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Chapter 1

An Introduction to Finite Automata and their

Connection to Logic

Howard Straubing∗

Computer Science Department, Boston College,

Chestnut Hill, Massachusetts, USA

Pascal Weil†

LaBRI, Université de Bordeaux and CNRS, Bordeaux, France

This introductory chapter is a tutorial on finite automata. We present the stan-
dard material on determinization and minimization, as well as an account of the
equivalence of finite automata and monadic second-order logic. We conclude with
an introduction to the syntactic monoid, and as an application give a proof of the
equivalence of first-order definability and aperiodicity.

1.1. Introduction

1.1.1. Motivation

The word automaton (plural: automata) was originally used to refer to devices

like clocks and watches, as well as mechanical marvels built to resemble moving

humans and animals, whose internal mechanisms are hidden and which thus appear

to operate spontaneously. In theoretical computer science, the finite automaton is

among the simplest models of computation: A device that can be in one of finitely

many states, and that receives a discrete sequence of inputs from the outside world,

changing its state accordingly. This is in marked contrast to more general and

powerful models of computation, such as Turing machines, in which the set of

global states of the device—the so-called instantaneous descriptions—is infinite.

A finite automaton is more akin to the control unit of the Turing machine (or,

for that matter, the control unit of a modern computer processor), in which the

present state of the unit and the input symbol under the reading head determine

the next state of the unit, as well as signals to move the reading head left or right

and to write a symbol on the machine’s tape. The crucial distinction is that while

the Turing machine can record and consult its entire computation history, all the
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information that a finite automaton can use about the sequence of inputs it has

seen is represented in its current state.

But as rudimentary as this computational model may appear, it has a rich

theory, and many applications. In this introductory chapter, we will present the

core theory: that of a finite automaton reading a finite word, that is, a finite string of

inputs, and using the resulting state to decide whether to accept or reject the word.

The central question motivating our presentation is to determine what properties

of words can be decided by finite automata. Subsequent chapters will present both

generalizations of the basic model (to devices that read infinite words, labeled trees,

etc.) and to applications. An important theme in this chapter, as well as throughout

the volume, is the close connection between automata and formal logic.

1.1.2. Plan of the chapter

In Section 1.2, we introduce finite automata as devices for recognizing formal lan-

guages, and show the equivalence of several variants of the basic model, most no-

tably the equivalence of deterministic and nondeterministic automata. Section 1.3

describes Büchi’s sequential calculus, the framework in predicate logic for describ-

ing properties of words that are recognizable by finite automata. In Section 1.4

we prove what might well be described as the two fundamental theorems of finite

automata: that the languages recognized by finite automata are exactly those de-

finable by sentences of the sequential calculus, and also exactly those definable by

rational expressions (also called regular expressions). Section 1.5 presents methods

that can be used to show certain languages cannot be recognized by finite automata.

The last sections, 1.6 and 1.7, have a more algebraic flavor: we introduce both the

minimal automaton and the syntactic monoid of a language, and prove the impor-

tant McNaughton-Schützenberger theorem describing the languages definable in the

first-order fragment of the sequential calculus.

1.1.3. Notation

Throughout this chapter, A denotes a finite alphabet , that is, a finite non-empty set.

Elements of A are called letters , and a finite sequence of letters is called a word . We

denote words simply by concatenating the letters, so, for example, if A = {a, b, c},

then aabacba is a word over A. The empty sequence is considered a word, and we

use ε to denote this sequence. The set of all words over A is denoted A∗, and the

set of all nonempty words is denoted A+. The length of the word w, that is, the

number of letters in w, is denoted |w|.

If u, v ∈ A∗ then we can form a new word uv by concatenating the two se-

quences. Concatenation of words is obviously an associative and (unless A has a

single element) noncommutative operation on A∗. We have

|uv| = |u|+ |v|, and

u ε = ε u = u.
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(Other texts frequently use Λ or 1 to denote the empty word. The latter choice is

justified by the second equation above.)

A subset of A∗ is called a language over A.

1.1.4. Historical note and references

This chapter contains a modern presentation of material that goes back more than

fifty years. The reader can find other accounts in classic papers and texts: The

equivalence of finite automata and rational expressions given in Section 1.4 was

first described by Kleene in [9]. The connection with monadic second-order logic

was found independently by Trakhtenbrot [24] and Büchi [1].

Nondeterministic automata were introduced by Rabin and Scott [17], who

showed their equivalence to deterministic automata. Minimization of finite-state

devices (framed in the language of switching circuits built from relays) is due to

Huffman [8]. The simple congruential account of minimization that we give origi-

nates with Myhill [13] and Nerode [14].

The equivalence of aperiodicity of the syntactic monoid with star-freeness is due

to Schützenberger [19], and the connection with first-order logic is fromMcNaughton

and Papert [11]. Our account of these results relies heavily on an argument given

in Wilke [23].

Rational expressions, determinization and minimization have become part of the

basic course of study in theoretical computer science, and as such are described in a

number of undergraduate textbooks. Hopcroft and Ullman [7], Lewis and Papadim-

itriou [10] and the more recent Sipser [20] are notable examples. A more technical

and algebraically-oriented account is given in the monograph by Eilenberg [4, 5].

An algebraic view of automata is developed by Sakarovitch [18]. Detailed accounts

of the connection between automata, logic and algebra can be found in Straub-

ing [21] and Thomas [22]. The state of the art, especially concerning the algebraic

classification of automata, will appear in the forthcoming handbook [16].

1.2. Automata and rational expressions

1.2.1. Operations on languages

We describe here a collection of basic operations on languages, which will be building

blocks in the characterization of the expressive power of automata.

Since languages over A are subsets of A∗, we may of course consider the boolean

operations: union, intersection and complement. The product operation on words

can be naturally extended to languages: if K and L are languages over A, we define

their concatenation product KL to be the set of all products of a word in K followed

by a word in L:

KL = {uv | u ∈ K and v ∈ L}.
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We also use the power notation for languages: if n > 0, Ln is the product LL · · ·L

of n copies of L. We let L0 = {ε}. Note that if n > 1, Ln differs from the set of

n-th powers of the elements of L. The iteration (or Kleene star) of a language L is

the language L∗ =
⋃

n≥0 L
n.

Finally, we introduce a simple rewriting operation, based on the use of mor-

phisms. If A and B are alphabets, a morphism from A∗ to B∗ is a mapping

ϕ : A∗ → B∗ such that

(1) ϕ(ε) = ε,

(2) for all u, v ∈ A∗, ϕ(uv) = ϕ(u)ϕ(v).

To specify such a morphism, it suffices to give the images of the letters of A.

Then the image of a word u ∈ A∗, say u = a1 · · · an, is obtained by taking

the concatenation of the images of the letters, ϕ(u) = ϕ(a1) · · ·ϕ(an). That is,

ϕ(a1 · · ·an) is obtained from a1 · · ·an by substituting for each letter ai the word

ϕ(ai). This operation naturally extends from words to languages: if L ⊆ A∗, then

ϕ(L) = {ϕ(u) | u ∈ L}.

The consideration of these operations leads to the classical definition of rational

languages (also called regular languages). The operations of union, concatenation

and iteration are called the rational operations . A language over alphabet A is called

rational if it can be obtained from the letters of A by applying (a finite number of)

rational operations.

More formally, the class of rational languages over the alphabet A, denoted

RatA∗, is the least class of languages such that

(1) the languages ∅ and {a} are rational for each letter a ∈ A;

(2) if K and L are rational languages, then K ∪ L, KL and L∗ are also rational.

Example 1.1. The language
(

(

a∗(ab)∗A∗ ∩A∗(ba)∗
)2
)∗

is rational. (Note that in

order to lighten the notation, we write a, b, etc., instead of {a}, {b}.)

The language {ε}, containing just the empty word, is rational. Indeed, it is

equal to ∅∗.

Any finite language (that is, containing only finitely many words) is rational.

Let a, b ∈ A be distinct letters. It is instructive to show that the following

languages are rational: (a) the set of all words which do not contain two consecutive

a; (b) the set of all words which contain the factor ab but not the factor ba.

We also consider the extended rational operations : these are the rational op-

erations, and the operations of intersection, complement and morphic image. A

language is said to be extended rational if it can be obtained from the letters of A

by applying (a finite number of) extended rational operations. The class of extended

rational languages over A is written X-RatA∗.

Of course, all rational languages are extended rational. The definition of ex-

tended rational languages offers more expressive possibilities but as we will see,



September 21, 2011 16:14 World Scientific Review Volume - 9.75in x 6.5in chap1

An Introduction to Finite Automata 7

q0

q0.05

q0.1 q0.15

q0.2

q0.25f

t

w

w

t
f

f

t

w

t

w

f

w

t

f

Fig. 1.1. The automaton of a (simplified) coffee machine

they are not properly more expressive than rational languages.

1.2.2. Automata

Let us start with a couple of examples.

Example 1.2. A coffee machine delivers a cup of coffee for e.25. It accepts only

coins of e.20, e.10 and e.05. While determining whether it has received a sufficient

sum, the machine is in one of six states, q0, q0.05, q0.1, q0.15, q0.2 and q0.25. The

names of the states correspond to the sum already received. The machine changes

state after a new coin is inserted, and the new state it assumes is a function of

the value of the new coin inserted and of the sum already received. The latter

information is encoded in the current state of the machine.

Here, the input word is the sequence of coins inserted, and the alphabet consists

of three letters, w, t and f, standing respectively for twenty cents, ten cents and

five cents. The machine is represented in Figure 1.1.

The incoming arrow indicates the initial state of the machine (q0), and the

outgoing arrow indicates the only accepting state (q0.25), that is, the state in which

the machine will indeed prepare a cup of coffee for you. Notice that the machine

does not return change, but that it will accept sums up to e.40.

Example 1.3. Our second example (Figure 1.2) reads an integer, given by its

binary expansion and read from right to left, that is, starting with the bit of least

weight. Upon reading this word on alphabet {0, 1}, the automaton decides whether

the given integer is divisible by 3 or not.

For instance, consider the integer 19, in binary expansion 10011: our input

word is 11001. It is read letter by letter, starting from the initial state (the state

indicated by an incoming arrow, state r0). After each new letter is read, we follow

the corresponding edge starting at the current state. Thus, starting in state r0,

we visit successively the states r′1, r0, r
′
0, r0 again, and finally r′1. This state is

not accepting (it is not marked with an outgoing edge), so the word 11001 is not
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Fig. 1.2. An automaton to compute mod 3 remainders

accepted by the automaton. And indeed, 19 is not divisible by 3.

In contrast, 93 is divisible by 3, which is confirmed by running its binary expan-

sion, namely 1011101, read from right to left, through the automaton: starting in

state r0, we end in state r′0.

The reader will quickly see that this automaton is constructed in such a way

that, if n is an integer and wn is the binary expansion of n, then the state reached

when reading wn from right to left, starting in state r0, is rk (resp. r′k) if n is

congruent to k (mod 3) and wn has even (resp. odd) length.

We now turn to a formal definition. A (finite state) automaton on alphabet A

is a 4-tuple A = (Q, T, I, F ) where Q is a finite set, called the set of states , T is a

subset of Q × A × Q, called the set of transitions , and I and F are subsets of Q,

called respectively the sets of initial states and final states. Final states are also

called accepting states.

For instance, the automaton of Example 1.2 uses a 3-letter alphabet, A =

{f, t, w}. Formally, it is the automaton A = (Q, T, I, F ) given by Q =

{q0, q0.05, q0.1, q0.15, q0.2, q0.25}, I = {q0}, F = {q0.25} and T is a 15-element subset

of Q×A×Q containing such triples as (q0, f, q0.05), (q0.1, t, q0.2) or (q0.2, w, q0.25).

As in our first examples, it is often convenient to represent an automaton A =

(Q, T, I, F ) by a labeled graph, whose vertices are the elements of Q (the states)

and whoses edges are of the form q
a

−→ q′ if (q, a, q′) is a transition, that is, if

(q, a, q′) ∈ T . The initial states are specified by an incoming arrow, and the final

states are specified by an outgoing edge.

From now on, we will most often specify our automata by their graphical

representations.

Example 1.4. Here, the alphabet is A = {a, b}. Figure 1.3 represents the automa-

ton A = (Q, T, I, F ) where Q = {1, 2, 3}, I = {1}, F = {3} and

T = {(1, a, 1), (1, b, 1), (1, a, 2), (2, b, 3), (3, a, 3), (3, b, 3)}.
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Fig. 1.3. An automaton accepting A∗abA∗
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Fig. 1.4. Another automaton accepting A∗abA∗

1.2.2.1. The language accepted by an automaton

A path in automaton A is a sequence of consecutive edges,

p = (q0, a1, q1)(q1, a2, q2) · · · (qn−1, an, qn),

also drawn as

p = q0
a1−→ q1

a2−→ q2 · · ·
an−→ qn.

Then we say that p is a path of length n from q0 to qn, labeled by the word u =

a1a2 · · · an. By convention, for each state q, there exists an empty path from q to q

labeled by the empty word.

For instance, in the automaton of Figure 1.3, the word a3ba labels exactly four

paths: from 1 to 1, from 1 to 2, from 1 to 3 and from 3 to 3.

A path p is successful if its initial state is in I and its final state is in F . A word

w is accepted (or recognized) by A if there exists a successful path in the automaton

with label w. And the language accepted (or recognized) by A is the set of labels of

successful paths in A. It is denoted by L(A). We say that A accepts (or recognizes)

L(A).

For instance, the language of the automaton of Figure 1.1 is finite, with exactly

27 words. The automaton of Figure 1.3 accepts the set of words in which at least one

occurrence of a is followed immediately by a b, namely A∗abA∗, where A = {a, b}.

Different automata may recognize the same language: if A and B are automata

such that L(A) = L(B), we say that A and B are equivalent .

Example 1.5. The language A∗abA∗, accepted by the automaton in Figure 1.3, is

also recognized by the automaton in Figure 1.4

A language L is said to be recognizable if it is recognized by an automaton.
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Fig. 1.5. Two automata accepting b∗a∗

1.2.2.2. Complete automata

An automaton A = (Q, T, I, F ) on alphabet A is said to be complete if, for each

state q ∈ Q and each letter a ∈ A, there exists at least one transition of the

form (q, a, q′): in graphical representation, this means that, for each letter of the

alphabet, there is an edge labeled by that letter starting from each state. Naturally,

this easily implies that, for each state q and each word w ∈ A∗, there exists at least

one path labeled w starting at q.

Every automaton can easily be turned into an equivalent complete automaton.

If A = (Q, T, I, F ) is not complete, the completion of A is the automaton Acomp =

(Q′, T ′, I, F ) given by Q′ = Q ∪ {z}, where z is a new state not in Q, and T ′ is

obtained by adding to T all triples (z, a, z) (a ∈ A) and all triples (q, a, z) (q ∈ Q,

a ∈ A) such that there is no element of the form (q, a, q′) in T .

If A is complete, we let Acomp = A. It is immediate that, in every case, Acomp

is complete and L(Acomp) = L(A).

Example 1.6. Let A = {a, b}. The automaton B in Figure 1.5, which accepts the

language b∗a∗, is evidently not complete. The automaton Bcomp is represented next

to it.

1.2.2.3. Trim automata

A complete automaton reads its entire input before deciding to accept or reject it:

whatever input it receives, there is a transition that can be followed. However, we

have seen that in the completion Acomp of a non-complete automatonA, state z does

not participate in any successful path: it is in a way a useless state. Trimming an

automaton removes such useless states; it is, in a sense, the opposite of completing

an automaton, and aims at producing a more concise device.

A state q of an automaton A is said to be accessible if there exists a path in

A starting from some initial state and ending at q. State q is co-accessible if there

exists a path in A starting from q and ending at some final state. Observe that a

state is both accessible and co-accessible if and only if it is visited by at least one

successful path.

The automaton A itself is trim if all its states are both accessible and co-

accessible: in a trim automaton, each state is useful, in the sense that it is used in

accepting some word of the language L(A).
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Of course, every automatonA is equivalent to a trim one, writtenAtrim, obtained

by restricting A to its accessible and co-accessible states and to the transitions

between them.

Interestingly, Atrim can be constructed efficiently, using breadth-first search.

One first computes the accessible states of A, by letting Q0 = I (the initial states

are certainly accessible) and by computing iteratively

Qn+1 = Qn ∪
⋃

q∈Qn,a∈A

{q′ ∈ Q | (q, a, q′) ∈ T }.

One verifies that the elements of Qn are the states that can be reached from an

initial state, reading a word of length at most n; and that if two consecutive sets Qn

and Qn+1 are equal, then Qn = Qm for all m ≥ n, and Qn is the set of accessible

states of A. In particular, the set of accessible states is computed in at most |Q|

steps.

A similar procedure, starting from the final states instead of the initial states,

and working in reverse, produces in at most |Q| steps the set of co-accessible states

of A. The automaton Atrim is then immediately constructed.

Remark 1.1. The construction of Atrim, or indeed, just of the set of accessible

states of A provides an efficient solution of the emptiness problem: given an au-

tomaton A, is the language L(A) empty? that is, does A accept at least one word?

Indeed, A recognizes the empty set if and only if no final state is accessible: in

order to decide the emptiness problem for automaton A, it suffices to construct the

set of accessible states of A and verify whether it contains a final state. This yields

an O(|Q|2|A|) algorithm.

1.2.2.4. Epsilon-automata

It is sometimes convenient to extend the notion of automata to the so-called ε-

automata: the difference from ordinary automata is that we also allow ε-labeled

transitions, of the form (p, ε, q) with p, q ∈ Q.

Proposition 1.1. Every ε-automaton is equivalent to an ordinary automaton.

Sketch of proof. Let A = (Q, T, I, F ) be an ε-automaton, and let R be the relation

on Q given by p R q if there exists a path from p to q consisting only of ε-labeled

transitions (that is: R is the reflexive transitive closure of the relation defined by

the ε-labeled transitions of A).

Let A′ be the (ordinary) automaton given by the tuple (Q, T ′, I ′, F ) with

T ′ =
{

(p, a, q) | (p, a, q′) ∈ T and q′ R q for some q′ ∈ Q
}

I ′ =
{

q | p R q for some p ∈ I
}

.

Then A′ is equivalent to A. ⊓⊔
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1.2.3. Deterministic automata

Example 1.7. Consider the automaton of Figure 1.3, say A, and the automaton B

of Figure 1.4. Both recognize the language, L = A∗abA∗, but there is an important,

qualitative difference beween them.

We have defined automata as nondeterministic computing devices: given a state

and an input letter, there may be several possible choices for the next state. Thus

an input word might be associated with many different computation paths, and the

word is accepted if one of these paths ends at an accepting state. In contrast, B

has the convenient property that each input word labels at most one computation

path.

These remarks are formalized in the following definition. An automaton A =

(Q, T, I, F ) is said to be deterministic if it has exactly one initial state, and if, for

each letter a and for all states q, q′, q′′,

(q, a, q′), (q, a, q′′) ∈ T =⇒ q′ = q′′.

Thus, of the automata in Figures 1.3 and 1.4, the second one is deterministic, and

the first is non-deterministic.

This definition imposes a certain condition of uniqueness on transitions, that is,

on paths of length 1. This property is then extended to longer paths by a simple

induction.

Proposition 1.2. Let A be a deterministic automaton and let w be a word.

(1) For each state q of A, there exists at most one path labeled w starting at q.

(2) If w ∈ L(A), then w labels exactly one successful path.

In particular, we can represent the set of transitions of a deterministic automaton

A = (Q, T, I, F ) by a transition function: the (possibly partial) function δ : Q×A→

Q which maps each pair (q, a) ∈ Q×A to the state q′ such that (q, a, q′) ∈ T (if it

exists). This function is then naturally extended to the set Q × A∗: if q ∈ Q and

w ∈ A∗, δ(q, w) is the state q′ such that there exists a path from q to q′ labeled

by w in A (if such a state exists). In the sequel, deterministic automata will be

specified as 4-tuples (Q, δ, i, F ) instead of the corresponding (Q, T, {i}, F ). We note

the following elementary characterization of δ.

Proposition 1.3. Let A = (Q, δ, i, F ) be a deterministic automaton. Then we have

δ(q, ε) = q;

δ(q, ua) =

{

δ(δ(q, u), a) if both δ(q, u) and δ(δ(q, u), a) exist,

undefined otherwise;

u ∈ L(A) if and only if δ(i, u) ∈ F .

for each state q, each word u ∈ A∗ and each letter a ∈ A.



September 21, 2011 16:14 World Scientific Review Volume - 9.75in x 6.5in chap1

An Introduction to Finite Automata 13

{1} {1, 2} {1, 3} {1, 2, 3}

∅ {2} {3} {2, 3}

b

a

a

b
a

b

b

a

a

b

a b

a

b

b

a

Fig. 1.6. The subset automaton of the automaton in Figure 1.3

Again, it turns out that every automaton is equivalent to a deterministic au-

tomaton. This deterministic automaton can be effectively constructed, although

the algorithm – the so-called subset construction – is more complicated than those

used to construct complete or trim automata.

Let A = (Q, T, I, F ) be an automaton. The subset transition function of A is

the function δ : P(Q)×A→ P(Q) defined, for each P ⊆ Q and each a ∈ A by

δ(P, a) = {q ∈ Q | ∃p ∈ P, (p, a, q) ∈ T }.

Thus, δ(P, a) is the set of states of A which can be reached by an a-labeled tran-

sition, starting from an element of P . The subset automaton of A is Asub =

(P(Q), δ, I, Fsub) where Fsub = {P ⊆ Q | P ∩ F 6= ∅}.

The automaton Asub is deterministic and complete by construction, and the

subset transition function of A is the transition function of Asub. Moreover, if A

has n states, then Asub has 2n states.

Example 1.8. The subset automaton of the non-deterministic automaton of Fig-

ure 1.3 is given in Figure 1.6. Notice that the states of the second row are not

accessible.

Proposition 1.4. The automata A and Asub are equivalent.

Sketch of proof. Let A = (Q, T, I, F ). One shows by induction on |w| that for all

P ⊆ Q and w ∈ A∗, δ(P,w) is the set of all states q ∈ Q such that w labels a path

in A starting at some state in P and ending at q.

Therefore, a word w is accepted by A if and only if at least one final state lies

in the set δ(I, w), if and only if δ(I, w) ∈ Fsub, if and only if w is accepted by Asub.

This concludes the proof. ⊓⊔

In general, the subset automaton is not trim (see Example 1.8) and we can find a

deterministic automaton smaller than Asub, which still recognizes the same language

as A, namely by trimming Asub. Observe that in the proof of Proposition 1.4, the
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only useful states of Asub are those of the form δ(I, w), that is, the accessible states

of Asub.

We define the determinized automaton of A to be Adet =
(

Asub)trim. This

automaton is equivalent to A.

Example 1.9. The determinized automaton of the non-deterministic automaton

of Figure 1.3 consists of the first row of states in Figure 1.6 (see Example 1.8).

An obstacle in the computation of Adet is the explosion in the number of states:

if A has n states, then Asub has 2n states. The determinized automaton Adet may

well have exponentially many states as well, but it sometimes has fewer. Therefore,

it makes sense to try and compute Adet directly, in time proportional to its actual

number of states, rather than first constructing the exponentially large automaton

Asub and then trimming it.

This can be done using the same ideas as in the construction of Atrim in Sec-

tion 1.2.2.3. One first constructs B, the accessible part of Asub, starting with the

initial state of Asub, namely I. Then for each constructed state P and each letter

a, we construct δ(P, a) and the transition (P, a, δ(P, a)). And we stop when no new

state arises this way.

The second step consists in finding the co-accessible part of B, using the method

in Section 1.2.2.3.

Example 1.10. Let A = {a, b}, let n ≥ 2, and let L = A∗aAn−2. Then L is

accepted by a non-deterministic automaton A with n states. However, any de-

terministic automaton accepting L must have at least 2n−1 states. To see this,

suppose that (Q, δ, i, F ) is such a deterministic automaton. Let u, v be distinct

words of length n − 1. Then one of the words (let us say u) contains an a in a

position in which v contains the letter b. Thus u = u′ax, v = v′by, where |x| = |y|.

Let w be any word of length n − 2 − |x|. Then uw ∈ L, vw /∈ L. It follows that

δ(i, u) 6= δ(i, v) and thus there are at least as many states as there are words of

length n − 1. This shows that the exponential blowup in the number of states in

the subset construction cannot in general be reduced.

1.3. Logic: Büchi’s sequential calculus

Let us start with an example.

Example 1.11. Recall that ∧ is the logical conjunction, which reads “AND”. And

∨ is the logical disjunction, which reads “OR”. We will consider formulas such as

∃x∃y (x < y) ∧Rax ∧Rby.

This formula has the following interpretation on a word u: there exist two natural

numbers x < y such that, in u, the letter in position x is an a and the letter in

position y is a b. Thus this formula specifies a language: the set of all words u in

which this formula holds, namely A∗aA∗bA∗.
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1.3.1. First-order formulas

Let us now formalize this point of view on languages.

1.3.1.1. Syntax

The formulas of Büchi’s sequential calculus use the usual logical symbols (∧, ∨, ¬

for the negation), the equality symbol =, the constant symbol true, the quantifiers

∃ and ∀, variable symbols (x, y, z, . . .) and parentheses. They also use specific, non-

logical symbols: binary relation symbols < and S, and unary relation symbols Ra

(one for each letter a ∈ A).

For convenience, we may assume that the variables are drawn from a fixed,

countable, set of variables.

The atomic formulas are the formulas of the form true, x = y, x < y, S(x, y),

and Rax, where x and y are variables and a ∈ A.

The first-order formulas are defined as follows:

• Atomic formulas are first-order formulas,

• If ϕ and ψ are first-order formulas, then (¬ϕ), (ϕ∧ψ) and (ϕ∨ψ) are first-order

formulas,

• If ϕ is a first-order formula and if x is a variable, then (∃x ϕ) and (∀x ϕ) are

first-order formulas.

Remark 1.2. As is usual in logic, we will limit the usage of parentheses in our

notation of formulas, to what is necessary for their proper parsing, writing for

instance ∀x Rax instead of (∀x (Rax)).

Certain variables appear after a quantifier (existential or universal): occurrences

of these variables within the scope of the quantifier are said to be bound . Other

occurrences are said to be free. A precise, recursive, definition of the set FV (ϕ) of

the free variables of a formula ϕ is as follows:

• If ϕ is atomic, then FV (ϕ) is the set of all variables occurring in ϕ,

• FV (¬ϕ) = FV (ϕ),

• FV (ϕ ∧ ψ) = FV (ϕ ∨ ψ) = FV (ϕ) ∪ FV (ψ),

• FV (∃x ϕ) = FV (∀x ϕ) = FV (ϕ) \ {x}.

A formula without free variables is called a sentence.

1.3.1.2. Interpretation of formulas

In Büchi’s sequential calculus, formulas are interpreted in words: each word u of

length n ≥ 0 determines a structure (which we abusively denote by u) with domain

Dom(u) = {0, . . . , n − 1} (Dom(u) = ∅ if u = ε). Dom(u) is viewed as the set of

positions in the word u (numbered from 0).
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The symbol < is interpreted in Dom(u) as the usual order (as in (2 < 4) and

¬(3 < 2)). The symbol S is interpreted as the successor symbol: if x, y ∈ Dom(u),

then S(x, y) if and only if y = x + 1. Finally, for each letter a ∈ A, the unary

relation symbol Ra is interpreted as the set of positions in u that carry an a (a

subset of Dom(u)).

Example 1.12. If u = abbaab, then Dom(u) = {0, 1, . . . , 5}, Ra = {0, 3, 4} and

Rb = {1, 2, 5}.

A valuation on u is a mapping ν from a set of variables into the domain Dom(u).

It will be useful to have a notation for small modifications of a valuation: if ν is

a valuation and d is an element of Dom(u), we let ν[x 7→ d] be the valuation ν′

defined by extending the domain of ν to include the variable x and setting

ν′(y) =

{

ν(y) if y 6= x,

d if y = x.

If ϕ is a formula, u ∈ A∗ and ν is a valuation on u whose domain includes the free

variables of ϕ, then we define u, ν |= ϕ (and say that the valuation ν satisfies ϕ in

u, or equivalently u, ν satisfies ϕ) as follows:

• u, ν |= (x = y) (resp. (x < y), S(x, y), Rax) if and only if ν(x) = ν(y) (resp.

ν(x) < ν(y), S(ν(x), ν(y)), Raν(x)) in Dom(u);

• u, ν |= ¬ϕ if and only if it is not true that u, ν |= ϕ;

• u, ν |= (ϕ∨ψ) (resp. (ϕ∧ψ)) if and only if at least one (resp. both) of u, ν |= ϕ

and u, ν |= ψ holds (resp. hold);

• u, ν |= (∃xϕ) if and only if there exists d ∈ Dom(u) such that u, ν[x 7→ d] |= ϕ;

• u, ν |= (∀xϕ) if and only if, for each d ∈ Dom(u), u, ν[x 7→ d] |= ϕ.

Note that the truth value of u, ν |= ϕ depends only on the values assigned by ν

to the free variables of ϕ. In particular, if ϕ is a sentence, then there is a valuation

µ with an empty domain. We say that ϕ is satisfied by u (or u satisfies ϕ), and we

write u |= ϕ for u, µ |= ϕ. Thus each sentence ϕ defines a language: the set L(ϕ) of

all words such that u |= ϕ. Note that this interpretation makes sense even if u is the

empty word, for then the valuation µ is still defined: Every sentence beginning with

a universal quantifier is satisfied by ε, and no sentence beginning with an existential

quantifier is satisfied by ε. An early example was given in Example 1.11,

Remark 1.3. Two sentences ϕ and ψ are said to be logically equivalent if they are

satisfied by the same structures. We will use freely the classical logical equivalence

results, such as the logical equivalence of ϕ∧ψ and ¬(¬ϕ∨¬ψ), or the logical equiv-

alence of ∀x ϕ and ¬(∃x ¬ϕ). We will also use the implication and bi-implication

notation: ϕ→ ψ stands for ¬ϕ ∨ ψ and ϕ↔ ψ stands for (ϕ→ ψ) ∧ (ψ → ϕ).
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Example 1.13. Let ϕ and ψ be the following formulas.

ϕ = ∃x
(

(

∀y ¬(y < x)
)

∧Rax
)

ψ = ∀x
(

(

∀y ¬(y < x)
)

→ Rax
)

.

The sentence ϕ states that there exists a position with no strict predecessor, con-

taining an a, while ψ states that every such position contains an a. The latter

sentence, like all universally quantified first-order sentences, is vacuously satisfied

by the empty string. Thus L(ϕ) = aA∗ and L(ψ) = aA∗ ∪ {ε}.

The first-order logic of the linear order (resp. of the successor), written FO(<)

(resp. FO(S)) is the fragment of the first-order logic described so far, where formulas

do not use the symbol S (resp. <).

1.3.2. Monadic second-order formulas

In monadic second-order logic, we add a new type of variable to first-order logic,

called set variables and usually denoted by upper case letters, e.g. X,Y, . . . The

atomic formulas of monadic second-order are the atomic formulas of first-order logic,

and the formulas of the form (Xy), where X is a set variable and y is an ordinary

variable.

The recursive definition of monadic second-order formulas , starting from the

atomic formulas, closely resembles that of first-order formulas: it uses the same

rules given in Section 1.3.1, and the additional rule:

• If ϕ is a monadic second-order formula and X is a set variable, then (∃Xϕ) and

(∀Xϕ) are monadic second-order formulas.

The notion of free variables is extended in the same fashion.

The interpretation of monadic second-order formulas also requires an extension

of the definition of a valuation on a word u: a monadic second-order valuation is a

mapping ν which associates with each first-order variable an element of the domain

Dom(u), and with each set variable, a subset of Dom(u).

If ν is a valuation, X is a set variable, and R is a subset of Dom(u), we denote by

ν[X 7→ R] the valuation obtained from ν by mapping X to R (see Section 1.3.1.2).

With these definitions, we can recursively give a meaning to the notion that a

valuation ν satisfies a formula ϕ in a word u (u, ν |= ϕ): we use again the rules

given in Section 1.3.1.2, to which we add the following:

• u, ν |= (Xy) if and only if ν(y) ∈ ν(X);

• u, ν |= (∃Xϕ) (resp. (∀Xϕ)) if and only if there exists R ⊆ Dom(u) such that

(resp. for each R ⊆ Dom(u)) u, ν[X 7→ R] |= ϕ.

Note that the empty set is a valid assignment for a set variable: the empty word

may satisfy monadic second order variables even if they start with an existential

set quantifier.
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Büchi’s sequential calculus (see Section 1.3.1.2) is thus extended to include

monadic second-order formulas. We denote by MSO(<) (resp. MSO(S)) the frag-

ment of monadic second-order logic, where formulas do not use the symbol S (resp.

<). Of course, FO(<) and FO(S) are subsets of MSO(<) and MSO(S), respectively.

Example 1.14. Inspecting the following MSO(<) sentence,

ϕ = ∃X
[

∀x (Xx↔ ((∀y ¬(x < y)) ∨ (∀y ¬(y < x))))

∧ ∀x (Xx→ Rax) ∧ ∃x Xx
]

.

one can see that the elements of X must be the first and last positions of the word

in which we interpret ϕ, so L(ϕ) = aA∗ ∩A∗a. This language can also be described

by a first order sentence, see Example 1.13, that is: this formula is equivalent to a

first-order formula.

Example 1.15. We now consider the more complex formula

ϕ = ∃X
(

(∀x ∀y ((x < y) ∧ (∀z ¬((x < z) ∧ (z < y)))) → (Xx↔ ¬Xy))

∧ (∀x (∀y ¬(y < x)) → Xx)

∧ (∀x (∀y ¬(x < y)) → ¬Xx)
)

.

The formula ϕ states that there exists a set X of positions in the word, such that a

position is in X if and only if the next position is not in X (so X has every other

position), and the first position is in X , and the last position is not in X . Thus

L(ϕ) is the set of words of even length. It is an easy consequence of the results of

Section 1.7 that this language cannot be described by a first-order formula.

The successor relation can be expressed in FO(<): S(x, y) is logically equivalent

to the following formula:

(x < y) ∧ ∀z ((x < z) → ((y = z) ∨ (y < z))).

In a weak converse, the order relation < can be expressed in MSO(S): the formula

x < y is equivalent to:

∃X
(

Xy ∧ ¬Xx ∧ [∀z ∀t ((Xz ∧ S(z, t)) → Xt)]
)

.

It follows that MSO(<) and MSO(S) have the same expressive power.

Proposition 1.5. A language can be defined by a sentence in MSO(S), if and only

if it can be defined by a sentence in MSO(<).

However, the order relation< cannot be expressed in FO(S). This is a non-trivial

result; for a proof, see [21].

Proposition 1.6. If a language can be defined by a sentence in FO(S), then it can

be defined by a sentence in FO(<). The converse does not hold.
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1.4. The Kleene-Büchi theorem

In this section, we prove the following theorem, a combination of the classical Kleene

and Büchi theorems.

Theorem 1.1. Let L be a language in A∗. The following conditions are equivalent:

(1) L is defined by a sentence in MSO(<);

(2) L is accepted by an automaton;

(3) L is extended rational;

(4) L is rational.

1.4.1. From automata to monadic second-order formulas

Let A = (Q, i, δ, F ) be a deterministic automaton. The idea is to associate with

each state q ∈ Q a second order variable Xq, to encode the set of positions in which

a given path visits state q. What we need to express about the sets Xq is the

following:

• the sets Xq form a partition of the set of all positions (at each point in time,

the automaton must be in one and exactly one state);

• if a path visits state q at time x, state q′ at time x + 1 and if the letter in

position x+ 1 is an a, then δ(q, a) = q′;

This analysis leads to the following formula. For convenience, let Q be the set

{q0, q1, . . . , qn}, with initial state i = q0. We also use the shorthand min and max

to designate the first and last positions: this is acceptable as these positions can be

expressed by FO(S)-formulas. For instance, Ra min stands for ∀x (∀y ¬S(y, x) →

Rax); and Xmax stands for ∀x (∀y ¬S(x, y) → Xx).

∃Xq0 ∃Xq1 · · · ∃Xqn
(

∧

q 6=q′

¬∃x (Xqx ∧Xq′x) ∧ ∀x
∨

q

Xqx

∧ ∀x ∀y
[

S(x, y) →
∨

q∈Q, a∈A

(

Xqx ∧Ray ∧Xδ(q,a)y
)

]

∧
∧

a∈A

(

Ra min → Xδ(q0,a) min
)

∧
(

∨

q∈F

Xq max
)

)

.

This sentence is actually verified by the empty word, so the language it defines

coincides with L(A) on A+. If q0 ∈ F , it accurately defines L(A). But if q0 6∈ F ,

we must consider the conjunction of this sentence with ∃x true.

This is a sentence in MSO(S,<) but as we know, it is logically equivalent to one

in MSO(<). Note that it is in fact an existential monadic second order sentence,

that is, the second-order quantifications are all existential.
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1.4.2. From formulas to extended rational expressions

The proof that an MSO(<)-definable language can be described by an extended

rational expression, is more complex. The reasoning is by induction on the recur-

sive definition of formulas. Instead of associating a language only with sentences

(formulas without free variables), we will associate languages with all formulas but

these languages will be over larger alphabets, which allow us to encode valuations.

1.4.2.1. The auxiliary alphabets Bp,q

Let p, q ≥ 0 and let Bp,q = A × {0, 1}p × {0, 1}q. A word over the alphabet Bp,q

can be identified with a sequence (u0, u1, . . . , up, up+1, . . . , up+q) where u0 ∈ A∗,

u1, . . . , up, up+1, . . . , up+q ∈ {0, 1}∗ and all the ui have the same length.

Let Kp,q consist of the empty word and the words in B+
p,q such that each of

the components u1, . . . , up contains exactly one occurrence of 1. Thus each of

these components really designates one position in the word u0, and each of the

components up+1, . . . , up+q designates a set of positions in u0.

Example 1.16. If A = {a, b}, the following is a word in K2,1:

u0 a b a a b a b

u1 0 0 0 0 1 0 0

u2 0 0 1 0 0 0 0

u3 0 1 1 0 0 1 1

Its components u1 and u2 designate positions 4 and 2, respectively, and its compo-

nent u3 designates the set {1, 2, 5, 6}.

The languages Kp,q are extended rational. Indeed, for 1 ≤ i ≤ p, let Ci be the

set of elements (b0, b1, . . . , bp+q) ∈ Bp,q such that bi = 1. Then Kp,q is the set of

words in B∗
p,q which contain at most one letter in each Ci:

Kp,q =
{

ε
}

∪
⋂

1≤i≤p

(Bp,q \ Ci)
∗Ci(Bp,q \ Ci)

∗ = B∗
p,q \

⋃

1≤i≤p

B∗
p,qCiB

∗
p,qCiB

∗
p,q.

1.4.2.2. The language associated with a formula

Let now ϕ(x1, . . . , xr, X1, . . . , Xs) be a formula in which the free first order (resp.

set) variables are x1, . . . , xr (resp. X1, . . . , Xs), with r ≤ p and s ≤ q.

We interpret

• Ra as Ra = {i ∈ Dom(u) | u0(i) = a};

• xi as the unique position of 1 in ui (if ui 6= ε);

• Xj as the set of positions of 1 in up+j .



September 21, 2011 16:14 World Scientific Review Volume - 9.75in x 6.5in chap1

An Introduction to Finite Automata 21

Note that if p = q = 0, then ϕ is a sentence and this is the usual notion of

interpretation.

More formally, let (u0, u1, . . . , up+q) be a non-empty word in Kp,q. Let ni be

the position of the unique 1 in the word ui and let Nj be the set of the positions

of the 1’s in the word up+j . We say that u = (u0, u1, . . . , up+q) ∈ Kp,q satisfies ϕ if

u0, ν satisfy ϕ where ν is the valuation defined by

ν(xi) = ni for 1 ≤ i ≤ r and ν(Xj) = Nj for 1 ≤ j ≤ s.

We also say that the empty word (in Kp,q) satisfies ϕ if ε |= ϕ. We let Lp,q(ϕ) =

{u ∈ Kp,q | u satisfies ϕ}. Thus each formula ϕ defines a subset of Kp,q, and hence

a language in B∗
p,q.

Example 1.17. Let ϕ = ∃x (x < y ∧ Ray). Then FV (ϕ) = {y}. And L1,0(ϕ) is

the set of pairs of words (u0, u1) such that u0 ∈ A∗, u1 ∈ {0, 1}∗, u0 and u1 have

the same length, u1 has a single 1, which is not the first position, and u0 has an a

in that position.

Let ϕ = ∀x ((Xx ∧ x < y ∧ Rby) → Rax). Then L1,1(ϕ) is the set of triples

of words (u0, u1, u2) with u0 ∈ A∗, u1, u2 ∈ {0, 1}∗, all three words have the same

length, and either this length is zero, or u1 has a single 1 such that:

Let n be the position in u1 which has a 1. If u0 has a b in position n,

then u0 has an a in each position before n in which u2 has a 1. If u0 does

not have a b in position n, then there is no constraint.

1.4.2.3. The MSO(<)-definable languages are extended rational

We first consider the languages associated with an atomic formula. Let 1 ≤ i, j ≤

p+ q and let a ∈ A. Let

Cj,a = {b ∈ Bp,q | bj = 1 and b0 = a},

Ci,j = {b ∈ Bp,q | bi = bj = 1},

and Ci = {b ∈ Bp,q | bi = 1}.

Then we have

Lp,q(Raxi) = Kp,q ∩B
∗
p,qCi,aB

∗
p,q

Lp,q(xi = xj) = Kp,q ∩B
∗
p,qCi,jB

∗
p,q

Lp,q(xi < xj) = Kp,q ∩B
∗
p,qCiB

∗
p,qCjB

∗
p,q

Lp,q(Xixj) = Kp,q ∩B
∗
p,qCi+p,jB

∗
p,q.

Thus, the languages defined by the atomic formulas, namely Lp,q(Rax), Lp,q(x = y),

Lp,q(x < y) and Lp,q(Xy), are extended rational.
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Now let ϕ and ψ be formulas and let us assume that Lp,q(ϕ) and Lp,q(ψ) are

extended rational. Then we have

Lp,q(ϕ ∨ ψ) = Lp,q(ϕ) ∪ Lp,q(ψ)

Lp,q(ϕ ∧ ψ) = Lp,q(ϕ) ∩ Lp,q(ψ)

Lp,q(¬ϕ) = Kp,q \ Lp,q(ϕ),

and hence these three languages are extended rational as well. We still need to

handle existential quantification.

Let πi be the morphism which deletes the i-th component in a word of B∗
p,q; that

is: if 1 ≤ i ≤ p, then πi : B
∗
p,q → B∗

p−1,q, and if p < i ≤ p+q, then πi : B
∗
p,q → B∗

p,q−1.

In either case, we have πi(b0, b1, . . . , bp+q) = (b0, b1, . . . , bi−1, bi+1, . . . , bp+q).

Now, observe that, for any formula ϕ(x1, . . . , xr, X1, . . . , Xs), and for p ≥ r,

q ≥ s, 1 ≤ i ≤ p and 1 ≤ j ≤ q we have

Lp−1,q(∃xiϕ) = πi(Lp,q(ϕ)) and Lp,q−1(∃Xjϕ) = πp+j(Lp,q(ϕ)).

This concludes the proof that Lp,q(ϕ) is extended rational for any p ≥ r, q ≥ s.

In particular, if ϕ is a sentence in MSO(<) (that is, ϕ has no free variables), we

may take p = q = 0. Then L0,0(ϕ) is extended rational – and we already noted that

L(ϕ) = L0,0(ϕ).

1.4.3. From extended rational expressions to automata

It is immediately verified that the languages ∅, {ε}, {a} (a ∈ A) are accepted by

finite automata. We now need to show that if K,L ⊆ A∗ are recognizable and

if π : A∗ → B∗ is a morphism, then L, K ∪ L, K ∩ L, KL, K∗ and π(L) are

recognizable.

Proposition 1.7. If L ⊆ A∗ is recognizable, then the complement L of L is recog-

nizable as well.

Proof. Let A = (Q, δ, i, F ) be a deterministic complete automaton recognizing

L. Then A = (Q, δ, i, F ) recognizes L by Proposition 1.3. �

Example 1.18. The deterministic automata in Examples 1.5 and 1.6 confirm that,

if A = {a, b}, then b∗a∗ is the complement of A∗abA∗.

Note that the resulting procedure yields a deterministic automaton for L. It

is very efficient if L is given by a deterministic automaton, but may lead to an

exponential growth in the number of states if L is given by a non-deterministic

automaton.

Proposition 1.8. If K,L ⊆ A∗ are recognizable, then K ∪ L and K ∩L are recog-

nizable as well.
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Proof. Let A = (Q, T, I, F ) and A′ = (Q′, T ′, I ′, F ′) be automata recognizing L

and L′, respectively. We assume that the state sets Q and Q′ are disjoint. Then it

is readily verified that the automaton

A ∪A′ = (Q ∪Q′, T ∪ T ′, I ∪ I ′, F ∪ F ′)

accepts L ∪ L′. Thus L ∪ L′ is recognizable, and hence so is L ∩ L′ = L ∪ L′, by

Proposition 1.7. �

The construction in the above proof always yields a non-deterministic automaton

for L∪L′, even if we start from deterministic automata for L and L′. The product of

automata provides an alternative construction which preserves determinism, avoids

any exponentiation of the number of states, and works for both the union and the

intersection.

Let A = (Q, T, I, F ) and A′ = (Q′, T ′, I ′, F ′) be automata recognizing the lan-

guages L and L′. Their cartesian product is the automaton A′′ = (Q ×Q′, T ′′, I ×

I ′, F × F ′) where

T ′′ = {((p, p′), a, (q, q′)) | (p, a, q) ∈ T and (p′, a, q′) ∈ T ′}.

Note that if A and A′ are deterministic, then A′′ is deterministic as well. The main

property of A′′ is the following: there exists a path (p, p′)
u

−→ (q, q′) in A′′ if and

only if there exist paths p
u

−→ q and p′
u

−→ q′, in A and A′ respectively. Therefore

A′′ recognizes L ∩ L′.

If we take (F ×Q′) ∪ (Q× F ′) as the set of final states, instead of F × F ′, and

if the automata A and A′ are complete, then the product automaton recognizes

L ∪ L′.

In practice, the cartesian product of A and A′ may not be trim, and one may

want to use the procedure in Section 1.2.2.3 to produce more concise automata for

L ∩ L′ and L ∪ L′.

Remark 1.4. Let us record here an algorithmic consequence of Propositions 1.7

and 1.8: given two automata A and B, it is decidable whether L(A) ⊆ L(B) and

whether L(A) = L(B). Indeed, we can compute automata accepting L(A) \L(B) =

L(A) ∩ L(B) and L(B) \ L(A), and decide whether these languages are empty (see

Remark 1.1).

Proposition 1.9. If L,L′ ⊆ A∗ are recognizable, then LL′ and L∗ are recognizable

as well.

Sketch of proof. Let A = (Q, T, I, F ) and let A′ = (Q′, T ′, I ′, F ′) be automata

accepting L and L′, respectively, and let us assume that their state sets are disjoint.

It is easily verified that the ε-automaton

(

Q ∪Q′, T ∪ T ′ ∪ (F × {ε} × I ′), I, F ′
)
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accepts LL′ (see Section 1.2.2.4). Similarly, if j is a state not in Q, the ε-automaton
(

Q ∪ {j}, T ∪ (F × {ε} × I), I ∪ {j}, F ∪ {j}
)

accepts L∗. ⊓⊔

Proposition 1.10. If L ⊆ A∗ is recognizable and ϕ : A∗ → B∗ is a morphism, then

ϕ(L) is recognizable as well.

Sketch of proof. Let A = (Q, T, I, F ) be an automaton recognizing L. We let A′ be

the ε-automaton A′ = (Q ∪Q′, T ′, I, F ), where the set T ′ consists of

- the transitions of the form (p, ε, q) such that (p, a, q) ∈ T for some letter a with

ϕ(a) = ε,

- the transitions occurring in the paths of the form

p
b1−→ q′1

b2−→ · · · q′k−1
bk−→ q

such that (p, a, q) ∈ T , ϕ(a) = b1 · · · bk 6= ε and q′1, . . . , q
′
k−1 are new states that

we adjoin for each such triple (p, a, q).

The set Q′ contains all the new states that occur in the latter paths. It is elementary

to verify that A′ recognizes ϕ(L). ⊓⊔

So far, we have shown that a language is recognizable, if and only if it is defined

by a sentence in MSO(<), if and only if it is extended rational.

Remark 1.5. Note that the proofs of this logical equivalence are constructive, in

the sense that given a sentence ϕ inMSO(<), we can construct an automatonA such

that L(ϕ) = L(A). It follows that MSO(<) is decidable: given an MSO sentence

ϕ, we can decide whether ϕ always holds. Indeed, this is the case if and only if

L(¬ϕ) = ∅, which can be tested as discussed in Remark 1.1.

1.4.4. From automata to rational expressions

To complete the proof of the Kleene-Büchi theorem, it suffices to prove that ev-

ery recognizable language is rational. For this, we use the McNaughton-Yamada

construction.

Let A = (Q, T, I, F ) be an automaton. For each pair of states p, q ∈ Q and for

each subset P ⊆ Q, let Lp,q(P ) be the set of all words u ∈ A∗ which label a path

from state p to state q, such that the states visited internally by that path are all

in P :

Lp,q(P ) = {a1a2 . . . an ∈ A∗ | there exists a path in A

p
a1−→ q1

a2−→ . . . qn−1
an−→ q with q1, . . . , qn−1 ∈ P}.
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Recall that, by convention, there always exists an empty path, labeled by the

empty word, from any state q to itself. So ε ∈ Lp,q(P ) if and only if p = q.

We show by induction on the cardinality of P that each language Lp,q(P ) is

rational. This will prove that L(A) is rational, since L(A) =
⋃

i∈I, f∈F Li,f (Q).

If P = ∅, then Lp,q(∅) = {a ∈ A | (p, a, q) ∈ T } if p 6= q, and Lq,q(∅) = {a ∈ A |

(q, a, q) ∈ T } ∪ {ε}. Thus Lp,q(∅) is always finite, and hence rational.

Now let n > 0 and let us assume that, for any p, q ∈ Q and P ⊆ Q containing

at most n− 1 states, the language Lp,q(P ) is rational. Let now P ⊆ Q be a subset

with n elements and let r ∈ P . Considering the first and the last visit to state r of

a path from p to q, we find that

Lp,q(P ) = Lp,q(P \ {r}) ∪ Lp,r(P \ {r})Lr,r(P \ {r})∗Lr,q(P \ {r}).

Since P \ {r} has cardinality n − 1, it follows from the induction hypothesis that

Lp,q(P ) is rational.

This concludes the proof of the Kleene-Büchi theorem.

1.4.5. Closure properties

Rational languages enjoy many additional closure properties.

Proposition 1.11. Let ϕ : A∗ → B∗ be a morphism and let L ⊆ B∗. If L is

rational, then ϕ−1(L) is rational as well.

Sketch of proof. Let A = (Q, T, I, F ) be an automaton over B, recognizing L, and

let A′ = (Q, T ′, I, F ) be the automaton over A where

T ′ = {(p, a, q) | p
ϕ(a)
−→ q is a path in A}.

It is readily verified that A′ recognizes ϕ−1(L). ⊓⊔

Let u ∈ A∗ and L ⊆ A∗. The left and right quotients of L by u are defined as

follows:

u−1L = {v ∈ A∗ | uv ∈ L};

Lu−1 = {v ∈ A∗ | vu ∈ L}.

These notions are generalized to languages: if K and L are languages, the left and

right quotients of L by K are defined as follows:

K−1L = {v ∈ A∗ | ∃u ∈ K such that uv ∈ L} =
⋃

u∈K

u−1L,

LK−1 = {v ∈ A∗ | ∃u ∈ K such that vu ∈ L} =
⋃

u∈K

Lu−1.

Proposition 1.12. If L ⊆ A∗ is rational and K ⊆ A∗ is any language (possibly

not rational), then K−1L and LK−1 are rational as well.
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Sketch of proof. If A = (Q, T, I, F ) is an automaton recognizing L. Let I ′ be the

set of states of A which are accessible from an initial state of A following a path

labeled by a word of K,

I ′ = {q ∈ Q | ∃i ∈ I, ∃u ∈ K such that i
u

−→ q}.

Then one shows that A′ = (Q, T, I ′, F ) recognizes K−1L. The proof for LK−1 is

similar. ⊓⊔

Remark 1.6. The proof of Proposition 1.12 is not effective: we may not be able

to construct the set of states I ′ associated with K. However, if K is rational too,

then I ′ is effectively constructible.

Recall that a word u is a prefix of the word v if there exists a word v′ ∈ A∗ such

that v = uv′ (that is: v “starts” with u). Similarly, u is a suffix of v if there exists

a word v′ ∈ A∗ such that v = v′u. Finally u is a factor of v if there exist words

v′, v′′ ∈ A∗ such that v = v′uv′′.

If L is a language, we let Pref(L) (resp. Suff(L), Fact(L)) be the set of all

prefixes (resp. suffixes, factors) of the words in L.

Proposition 1.13. If L ⊆ A∗ is rational, then Pref(L), Suff(L) and Fact(L) are

rational as well.

Proof. The result follows from Proposition 1.12, since Pref(L) = L(A∗)−1,

Suff(L) = (A∗)−1L and Fact(L) = (A∗)−1L(A∗)−1. �

We leave it to the reader to verify that the following operations also preserve

rationality.

The mirror image of a word u = a1 . . . an ∈ A∗ is the word ũ = an . . . a1. The

corresponding language operation is given by L̃ = {ũ | u ∈ L} for each L ⊆ A∗.

A word u = a1 . . . an ∈ A∗ is a subword of a word v ∈ A∗ if there exist words

u0, . . . , un ∈ A∗ such that v = u0a1u1 . . . anun. If L ⊆ A∗, we let SW(L) be the set

of all subwords of the words of L.

The shuffle of the words u and v is the set

u ⊔⊔ v = {w ∈ A∗ |∃u1, v1, . . . , un, vn ∈ A∗ such that

u = u1 · · ·un, v = v1 · · · vn and w = u1v1 · · ·unvn}.

If K and L are languages, we let K ⊔⊔ L =
⋃

u∈K, v∈L u ⊔⊔ v.

Proposition 1.14. Let K, L ⊆ A∗ be rational languages. Then L̃, SW(L) and

K ⊔⊔ L are rational as well.

1.5. Pumping lemmas

The characterizations summarized in the Kleene-Büchi theorem are sufficient most

of the time to show that a language is rational. Showing that a language is not
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p0 pij = pik pn

u1

u2

u3

Fig. 1.7. Proof of the pumping lemma

rational is a trickier problem. This short section presents the main tool for that

purpose, namely the pumping lemma. We actually first present a rather abstract

version of this statement, and then its more classical corollaries.

Theorem 1.2. Let L be a rational language. There exists an integer N > 0 with

the following property. For each word w ∈ L and for each sequence of integers

0 ≤ i0 < i1 < . . . < iN ≤ |w|, there exist 0 ≤ j < k ≤ N such that, if w = u1u2u3
with |u1| = ij and |u1u2| = ik, then u1u

∗
2u3 ⊆ L.

Proof. Let A be an automaton recognizing L, and let N be the number of states

of A. Let w = a1a2 · · · an ∈ L and let

p0
a1−→ p1

a2−→ p2 · · ·
an−→ pn

be a successful path in A labeled w. Let 0 ≤ i0 < i1 < · · · < iN ≤ n be a sequence

of integers. Then two of the states pi0 , pi1 , . . . , piN are equal, that is, there exist

0 ≤ j < k ≤ N such that pij = pik .

Let u1 = a1 · · · aij , u2 = a1+ij · · · aik and u3 = a1+ik · · · an. Of course, w =

u1u2u3, |u1| = ij , |u1u2| = ik. The situation is summarized by Figure 1.7: we may

iterate or skip the loop labeled u2 and still retain a successful path, so u1u
∗
2u3 ⊆ L.

�

Corollary 1.1. Let L be a rational language. There exists an integer N > 0 such

that, for each word w ∈ L with length |w| ≥ N , we can factor w in three parts,

w = u1u2u3, with u2 6= ε and u1u
∗
2u3 ⊆ L.

Corollary 1.2. Let L be a rational language. There exists an integer N > 0 such

that, for each word w ∈ L with length |w| ≥ N , we can factor w in three parts,

w = u1u2u3, with u2 6= ε, |u1u2| ≤ N (resp. |u2u3| ≤ N) and u1u
∗
2u3 ⊆ L.

Sketch of proof. To prove Corollary 1.2, we apply Theorem 1.2 with ij = j (resp.

ij = n−N+j) for 0 ≤ j ≤ N . And to prove Corollary 1.1, we take any sequence. ⊓⊔

Example 1.19. It is a classical application of Corollary 1.1 that {anbn | n ≥ 0} is

not rational: for each N > 0, the word aNbN cannot be factored as w = u1u2u3
with u2 6= ε and u1u

∗
2u3 ⊆ {anbn | n ≥ 0}.

Corollary 1.2 can be used to show that {u ∈ {a, b}∗ | |u|a = |u|b} is not rational

(take again aNbN ); however, this language satisfies the necessary condition for

rationality in Corollary 1.1, with N = 2.
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Fig. 1.8. Two different automata for A∗aaaA∗

Consider now the following language over the alphabet {a, b, c, d}

{(ab)n(cd)n | n ≥ 0} ∪ A∗{aa, bb, cc, dd, ac}A∗

It satisfies the necessary condition for rationality in Corollary 1.2, but it is not

rational, as can be proved using Theorem 1.2.

However, the pumping lemma as stated here may not be enough to prove that

a given language is not rational. Let us say that a word contains a square if it can

be written in the form uvvw with v 6= ε. Then the language

{udv | u, v ∈ {a, b, c}∗ and either u 6= v, or one of u and v contains a square}

satisfies the necessary condition for rationality in Theorem 1.2 (for N = 4). Yet it

is not rational (the proof of that fact uses the existence of arbitrarily long words on

the alphabet {a, b, c} containing no square).

Ehrenfeucht, Parikh, Rozenberg gave a necessary and sufficient condition for

rationality in the same style as the pumping lemma (see e.g. [18, Theorem I.3.3]).

1.6. Minimal automaton and syntactic monoid

Consider the two automata in Figure 1.8. Both are complete and deterministic,

and both recognize the set of words over A = {a, b} that contain some occurrence

of the word aaa as a factor — that is, the language A∗aaaA∗. The two automata

were designed using different intuitions about how to go about this task: In the

first instance, the underlying algorithm is “keep track of the last two letters read

from the input”, as indicated by the state labels, while in the second automaton the

algorithm is, “keep track of the length of the longest suffix of a’s in the input”. Thus

the second automaton achieves the same result with a smaller number of states. It

is easy to see that the second example is also optimal—no complete deterministic

automaton recognizing this language can have a smaller number of states.
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In this section we will see that for every rational language L there is a unique

minimal complete deterministic automaton accepting L. We will also describe an ef-

ficient algorithm that takes as input an arbitrary complete deterministic automaton

A, and produces as output the minimal automaton for L(A).

1.6.1. Myhill-Nerode equivalence and the minimal automaton

One way to see that there is something inefficient about the first automaton in

the example above is to observe its behavior on the two input words u = bab and

v = abb. These words lead from the initial state to two different states. However,

for purposes of recognizing words in L, there is no point in distinguishing between

u and v, for no matter what the subsequent input w is, the result will be the same:

either uw and vw are both in L or both outside of L.

To formalize this notion of inputs that are indistinguishable with respect to L,

we make the following definitions: If u, v ∈ A∗ we define u ≡L v if and only if

u−1L = v−1L (see Section 1.4.5). Obviously, ≡L is an equivalence relation on A∗.

We also note that if u ≡L v, and w ∈ A∗, then uw ≡L vw, since (uw)−1L =

w−1(u−1L). An equivalence relation with this multiplicative property is said to be

a right congruence. Further, L itself is a union of ≡L-classes, since w ∈ L if and

only if ε ∈ w−1L.

We can accordingly define a complete deterministic automaton Amin(L) by mak-

ing the states these classes of equivalent words: We set Amin(L) = (QL, δL, iL, FL),

where QL = A∗/ ≡L, iL = [ε]≡L
, and FL and δL : QL × A→ QL are defined by

FL = {[v]≡L
| v ∈ L} and δ([v]≡L

, a) = [va]≡L
.

We need to show that this is well-defined, since a state will in general have many

different representations of the form [v]≡L
. But well-definedness is an immediate

consequence of our observation that ≡L is a right congruence. We have the following

result.

Theorem 1.3. Let L ⊆ A∗.

(1) Amin(L) accepts L.

(2) L is rational if and only if ≡L has finite index.

Proof. It follows at once by induction on |w| that for all w ∈ A∗,

δL([ε]≡L
, w) = [w]≡L

.

Since, as observed above, L itself is a union of ≡L-classes, it follows that w is

accepted if and only if w ∈ L. This proves the first claim.

To prove the second claim in the theorem, note that if ≡L has finite index, then

Amin is a finite automaton, and therefore by (1), L is rational. Conversely, if L is

rational, then it is accepted by some complete deterministic automaton (Q, δ, i, F )
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with Q finite. Now suppose u, v ∈ A∗ and δ(i, u) = δ(i, v). Then if w ∈ A∗ and

uw ∈ L, we have

δ(i, vw) = δ(δ(i, v), w) = δ(δ(i, u), w) = δ(i, uw) ∈ F,

so vw ∈ L. Similarly, vw ∈ L implies uw ∈ L, so u ≡L v. Thus the number of

classes of ≡L cannot be more than |Q|, so ≡L has finite index. �

The proof of Theorem 1.3 shows that Amin(L) has the least number of states

among the complete deterministic automata accepting L. The automaton Amin(L)

is called the minimal automaton of L. We now give another, more algebraic justi-

fication for this terminology.

1.6.2. Uniqueness and minimality of Amin(L)

Let A = (Q, δ, i, F ) be a complete deterministic automaton over A, and let L =

L(A). We say that p, q ∈ Q are equivalent states, and write p ≡ q, if

{v ∈ A∗ | δ(p, v) ∈ F} = {v ∈ A∗ | δ(q, v) ∈ F}.

Intuitively, this means that for purposes of recognizing words in L, p and q do the

same job, and we might as well merge them into a single state.

We now repeat, in a somewhat different form, an observation made in the proof

of Theorem 1.3: If δ(i, u) ≡ δ(i, v), then

uw ∈ L⇐⇒ δ(δ(i, u), w) ∈ L⇐⇒ δ(δ(i, v), w) ∈ L⇐⇒ vw ∈ L,

so that u ≡L v. In particular, if δ(i, u) = δ(i, v), then u ≡L v, so we have a well-

defined mapping δ(i, w) 7→ [w]≡L
, from the set of accessible states of A onto the

states of Amin(L). Note that this mapping sends the initial state i = δ(i, ε) to [ε]≡L
,

final states of A to final states of Amin(L), and respects the next-state function.

We summarize these observations as follows.

Theorem 1.4. Let A = (Q, δ, i, F ) be a complete deterministic automaton over A,

and let L = L(A). Then there is a map f from the set of accessible states in Q onto

QL such that

• for all a ∈ A and accessible q ∈ Q, f(δ(q, a)) = δL(f(q), a),

• f(i) = iL,

• f(F ) = FL.

Moveover, f(p) = f(q) if and only if p ≡ q.

In particular, if A has the same number of states as Amin(L), then since f is onto,

the two automata are isomorphic by Theorem 1.4.
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1.6.3. An algorithm for computing the minimal automaton

Theorem 1.4 says that in principle we can compute the minimal automaton of a

rational language L starting from any complete deterministic automaton (Q, δ, i, F )

accepting L, first by removing the inaccessible states and then merging equivalent

states. We have already seen how to compute the accessible states. How do we

determine if two states are equivalent? If p, q are inequivalent states then there is

a word v ∈ A∗ that distinguishes between these states in the sense that δ(p, v) ∈ F

and δ(q, v) /∈ F , or vice-versa. It follows from a simple pumping argument that

if such a distinguishing word exists, then it can be chosen to have length no more

than |Q|2. Thus we can effectively determine whether two states are equivalent by

calculating δ(p, v) and δ(q, v) for all words up to this length.

Of course, this is a terrible algorithm, since there are |A||Q|2 different words to

check! In practice, we can proceed as follows: Let m ≥ 0. We say p ≡m q if for all

v ∈ A∗ of length no more than m, δ(p, v) ∈ F if and only if δ(q, v) ∈ F . This is

clearly an equivalence relation on A∗, and ≡m+1 refines ≡m for all m. The following

lemma improves the |Q|2 bound on the length of distinguishing words.

Lemma 1.1. Let p, q ∈ Q. Then p ≡ q if and only if p ≡m q for m = |Q| − 2.

Proof. First suppose that for some m, the equivalence relations ≡m and ≡m+1

coincide. We claim that ≡m and ≡ coincide. To see this, suppose that p and q

are inequivalent, and that w is a word of minimal length distinguishing them. If

|w| > m, then we can write w = uv, where |v| = m + 1, so that p′ = δ(p, u) and

q′ = δ(q, u) are inequivalent modulo ≡m+1. But this means that they are also

inequivalent modulo ≡m, and thus distinguished by a word v′ of length no more

than m, and thus p and q are distinguished by the word uv′ of length strictly less

than that of w, a contradiction. Thus the minimal distinguishing word has length

no more than m, so that ≡m coincides with ≡.

Now if ≡m+1 does not coincide with ≡m, then ≡m+1 has a larger number of

classes. Since the number of classes can never exceed |Q|, and since ≡0 has two

classes, the sequence {≡m}m≥0 will stabilize by the time m reaches |Q| − 2. �

Lemma 1.1 leads to the following practical algorithm for minimization. We begin

with a list of all the pairs {p, q} of distinct accessible states, and mark the pair if

p ∈ F and q /∈ F , or vice-versa. In each phase of the algorithm, we visit each

unmarked pair {p, q} and each a ∈ A, we compute {p′, q′} = {δ(p, a), δ(q, a)}, and

we mark {p, q} if {p′, q′} is marked. An easy induction shows that if a pair {p, q}

is distinguished by a word of length m, then it will be marked by the mth phase of

the algorithm. Thus after no more than |Q|−2 phases, the algorithm will not mark

any new pairs, with the result that the algorithm terminates, and the unmarked

pairs are exactly the pairs of equivalent states.

Example 1.20. Consider the first automaton in Figure 1.9. Initially we mark the

pairs {i, j}, where i ∈ {1, 2, 3} and j ∈ {4, 5, 6}. On the next pass, the pairs



September 21, 2011 16:14 World Scientific Review Volume - 9.75in x 6.5in chap1

32 H. Straubing and P. Weil

1

2 3

4

5 6

a

b

a
b

a

b

a b

a
b

a

b

1, 2, 3 4, 5 6
a

b a

b

a

b

Fig. 1.9. The minimization algorithm
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Fig. 1.10. A minimal automaton

{4, 6} and {5, 6} are marked since applying b to these pairs gives the marked pair

{3, 6}. No further pairs are marked on the next pass, so the algorithm terminates.

Since the pairs {1, 2} and {2, 3} are unmarked, {1, 2, 3} is an equivalence class, and

since {4, 5} is unmarked, it forms a second class. The remaining class is {6}. The

resulting minimal automaton is pictured on the right-hand side of Figure 1.9.

Example 1.21. We now apply the algorithm to the automaton in Figure 1.10.

Initially, the pairs {i, 6} with i < 6 are marked. On the next pass the pairs {i, 5}

with i < 5 are marked, etc., until on the fifth pass the pair {1, 2} is marked. The

result is that every pair of distinct states is marked: the automaton is already

minimal.

The pair-marking implementation of the algorithm just illustrated is suitable

for small examples worked by hand. In the worst case, shown in the last example,

we check O(|Q|2) unmarked pairs on each pass, and make O(|Q|) passes, with

|A| consultations of the state-transition table for each pair we inspect. Thus, the

overall time complexity of the algorithm is O(|A| · |Q|3). More astute bookkeeping,

in which we partition equivalence classes at each step, rather than marking pairs

of inequivalent states, leads to a O(|A| · |Q|2) algorithm (Moore [12]). This can be

further improved to O(|A| · |Q| · log |Q|) (Hopcroft [6]).

1.6.4. The transition monoid of an automaton

Let A = (Q, δ, i, F ) be a complete deterministic automaton over an alphabet A.

Let w ∈ A∗. We study the maps

fA
w : q 7−→ δ(q, w)
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1 2

3

a

b

b a

a, b

Fig. 1.11. The automaton A1, with no indication of initial or terminal states

from Q into itself. We will write the image of a state q under fA
w as qfA

w rather

than the more traditional fA
w (q). We then have, for v, w ∈ A∗,

fA
vw = fA

v f
A
w ,

where the product in the right-hand side of the equation is left-to-right composition

of functions — that is, q(fA
v f

A
w ) = (qfA

v )fA
w .

We will henceforth drop the superscript A, except in situations where several

different automata are involved. Observe that fε is the identity map on Q. Thus

the set of maps

M(A) = {fw | w ∈ A∗}

forms an algebraic structure with an associative product and an identity element

(usually denoted 1). Such a structure is called a monoid , and we call M(A) the

transition monoid of A. Observe that if Q is finite, then M(A) is finite, and that

the structure of M(A) depends only on the next-state function δ, and not at all on

the initial or final states.

A∗ is, of course, itself a monoid, with concatenation of words as the operation

and the empty word ε as the identity. The map

ϕ : w 7−→ fw

is consequently a monoid morphism from A∗ into M(A); that is, it satisfies

ϕ(w1w2) = ϕ(w1)ϕ(w2)

for all w1, w2 in A∗, and it maps the identity element of A∗ to the identity element

of M(A).

Example 1.22. In the diagrams in this example and in Examples 1.23 and 1.24,

we indicate only the transitions between states, since, as we have observed, the

initial and final states do not enter into the computation of the transition monoid

of an automaton.

First, consider the automaton A1 in Figure 1.11. We will write an element fw
of M(A1) as a vector fw = (1fw 2fw 3fw ). We can then begin enumerating the
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1 2

3

4

5

a, b

b
a

aa

a

b

b

b

A2

1 2

3

4

5

a, b, c

b
a

aa

a

c

b, c

b, c

b, c

A3

Fig. 1.12. The automata A2 and A3

elements of M(A1):

fε = (1 2 3 )

fa = (2 3 3 ) fb = (3 1 3 )

faa = (3 3 3 ) fab = (1 3 3 ) fba = (3 2 3 ) fbb = (3 3 3 )

We could continue enumerating like this, but instead we note that faba = fa, fbab =

fb, and for all other w ∈ A∗ of length 3, fw = (3 3 3 ). Thus the inventory above

is the entire transition monoid, since any transition induced by a word of length

greater than 2 is equal to one induced by a shorter word. ThusM(A) has 6 elements

1, α = fa, β = fb, αβ, βα, and 0. The multiplication is then determined by the laws

αα = ββ = 0, α = αβα, and β = βαβ. The complete multiplication table is shown

below:

· 1 α β αβ βα 0

1 1 α β αβ βα 0

α α 0 αβ 0 α 0

β β βα 0 β 0 0

αβ αβ α 0 αβ 0 0

βα βα 0 β 0 βα 0

0 0 0 0 0 0 0

This example illustrates an important general point: There is an effective proce-

dure for computing the multiplication table of the transition monoid of a complete

deterministic finite automaton. We enumerate the maps fw until we find that all

words of some length induce the same maps as shorter words.

Example 1.23. Consider the automaton A2 in Figure 1.12. The transition monoid

is generated by the two permutations fa and fb, both of which are permutations of

the set of states: fa cycles the five states and fb transposes a pair of adjacent states.

It is well known from elementary group theory that we can obtain all transpositions

t of adjacent elements by repeated conjugation with the cycle (the map t 7→ f4
a t fa),

and that all permutations of the states can be obtained by composing transposi-

tions of pairs of adjacent elements. So M(A) consists of all the permutations of
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{1, 2, 3, 4, 5}, and is consequently the symmetric group of degree 5, with 5! = 120

elements. Of course, we can do likewise with any finite set of states.

Example 1.24. Now consider the effect of adding a third input letter to the

preceding example, obtaining the automaton A3 in Figure 1.12. It is not hard to

show that every map from {1, 2, 3, 4, 5} into itself can be obtained by repeatedly

composing fc with permutations. Thus M(A3) is the full transformation monoid

on 5 states, which has 55 = 3125 elements. We can similarly generate a transition

monoid with nn elements using an n-state automaton.

1.6.5. The syntactic monoid

Now let L ⊆ A∗, and consider the transition monoid of the minimal automaton

Amin(L) = (QL, δL, iL, FL). Let u, v ∈ A∗. When are the two elements fu, fv of

this monoid the same? If they are different, then there is some state q such that

qfu 6= qfv. Since the automaton is minimal, there is a word y ∈ A∗ distinguishing

these two states, so that qfufy ∈ FL and qfvfy /∈ FL, or vice-versa. Since every

state is accessible, there is also a word x such that q = ifx, so that either xuy ∈ L

and xvy /∈ L, or vice-versa. Conversely, if such a pair of words x, y exists, then fu
and fv cannot be equal. We thus have:

Theorem 1.5. Let L ⊆ A∗, and let u, v ∈ A∗. Let A = Amin(L). Then fA
u = fA

v

if and only if for all x, y ∈ A∗

xuy ∈ L⇐⇒ xvy ∈ L.

If the conditions in this theorem are satisfied, then we write u ∼=L v. The

equivalence relation ∼=L is called the syntactic congruence of L, and the transition

monoid of Amin(L) is called the syntactic monoid of L. We denote the syntactic

monoid of L by M(L). In algebraic terms, M(L) = M(Amin(L)) = A∗/∼=L, that

is M(L) is the quotient monoid of A∗ by the syntactic congruence. The morphism

mapping each w ∈ A∗ to its ∼=L-class is called the syntactic morphism of L, and is

denoted µL.

The syntactic congruence is a two-sided congruence on A∗; that is, if u ∼=L v

and u′ ∼=L v
′, then uu′ ∼=L vv

′. Compare this to the Myhill-Nerode congruence ≡L,

which, as we noted, is a right congruence. The equivalence ∼=L refines ≡L.

Transition monoids, and, in particular, the syntactic monoid, allow us to place

many questions about the behavior of automata in a purely algebraic setting. For

instance, we have the following algebraic characterization of rationality: LetM be a

monoid and ϕ : A∗ →M a morphism. We say that ϕ recognizes L ⊆ A∗ if and only

if there is a subset X of A∗ such that L = ϕ−1(X). We also say in this situation

that M recognizes L.

Theorem 1.6. Let L ⊆ A∗. The following are equivalent:

(1) L is rational.
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(2) M(L) is finite.

(3) L is recognized by a finite monoid.

Proof. To show (1) implies (2), note that if L is rational, thenAmin(L) has a finite

set of states, and thus its transition monoid, M(L), is finite. For (2) implies (3),

if u ∈ L and u ∼=L v, then v = ε v ε is also in L. Thus L is a union of equivalence

classes of ∼=L, so that L = µ−1
L (X), where X = {fw ∈ M(Amin(L)) | w ∈ L}.

Finally, to show (3) implies (1), suppose ϕ : A∗ → M , where M is finite, and

that L = ϕ−1(X). Then L is accepted by the complete deterministic automaton

A(M) = (M, δ, 1, X), where for m ∈M and a ∈ A,

δ(m, a) = mϕ(a).

Since M is finite, L is rational. �

Remark 1.7. Observe that if M is a finite monoid and A(M) is the automaton

defined in the proof of Theorem 1.6, then the transition monoid of A(M) isM itself.

The syntactic monoid plays the same role in this algebraic view of rational

languages that the minimal automaton plays in the automaton-theoretic view. Here

we make this precise: We say that a monoid N divides a monoid M , and write

N ≺ M , if there is a submonoid M ′ of M and a surjective morphism ϕ : M ′ → N .

It is easy to see that ≺ is a transitive relation on monoids.

Theorem 1.7. Let L ⊆ A∗. Then M recognizes L if and only if M(L) ≺M .

Proof. First suppose M recognizes L, so that there is a morphism ϕ : A∗ → M

such that L = ϕ−1(X) for some X ⊆ M . We claim that if ϕ(u) = ϕ(v), then

u ∼=L v. To see this, suppose that xuy ∈ L for some x, y ∈ A∗. Then ϕ(xuy) ∈ X ,

and since ϕ(u) = ϕ(v), we have ϕ(xvy) ∈ X , so that xvy ∈ L. By the same

argument, if xvy ∈ L then xuy ∈ L, so that u ∼=L v.

Now let M ′ = ϕ(A∗). We define a map ψ : M ′ → M(L) by ψ(ϕ(u)) = µL(u).

By the remark just made, ψ is well-defined, since the value of ψ only depends on

ϕ(u) and not on u. Moreover ψ is clearly a morphism, and it is surjective because

µL is, so M(L) ≺M .

Conversely, suppose M(L) ≺ M , so that there is a morphism ψ from a sub-

monoid M ′ of M onto M(L). For a ∈ A, we set ϕ(a) to be any m ∈ M ′ for which

ψ(m) = µL(a). This can be extended to a unique morphism ϕ : A∗ →M such that

µL = ψ ◦ϕ. Let X = ϕ(L). If ϕ(u) ∈ X then ϕ(u) = ϕ(v) for some v ∈ L, and thus

µL(u) = µL(v), so u ∼=L v. Since, as noted in the proof of Theorem 1.6, L is a union

of ∼=L-classes, this implies u ∈ L, so that L = ϕ−1(X), and thus M recognizes L.�

Example 1.25. Consider the transition monoid of the automaton A in Figure 1.13.

We can fairly easily determine the elements of this monoid without doing an ex-

haustive tabulation: First, if a word w has even length, then it maps {1, 3} into

{1, 3}, and {2, 4} into {2, 4}, while if w has odd length, then it interchanges these
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1 2

34

a

b

a, b

a, b

b a

Fig. 1.13. An automaton, whose transition monoid contains a non-trivial group

two sets. Second, if w contains aa or bb as a factor, then the image of fw is con-

tained in {3, 4}. Finally, if the letters of w alternate, then fw maps either 1 or 2 to

{1, 2}, but not both, depending on whether the first letter of w is a or b. We thus

get these elements:

1 = fε = (1 2 3 4 ) γ = fa = (2 3 4 3 ) δ = fb = (4 1 4 3 )

γδ = fab = (1 4 3 4 ) δγ = fba = (3 2 3 4 )

γ2 = faa = (3 4 3 4 ) γ3 = faaa = (4 3 4 3 )

Observe that {γ2, γ3} forms a group, permuting the states 3 and 4. This automaton

accepts the language (ab)∗. In algebraic terms, the morphism ϕ : w 7→ fw from A∗

into M(A) recognizes this language with (ab)∗ = ϕ−1(X), where

X = {f ∈M(A) | f maps state 1 to itself }.

The states 3 and 4 are equivalent, and the minimal automaton of L is obtained

by merging these states: it is the automaton examined in Example 1.22 (with 1 as

initial and final state), where we computed its transition monoid, namely M(L).

According to Theorem 1.7, M(L) ≺ M(A), and, indeed, the map sending 1 to 1,

γ, δ, γδ, δγ to α, β, αβ, βα, respectively, and γ2 and γ3 both to 0, is a morphism

from M(A) onto M(L).

Example 1.26. Let us take the automaton of Example 1.24 and specify 1 as both

the initial state and the unique accepting state. With these choices, the automaton

is the minimal automaton of the language it accepts, since every state is accessible

and no two distinct states are equivalent. This shows that the syntactic monoid of

a language accepted by an n-state automaton can have as many as nn elements.

Example 1.27. Not every finite monoid is the syntactic monoid of a rational lan-

guage. Consider, for instance, the monoid M = {1, α, β, γ} with multiplication

m1m2 = m2 for m2 6= 1. Suppose A is a finite alphabet and ϕ : A∗ → M is a

morphism. Let X ⊆M . We partition A into three subsets, B, C, and D,

B = {a ∈ A | ϕ(a) = 1}

C = {a ∈ A | ϕ(a) ∈ X \ {1}}

D = A \ (B ∪ C)
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Then ϕ−1(X) = B∗ ∪ A∗CB∗ if 1 ∈ X and ϕ−1(X) = A∗CB∗ otherwise.

(Observe that B or C might be empty.) But then L = ϕ−1(X) is recognized by the

submonoid {1, α, β}, using the morphism that maps B to 1, C to α and D to β.

Thus every language recognized by M is recognized by a strictly smaller monoid,

so by Theorem 1.7, M cannot be the syntactic monoid of any language.

1.7. First-order definable languages

This section is devoted to proving one of the earliest and most important appli-

cations of the syntactic monoid: the characterization of the languages definable in

FO(<).

A finite monoid M can contain a nontrivial group, as for example the group

{γ2, γ3} in the monoid M(A) of Example 1.25. If there is no nontrivial group in

M , we say that M is aperiodic.

Lemma 1.2. Let M be a finite monoid. Then the following are equivalent:

(1) M is aperiodic.

(2) There is an integer n > 0 such that mn = mn+1 for all m ∈M .

Proof. Suppose M is aperiodic. Let m ∈ M , and consider the sequence

1,m,m2, . . . Since M is finite, if we take n = |M |, we have mr = mn for some

r < n. Take the largest such r, and consider the set G = {mk | r ≤ k < n}.

Observe that for all g ∈ G, gG = Gg = G, since

mr+tms = mr+[(t+s) mod (n−r)]

for all s, t ≥ 0. This implies that G is a group, so that |G| = 1, and thus r = n− 1

and mr = mr+1. Conversely, if M is not aperiodic, then M contains a nontrivial

group G, and an element g ∈ G different from the identity element e of G. Then

gk = e for some k > 1, so that gn 6= gn+1 for all n ≥ 0. �

Note that the proof shows that we can choose n in condition (2) of Lemma 1.2

to be |M | − 1.

We say that a language L ⊆ A∗ is star-free if it can be defined by an extended

rational expression without the use of the ∗ operation or morphic images. The

Schützenberger-McNaughton-Papert Theorem offers the following characterization.

Theorem 1.8. Let L ⊆ A∗ be a rational language. Then the following are equiva-

lent.

(1) L is star-free.

(2) L is definable by a sentence of FO(<).

(3) L is recognized by an aperiodic finite monoid.

(4) M(L) is aperiodic.
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Before we turn to the proof of this theorem, we give an important corollary, and

an example.

Corollary 1.3. It is decidable whether a rational language (given by a rational

expression or an accepting automaton) is definable by a sentence of first-order logic.

Proof. As we have seen, we can compute Amin(L) from any automaton or ex-

pression for L, and thence compute the multiplication table of M = M(L). We

can then test for all m ∈ M whether m|M|−1 = m|M|, and thus, by Lemma 1.2

determine whether M(L) is aperiodic. By Theorem 1.8, this decides whether L is

first-order definable. �

In fact, the proof of Theorem 1.8 will show that if M(L) is aperiodic, then we

can effectively construct both a star-free expression and a first-order sentence for L

from an automaton that recognizes L.

Example 1.28. Let L = (ab)∗. We computed M(L) in Example 1.22. We have

α2 = β2 = 0 = α3 = β3, and (αβ)2 = αβ, (βα)2 = βα, so by Lemma 1.2, M(L)

is aperiodic. Theorem 1.8 says that L is definable by a star-free extended rational

expression, and also by a sentence of FO(<). Let us exhibit such expressions.

First, note that membership of a word w in L is equivalent to saying that w

contains no occurrence of either aa or bb as a factor, and that the first letter of w

(if there is one) is a, and the last letter is b. We thus have

L = {ε} ∪ (aA∗ ∩ A∗b ∩ A∗(aa ∪ bb)A∗).

witnessing the fact that L is star-free (note that A∗ is star-free, since A∗ = ∅).

To obtain a first-order sentence defining L, we use the same characterization of

words in L. We say there is no occurrence of aa as a factor using the following

sentence:

¬∃x∃y(Rax ∧Ray ∧ S(x, y)).

This uses the successor predicate S, but as we noted earlier, S can be expressed in

FO(<). We can likewise write a sentence saying that there is no occurrence of bb.

An FO-sentence stating that the first letter of a word is a was given in Example 1.13.

A similar sentence can be formed to say that the last letter is b. Note that all these

sentences are satisfied by the empty word as well, so that the conjunction of the

four sentences defines the language (ab)∗.

This language is also recognized by the first monoid that we exhibited in Ex-

ample 1.25, which is not aperiodic. This in no way contradicts Theorem 1.8, which

only says that some aperiodic monoid recognizes L.

Remark 1.8. The decision procedure outlined in the proof of Corollary 1.3 may

take exponential time in the size of an automaton accepting L, since it involves

computing the syntactic monoid of L (see Example 1.24). While this procedure



September 21, 2011 16:14 World Scientific Review Volume - 9.75in x 6.5in chap1

40 H. Straubing and P. Weil

may be improved, this decision problem is intrinsically difficult. In fact, it is known

to be PSPACE-complete (Cho and Huynh [2]).

We now turn to the proof of Theorem 1.8. We will show (4) ⇔ (3) ⇒ (1) ⇒

(2) ⇒ (4). By Theorem 1.7, every language is recognized by its syntactic monoid.

Also every divisor of an aperiodic monoid is aperiodic, since the property mn =

mn+1 for all elementsm in a monoid is inherited by morphic images and submonoids.

Thus (3) and (4) are equivalent.

The most difficult part of the proof is (3) ⇒ (1). To prove this, we suppose

L ⊆ A∗ is recognized by a finite aperiodic monoid. This is equivalent to L being

accepted by a complete deterministic automaton A = (Q, δ, i, F ) whose transition

monoid is aperiodic (see the proof of Theorem 1.6 and Remark 1.7). We will show

that for all q, q′ ∈ Q, the set LA
q,q′ = {w | qfA

w = q′} is a star-free language. Since

L is a finite union of such languages, L is star-free.

The proof is by induction on the pair (|Q|, |A|): the induction hypothesis is that

the claim holds for all automata with a strictly smaller state set, or with the same

size state set and a strictly smaller input alphabet. In the case |Q| = 1, L is either

A∗ or ∅, which are star-free. In the case |A| = 1, so that A = {a}, aperiodicity

implies that L is a finite union of singleton sets {ak}, possibly together with the

language ara∗, where r = |Q| − 1, which is also star-free, since a∗ = ∅.

We thus assume both |Q| > 1 and |A| > 1. First suppose that for every a ∈ A,

QfA
a = Q, so that fA

a is a permutation of Q. Aperiodicity implies (fA
a )r = (fA

a )r+1

for some r, and thus fA
a is the identity map on Q. Consequently fA

w is the identity

map for all w ∈ A∗, and thus the claim holds trivially. We can therefore assume

that there is some a ∈ A such that

QfA
a = Q′ ( Q.

We now define two new automata B and C. Automaton B has state set Q and

next-state function δ
∣

∣

Q×B
, where B = A \ {a}. We need not define initial and final

states for B, because we are only interested in the state transitions fB
w . Automaton

C has state set Q′, input alphabet

C = {(fB
w , a) | w ∈ B∗, a ∈ A},

and next-state function

δ′ : (q, (fB
w , a)) 7−→ q · fA

wa.

This makes sense, becauseQfA
a = Q′ and because fB

w = fB
w′ implies that fA

wa = fA
w′a.

The inductive hypothesis applies to both B and C. (The transition monoids of

these automata inherit the aperiodicity of A, because every transition in them is

the restriction of a transition in A.)

A word in LA
q,q′ can contain either no occurrences of a, a single occurrence of a,

or two or more occurrences of a. We can accordingly write LA
q,q′ as a finite union
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of sets of the form

LB
q,q′ , L

B
q,paL

B
p′,q′ , L

B
q,paTp′,q′′L

B
q′′,q′ ,

where p ∈ Q, p′ = p · fA
a ∈ Q′, and Tp,q′′ = LA

p,q′′ ∩A
∗a.

By the inductive hypothesis all the sets of the form LB
s,t are star-free, so it

remains to show that Tp′,q′′ is a star-free language. We can factor any w ∈ A∗a

uniquely as

w = v1a · · · vka,

where v1, . . . , vk ∈ B∗. Let us associate to w the word

wC = c1 · · · ck ∈ C∗,

where cj = (fB
vj
, a) ∈ C. By the inductive hypothesis, the language LC

p′,q′′ is star-

free. So we need to show that if R ⊆ C∗ is star-free, then Ψ(R) = {w ∈ A∗a | wC ∈

R} is also star-free, since Tp′q′′ = Ψ(LC
p′,q′′). It is thus enough to show

(i) If c ∈ C, then Ψ({c}) is star-free.

(ii) If Ψ(R) is star-free, then Ψ(C∗ \R) is star-free.

(iii) If Ψ(R1),Ψ(R2) are star-free, then Ψ(R1 ∪R2) is star-free.

(iv) If Ψ(R1),Ψ(R2) are star-free, then Ψ(R1R2) is star-free.

For (i), note that Ψ({c}) = Sa, where S = {v ∈ B∗ | c = (fB
v , a)}. Since S

is a boolean combination of languages of the form LB
p,p′ , Sa is star-free. For the

other assertions, we clearly have Ψ(C∗ \ R) = A∗a ∩ (A∗ \ Ψ(R)), Ψ(R1 ∪ R2) =

Ψ(R1) ∪ Ψ(R2), and Ψ(R1R2) = Ψ(R1)Ψ(R2). This completes the proof that

(3) ⇒ (1).

To prove (1) ⇒ (2), we need to show that every star-free language is first-order

definable. Since the singleton sets {a} for a ∈ A are clearly first-order definable, and

since the boolean operations are part of first-order logic, this reduces to showing

that if L1, L2 ⊆ A∗ are first-order definable, then so is L1L2. To do this, we

introduce the notion of relativizing a first-order sentence. Let ϕ be a sentence of

FO(<) and x a variable symbol that does not occur in ϕ. We define a formula

ϕ<x with one free variable with the following property: Let ν be an interpretation

mapping x to i ∈ Dom(u), and let v be the prefix v of u with domain {0, . . . , i− 1}.

Then u, ν |= ϕ<x if and only if v |= ϕ. To construct ϕ<x, we simply work from

the outermost quantifier of ϕ inward, replacing each quantified subformula ∃y α by

∃y ((y < x) ∧ α). We define ϕ>x and ϕ≤x analogously.

Now suppose ϕ, ψ are first-order sentences defining L1 and L2, respectively. Let

x be a variable symbol that does not occur in ϕ or ψ. We have L1L2 defined by the

sentence

∃x (ϕ≤x ∧ ψ>x) if ε /∈ L1,

∃x (ϕ≤x ∧ ψ>x) ∨ ψ if ε ∈ L1.
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To prove (2) ⇒ (4), we need to show that the syntactic monoid of every first-

order definable language in A∗ is aperiodic. We will proceed as in Section 1.4.2, and

treat a first-order formula with free variables contained in {x1, . . . , xp} as defining a

language over the extended alphabet Bp = A× {0, 1}p. We will show by induction

on the quantifier depth that every first-order definable language L ⊆ B∗
p in this

extended sense has an aperiodic syntactic monoid. More precisely, we will show that

for each such L there exists an integer q > 0 such that for all v ∈ B∗
p , v

q ∼=L vq+1.

By Lemma 1.2, this implies aperiodicity.

First suppose L is defined by one of the atomic formulas x1 < x2 or Rax1. Let

u, v, w ∈ B∗
p . If v has a letter with a 1 in one of its last p components, then neither

uv2w nor uv3w can be in L, since only one letter of a word in L can have a 1 in a

given component. If v has no such letter, then membership of uvw in L is witnessed

by the relative positions and values of letters in u and w, so that uvw ∈ L if and

only if uv2w ∈ L. Thus in all cases, we have uv2w ∈ L if and only if uv3w ∈ L, so

that v2 ∼=L v
3.

Now suppose the claim is true for L1, L2 ⊆ B∗
p defined by formulas ϕ1, ϕ2,

and suppose L is defined by ϕ1 ∨ ϕ2. We have, by assumption, vq ∼=L1
vq+1, and

vq ∼=L2
vq+1, for some q > 0. (The exponents for these two languages are, a priori,

different, but we can then choose q to be the maximum of the two exponents.)

Now ϕ1 ∨ ϕ2 defines L1 ∪ L2, and we have directly uvqw ∈ L1 ∪ L2 if and only if

uvq+1v ∈ L1 ∪ L2.

Care must be taken with the negation operator, since it does not exactly cor-

respond to the boolean complement. We can assume that the exponent q for L1

is at least 2. Let L′
1 be the language defined by ¬ϕ1. Suppose uvqw ∈ L′

1. Then

uvqw /∈ L1, and thus uvq+1w /∈ L1. Further v cannot contain a 1 in the last p

components of any of its positions, so uvq+1w has exactly one occurrence of 1 in

each of the last p positions, and thus is in L′
1. The same argument shows that if

uvq+1w ∈ L′
1, then so is uvqw. Thus vq ∼=L′

1
vq+1.

So now let K ⊆ B∗
p−1 be the language defined by ∃xpϕ1. Let v ∈ B∗

p−1. We

will show v2q+1 ∼=K v2q+2. Suppose uv2q+1w ∈ K. Let us extend each letter in this

word by adding a pth component with 0. We will still denote the resulting word as

uv2q+1w. Since K is defined by ∃xpϕ1, we can switch the pth component of some

letter to obtain a word z ∈ B∗
p such that z ∈ L1. Now, wherever the position in

which we switched the pth component is located, at least q consecutive occurrences

of v will be left intact. We thus find that z can be written in the form xvqy, for some

x, y ∈ B∗
p . (The extreme case is when the position is within the middle occurrence

of v, in which case we get two factors of the form vq.) Thus xvq+1y ∈ L1. If we

now switch the changed 1 back to 0, we find uv2q+2w ∈ K. The identical argument

shows uv2q+2w ∈ K implies uv2q+1w ∈ K. Thus v2q+1 ∼=K v2q+2, as claimed.

Remark 1.9. Interesting presentations of proofs of all or part of Theorem 1.8 can

be found, for instance, in the work of Perrin [15], Straubing [21] and Diekert and

Gastin [3].
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