σ) is equivalent to a linear system on
G0/H. As L 6= L0 the system cannot be reduced to an invariant one,
and we have to prove that the invariant measure of G0/H is preserved
by the a�ne vector �elds.

Proposition 1 Let F be an a�ne vector �eld on a semisimple connected
Lie group G0, and F = X + Y its decomposition into a linear vector �eld X
and a right invariant one Y . The projection of X onto G0/H, where H is a
uniform lattice of G0, is assumed to exist.

Then the projection of F onto G0/H preserves the invariant measure of
G0/H.
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Proof. As G0 is semisimple there exists a right invariant vector �eld X such
that X = X + I∗X. The �eld F is therefore equal to W + I∗X, where
W = X + Y is right invariant and I∗X left invariant. Its �ow, denoted by
(ηt)t∈R, is thus

(g, t) 7−→ exp(tW )g exp(−tX).

The �ow of its projection onto G0/H is denoted by (ηt)t∈R, and with obvious
notations these two �ows are related by

∀g ∈ G0 ∀t ∈ R ηt(gH) = ηt(g)H.

Let a be a compactly supported continuous function on G0 and, with the
notations of Lemma A, let us �rst show that

P (a ◦ ηt) = P (a) ◦ ηt (2)

The subgroup H being discrete it is included in the set of �xed points of X ,
that is ∀t ∈ R and ∀h ∈ H, exp(tX)h exp(−tX) = h (See Section 1.4). This
allows to state, with A = P (a) ∈ Cc(G/H):∫

H

a ◦ ηt(gh)µH(dh) =

∫
H

a(exp(tW )gh exp(−tX))µH(dh)

=

∫
H

a(exp(tW )g exp(−tX)h)µH(dh)

=

∫
H

a(ηt(g)h)µH(dh)

= A(ηt(g)H) = A ◦ ηt(gH).

The measure µG0 being unimodular, hence left and right invariant, we obtain∫
G0/H

A ◦ ηt(gH)µG0/H(d(gH)) =

∫
G0

a ◦ ηt(g)µG0(dg)

=

∫
G0

a(exp(tW )g exp(−tX))µG0(dg)

=

∫
G0

a(g)µG0(dg)

=
∫
G0/H

A(gH)µG0/H(d(gH)).
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This shows that the measure µG0/H is preserved by the projection of F .
�

2.4 Proof of the compact case

Let G be a connected and simply connected Lie group whose Lie algebra
g is compact. The adjoint group AdG(G) being compact the group G is
unimodular.

Let us show that every subgroup H of G, closed but not necessarily
connected, is also unimodular. Let W be a compact neighbourhood of the
identity in G such that AdG(W ) = AdG(G) (the existence of W is proved in
[1] page 108). The intersectionH∩W being compact, AdG(H) = AdG(H∩W )
is a compact subgroup of Gl(g). By the choice of a suitable basis of g it is
easy to see that the group AdH(H), that is the set of restrictions to the Lie
algebra h of H of the elements of AdG(H), is also compact.

This shows that the group H is unimodular, and that the quotient G/H
has an invariant measure, �nite if the quotient is compact.

As previously, two cases are considered.

1. The algebra L is compact. In that case M is di�eomorphic to the
quotient of G by a closed subgroup H, and (Σ) is equivalent to an
invariant system on G/H. Since G/H possesses an invariant measure,
this last is controllable.

2. The algebra L0 is compact, and its rank is equal to the dimension of
M . In that case M is di�eomorphic to the quotient of G0 by a closed
subgroup H, (Σ) is equivalent to a linear system on G0/H, and we have
to show that the invariant measure of G0/H is preserved by the a�ne
vector �elds.

Proposition 2 Let H be a closed subgroup of the connected Lie group G
whose Lie algebra is compact. Let N be the normalizer of H in G, and for
x ∈ N let ρx be the di�eomorphism of G/H de�ned by ρx(gH) = gxH. The
invariant measure of G/H is preserved by ρx for all x ∈ N .

Proof. We denote by Cc(G/H) the set of compactly supported continuous
functions of G/H. For A ∈ Cc(G/H) we set

I(A) =

∫
G/H

A(gH)µG/H(d(gH)) and Jx(A) = I(A ◦ ρx).
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For y ∈ G the di�eomorphism λy of G/H is de�ned by λy(gH) = ygH. It
is clear that λy ◦ ρx = ρx ◦ λy for all x ∈ N and all y ∈ G. It follows that
∀A ∈ Cc(G/H), ∀y ∈ G

Jx(A ◦ λy) = I(A ◦ λy ◦ ρx) = I(A ◦ ρx ◦ λy) = I(A ◦ ρx) = Jx(A).

This shows that Jx is a G-invariant, positive, Radon measure, hence equal
to δ(x)I for some positive constant δ(x).

We have to show that this constant is equal to 1 for all x ∈ N .
The measure µG/H is de�ned by a density of G/H also denoted by µG/H

(Cf Appendix 5). Then, denoting Γx = λx ◦ ρx−1 , we have

Jx(A) = I(A ◦ Γx−1) =

∫
G/H

A ◦ Γx−1 µG/H =

∫
G/H

A (Γx)
∗µG/H

hence δ(x)µG/H = (Γx)
∗µG/H . As Γx(H) = H we obtain δ(x) = |det(THΓx)|.

Let γx stand for the di�eomorphism g 7−→ xgx−1, and π for the projection
of G onto G/H. For x ∈ N we have π ◦ γx = Γx ◦ π hence

det(THΓx) =
det(AdG(x))

det(AdG(x)|H)
=

1

det(AdG(x)|H)
,

the last equality being due to the fact that G is unimodular. Now x ∈
N 7−→ det(AdG(x)|H) is a continuous morphism from N into R∗. Moreover
the subgroup N is closed in G because it is the normalizer of the closed
subgroup H. The group AdG(N) is therefore compact and det(AdG(N)|H)
is contained in {−1, 1}.

�

Corollary 1 Let G0/H be the compact quotient of a connected Lie group G0

whose Lie algebra is compact, by a closed subgroup H. Then the invariant
measure of G0/H is preserved by every a�ne vector �eld f of G0/H.

Proof. Let F be an a�ne vector �eld of G0, the projection of which onto
G0/H is equal to f .

The Lie algebra g of G0 is equal to z(g)⊕ [g, g], where z(g) is the center
of g and [g, g] semisimple compact, and the derivation associated to F splits
into A⊕ ad(X1) where A is an endomorphism of z(g) and X1 ∈ [g, g]. In the
same way G0 is equal to the direct product Rn×G1 where G1 is a semisimple
compact Lie group. The quotient G0/H being compact, the subgroup Rn∩H
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is up to an isomorphism equal to Zn. But this set is etA invariant for t ∈ R,
and A vanishes.

The derivation associated to F is therefore inner, and F splits into F =
X + Y where Y is a right invariant vector �eld and X = X + I∗X, with X
right invariant, is linear. As well as in the semisimple case the vector �eld
F is eventually equal to W + I∗X where W = X + Y is right invariant and
I∗X is left invariant. The �ow of its projection onto G/H is equal to

(gH, t) 7−→ exp(tW )g exp(−tX)H.

Because of the existence of this projection, the subgroup H is invariant under
the �ow (g, t) 7−→ exp(tX)g exp(−tX) of X (see Section 1.4). Consequently
exp(tX) belongs to the normalizer of H for all t ∈ R, and according to
Proposition 2, f preserves the measure µG/H .

�

3 Extension to non control-a�ne systems

On the compact and connected manifold M let us now consider the system

(Ξ) ṗ = f(p, v)

where v belongs to a subset V of Rq, the mapping f is continuous on M ×V
and fv = f(., v) is for every v ∈ V a Ck vector �eld on M , with k ≥ 1.

The set Γ = {fv; v ∈ V } of vector �elds of the system is assumed to
generate a �nite dimensional Lie algebra L and to satisfy the rank condition.

We denote by Γ0 = {fv1−fv2 ; v1, v2 ∈ V } the set of di�erences of elements
of Γ and as usual by L0 the ideal of L generated by Γ0.

Let us choose f0 ∈ Γ, arbitrarily if the vector spaces V ect(Γ) and V ect(Γ0)
respectively generated by Γ and Γ0 are distinct, and otherwise equal to 0.
Then let us also choose vector �elds fv1 , . . . , fvm in Γ such that the �elds
g1, . . . , gm, where gi = fvi

− f0, be a basis of V ect(Γ0). For all v ∈ V there
exist real numbers u1, . . . , um such that fv writes

fv = f0 +
m∑
j=1

ujgj.

Consider the control a�ne system

(Σ) ṗ = f0(p) +
m∑
j=1

ujgj(p) (u1, . . . , um) ∈ Rm.
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Its Lie algebra is equal to L, the ideal generated by g1, . . . , gm is equal to L0,
and (Σ) satis�es the rank condition.

If L or L0 satis�es one of the conditions of Theorem 1 then all the vector
�elds of (Σ), hence all the vector �elds of (Ξ), are Poisson stable. Thus the
Lie saturate of (Ξ) contains ±fv for all v ∈ V . It is therefore equal to L and
(Ξ) is controllable. We have proved:

Theorem 2 The vector �elds fv, v ∈ V , are assumed to generate a �nite
dimensional Lie algebra L, and to satisfy the rank condition at every point
of M .

Then System (Ξ) is controllable, hence �nite time controllable, in the
following cases:

1. The algebra L is solvable.

2. The algebra L is compact.

3. The algebra L0 is compact and its rank is maximum.

4. The algebra L is semisimple and its dimension is equal to the one of
M .

5. The algebra L0 is semisimple, its dimension and its rank are equal to
the dimension of M .

It is moreover exact time controllable if and only if the rank of L0 is maxi-
mum.

Important Remark. Theorem 1 was stated for unbounded, piecewise con-
stant inputs. On account of Theorem 2 it remains true if the set of admissible
inputs is restricted to bounded, or bang-bang, piecewise constant ones.

4 Counterexamples

4.1 Counterexample on the sphere S1

The one dimensional sphere S1 is identi�ed with R/2πZ. The vector �elds
C, S and T are the projections onto S1 of the vector �elds cos t d

dt
, sin t d

dt
and

d
dt
of the real line. The Lie brackets of these vector �elds are:

[C, S] = T [C, T ] = S [T, S] = C
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hence (C, T, S) is the basis of a 3-dimensional Lie algebra g.
We consider on S1 the system

(Σ) ṗ = C(p) + uS(p)

where u ∈ R. The �eld S vanishes at 0 and π, and at these two points the �eld
C points toward the interior of the interval ]0, π[ (or to the same halfspace
in R2). This shows that (Σ) cannot be controllable though its Lie algebra L
is equal to g (as well as the ideal L0) and satis�es the rank condition.

We can notice that g is isomorphic to sl2. Indeed that Lie algebra is
generated by the matrices

H =

(
1 0
0 −1

)
E =

(
0 1
0 0

)
F =

(
0 0
1 0

)
which satisfy

[H,E] = 2E [H,F ] = −2F [E,F ] = H.

The isomorphism is de�ned by

2C ∼ H S + T ∼ E S − T ∼ F.

At the point p = π
2
the �eld C vanishes and the �elds S and T take the

same value. The sphere S1 can therefore be viewed as the quotient of SL2

by a subgroup K whose Lie algebra is generated by H et F . The connected
group generated by these matrices is

K̃ =

{(
a 0
b a−1

)
; (a, b) ∈ R∗+ × R

}
.

It is not unimodular (this can be veri�ed directly). Otherwise the quotient
of SL2 by K̃ would have a SL2-invariant measure, such a measure would also
exist on S1 and the system would be controllable.

Finally notice that the algebra L is semisimple non compact, and that
the �eld C is not Poisson stable.

4.2 Counterexample on the sphere S2

If the sphere S1 is embedded into R2:

S1 = {(x, y) ∈ R2; x2 + y2 = 1},
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then the �eld C (resp. S) is at the point (x, y) ∈ S1 the orthogonal projection
to the tangent space of S1 at (x, y) of the constant �eld ∂

∂y
(resp. − ∂

∂x
) of

R2. The �eld T is equal to −y ∂
∂x

+ x ∂
∂y
.

We can build in the same way an example on the sphere S2. Let Tx, Ty
and Tz be the orthogonal projections onto S2 of the constant �elds ∂

∂x
, ∂
∂y

and ∂
∂z

of R3, and Rx, Ry, Rz be the restrictions to S2 of the rotations about
the axis Ox, Oy and Oz.

In the natural coodinates of R3 these �elds write

Tx =

1− x2

−xy
−xz

 Ty =

 −yx1− y2

−yz

 Tz =

 −zx−zy
1− z2



Rx =

 0
−z
y

 Ry =

 z
0
−x

 Rz =

−yx
0


Their Lie brackets are

[Tx, Ty] = [Ry, Rx] = Rz

[Ty, Tz] = [Rz, Ry] = Rx

[Tz, Tx] = [Rx, Rz] = Ry

[Tx, Ry] = [Rx, Ty] = −Tz
[Ty, Rz] = [Ry, Tz] = −Tx
[Tz, Rx] = [Rz, Tx] = −Ty

[Tx, Rx] = [Ty, Ry] = [Tz, Rz] = 0

and therefore
g = Vect{Tx, Ty, Tz, Rx, Ry, Rz}

is a 6-dimensional Lie algebra. Let us consider the system

(Σ) ṗ = Tz(p) + uTx(p) + vRz(p),

where p ∈ S2 and u, v ∈ R.
Its Lie algebra L and its zero-time ideal L0 are both equal to g, and

the rank condition is satis�ed. The system is therefore di�eomorphic to a
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linear system on a homogeneous space. Yet it is not controllable. Indeed
the equator {z = 0} is invariant for Tx and Rz, and on this set the �eld
Tz points toward the north. This shows that the reachable set of a point
p0 = (x, y, 0), with x2 + y2 = 1, belonging to the equator is contained in the
northern hemisphere. More accurately it is easy to see that the reachable
sets are

A(p) = S2 if p belongs to the southern hemisphere
A(p) = {p} ∪ {the northern hemisphere} if p belongs to the equator
A(p) = {the northern hemisphere} if p belongs to the northern hemisphere

Finally the Lie algebra L is isomorphic to the real Lie algebra so(3,C).
Let us �rst consider the algebra so(3,R). It is generated by the matrices

E1 =

0 0 0
0 0 −1
0 1 0

 E2 =

 0 0 1
0 0 0
−1 0 0

 E3 =

0 −1 0
1 0 0
0 0 0


which satisfy (for the bracket [A,B] = AB −BA):

[E1, E2] = E3 [E2, E3] = E1 [E3, E1] = E2.

Consequently so(3,C) is a 6-dimensional real Lie algebra, a basis of which is

E1 E2 E3 iE1 iE2 iE3.

The isomorphism between L and so(3,C) is obtained by the identi�cations

Rx ∼ −E1 Ry ∼ −E2 Rz ∼ −E3 Tx ∼ −iE1 Ty ∼ −iE2 Tz ∼ −iE3

As in the previous counterexample the algebra L is semisimple non com-
pact, and the vector �eld Tz is not Poisson stable.

5 Appendix. Density on a manifold

A good general reference here is [2].
Let E be a n-dimensional real vector space. A density on E is de�ned as

the absolute value δ = |α| of a non-vanishing n-linear form α.
Let us denote by Dens(E) the set of densities of E. If δ0 is one of them,

then Dens(E)= R∗+ δ0. The canonical density of Rn is denoted by δn =
|dx1 ∧ · · · ∧ dxn|.
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An isomorphism f from F onto E determines a density on F by f ∗δ =
|f ∗α| (with δ = |α|). In particular whenever E = F we have

f ∗δ = |det(f)| δ.

Let M be a manifold. The �ber bundle ∪x∈MDens(TxM) is denoted by
Dens(M), and a density on M is a section of Dens(M): it is locally the
absolute value of a form volume.

A continuous density δ on M determines canonically a positive Radon
measure, also denoted by δ, in the following way: let (U,ϕ) be a local chart
ofM and let f be a compactly supported continuous function. If the compact
support of f is included in U , then

δ(f) =

∫
M

f δ =

∫
ϕ(U)

(f ◦ ϕ−1)(x)a(x) dx1 . . . dxn

where (ϕ−1)∗δ = aδn. The extension to Cc(M) is standard.
Let Φ be a di�eomorphism from the manifold N onto M . Then for

every compactly supported continuous function f onM the following equality
holds: ∫

N

(f ◦ Φ)Φ∗δ =

∫
M

f δ.
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