Essential self-adjointness for combinatorial Schrödinger operators III- Magnetic fields

Abstract : We define the magnetic Schrödinger on an infinite graph by the data of a magnetic field, some weights on vertices and some weights on edges . We discuss essential self-adjointness of this operator for graphs of bounded degree. The main result is a discrete version of a result of two authors of the present paper.
Complete list of metadatas

Cited literature [11 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00541062
Contributor : Nabila Torki-Hamza <>
Submitted on : Monday, November 29, 2010 - 5:06:56 PM
Last modification on : Thursday, March 7, 2019 - 11:34:08 AM
Long-term archiving on : Friday, December 2, 2016 - 6:40:14 PM

Files

ESA-Magnet-29-11-2010.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00541062, version 1
  • ARXIV : 1011.6492

Collections

Citation

Yves Colin de Verdière, Nabila Torki-Hamza, Francoise Truc. Essential self-adjointness for combinatorial Schrödinger operators III- Magnetic fields. Annales de la Faculté des Sciences de Toulouse. Mathématiques., Université Paul Sabatier _ Cellule Mathdoc 2011, 20 (3), pp.597-609. ⟨hal-00541062⟩

Share

Metrics

Record views

337

Files downloads

226