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ABSTRACT Component Analysis (PCA) basis. These methods can de-

Optimal detection of unusual and significant changes ifect anomalies by monitoring each link but they do not ex-
network Origin_Destination (OD) traffic volumes from sim- plOlt the linear mathematical relation between the OD traf-
ple link load measurements is considered in the paper. THic matrix and the SNMP measurements, represented by the
ambient traffic, i.e. the OD traffic matrix corresponding torouting matrix. Moreover, they cannot be applied when the
the non-anomalous network state, is unknown and it is corfouting matrix varies in time (dynamic routing) and they-can
sidered here as a nuisance parameter because it can mask#qé be used to estimate the OD traffic matrix. The second
anomalies. Since the OD traffic matrix is not recoverablédroup of methods [1, 7, 8] exploits this linear mathematical
from simple link load measurements, the anomaly detectiofglation. These approaches typically assume that thectraffi
is an ill-posed decision-making problem. The method promatrix is well approximated by a known statistical model.
posed in this paper consists of finding a linear parsimoniou§uch a method requires a well known prior to be efficient,
model of ambient traffic (nuisance parameter) and detectinghich is not always feasible in practice. In [9], the authors
anomalies by using an invariant detection algorithm basegtudy a large number of methods based on different models
on a separation of the measurement space into disjoint suf2r SNMP measurements (wavelets, PCA among others) and
spaces corresponding to normal and anomalous network trdf2D flows (ARIMA time series) to detect anomalies. A major
fic. The method’s ability to detect anomalies is evaluated ilrawback of these methods is the lack of theoretical results

real traffic from Abilene, a United States backbone network0n their optimality properties (maximization of the probbab

The theoretically expected results are confirmed. ity to detect an anomaly for example) of the studied meth-
ods. Finally, the last group of methods consists in using the
1. INTRODUCTION Kalman filtering technique [10] to model the time evolution

of the traffic matrix and to detect changes in the OD flows.

Network management becomes very complex as networkgnfortunately, strictly speaking, the ill-posed naturetioé
increase in size and complexity. The traffic demand in aneasurement model makes the Kalman filter not observable
network is typically described by a traffic matrix that cap-and the Kalman filtering efficiency strongly depends on the
tures the amount of traffic transmitted between every paifitialization, which is a serious limitation in practice.
of ingress and egress nodes in a network, also called the The main contributions of this study are the following:
Origin-Destination (OD) flows. A volume anomaly is & sud-firstly, a parsimonious linear model of non-anomalous OD
den change in an OD flow's traffic (for example, due to afjow volumes (“ambient” traffic) is proposed. This model can
denial-of-service attack, a flash crowd event, a virus/wornhe ysed in two ways, either to estimate the OD flow volumes
propagation, etc.) that spans multiple physical links @& th or tg eliminate the non-anomalous “ambient” traffic from the
network. The reliable detection of these unusual and signifgnMP measurements in order to provide residuals sensitive
icant changes in the OD traffic matrix is an important issugy anomalies. Secondly, since a few anomaly-free SNMP
for network operation. measurements (at most one hour of measurements) is suffi-

_ High hardware requirements are necessary to networksent to obtain a reliable model of the OD flows, the proposed
wide collect and process the direct OD flow measuremethod is well adapted to highly non-stationary in time mea-
ments [1]. Consequently, the Simple Network Managemeng;rements and to dynamic routing. Finally, an optimal in-
Protocol (SNMP), which is a widely deployed standardized,ariant detection algorithm is proposed to detect anomalie
protocol, is preferred in practice to measure link loads angjjrectly from SNMP measurements (no need of direct OD
obtain some information on the traffic matrix. The challeng&jow measurements). This algorithm is optimal in the sense

lies in the ill-posed nature of the problem: the number of unthat jt maximises the probability of detecting the anonslie
known OD flows is much larger than the number of SNMPynqer a constrained false alarm probability.

measurements. For this reason detecting an anomaly in the
traffic matrix from SNMP measurements is a difficult task.
Several approaches are proposed to remedy this problem. 2. PROBLEM STATEMENT
The first group of methods consists in detecting anomalies ifrhjs section briefly presents the SNMP measurement model
SNMP measurements without taking into account the traffigng the anomaly detection problem.
matrix. Such methods typically use time series (AutoRegres
sive Integrated Moving Average or ARIMA models among
others) [2, 3, 4, 5] to model the SNMP measurements’ evog'1 SNMP Measurements
lution in time and detect deviations. In [6], the authors-pro Let us consider a network composed ofnodes andn
pose to decompose the SNMP measurements on a Principabnodirectional links [6, 9]. The volume of traffi(¢),



. 3. OD FLOW MODEL

& x(1,2) Lt The derivation of the ambient traffic matrix model consists
~ e of two different steps: i) description of the ambient traffic

using a spatial stationary gravity model and ii) linear appr

imation of the gravity model by using polynomial splines.

3.1 General gravity model

Gravity models [12, 13] assume that the traffic volume be-
X1 3, tween two nodes is directly proportional to the relativesatt
tion of each node and inversely proportional to some func-
. . ) ) tion of the separation (typically the distance) betweeis¢he
Figure 1: Detection of unusual changes in OD traffic vol-ngdes. Let us assume that, at tipéhe node of the net-
umes. A step-wise anomaly appears at tigén the OD  work is characterized by an attractive facti) related to
flow x(1,3) and it is routed on linkg(1) andy(2). the incoming flow at nodeand a repulsion factdR(i) asso-
ciated to the outgoing flow from node A network-adapted
formulation of the gravity model [12] may be given by the
following equation:

v
Network {

typically in bytes, on the link/ at timet (to simplify the
notations, the subscriptis omitted) is provided by SNMP x(i,j) = h(R(i)-A(j))-d(i, j)—l, (1)

link load measurements [9]. Let(i,j) be the OD traf- o ) )

fic demand from nodé to nodej at timet. This situa- Whered(i, j) is the deterrence function representing the sep-
tion is shown in Fig. 1. The link loads and the traffic ma-aration between nodesand j at timet andh: R — R is a

trix are S|mp|y related by a linear equatiyn: AX where Welghtlng_functlon relatln_g the repU|S|0n and attractlan-f

Y = (y(1),... 7y(n))T, X — (x(l),...,x(m))T contains then  tors. Typically, the functiorh is a non-decreasing smooth
(m > n) unknown traffic matrix elements(k) = X(ix. jx) function, which is a reasonable assumption in the absence of
written as a vector ané = {a(/,k)} is thenx m routing ~ 2nother physical model on the network. The functiosun-
matrix where 0< a(¢,k) < 1 represents the fraction of OD knownand makes it possible to model more complex interac-
flow k volume routed through link. Here,XT denotes the tions between nodes and to give more erX|b|I|ty_to the mc_)qel
transpose of the matriX. Without loss 6f generality, the as suggested (but not used) in [12, 13]. Following [12], itis

A dthal(i,j) =dforall1<i,j <rwheredis an un-
known matrixA is assumed to be full row rank, ra(k) = n. assume ? - =l =71 .
Clearly, sincan > n, it is impossible to infeX from Y. known real value. This assumption is quite reasonable in the

case of an autonomous system which is geographically lim-
ited, as the Abilene network [14] for example, since the dis-
tance between nodes are not significant for end-users. Hence
2.2 Volume anomaly detection problem it follows that (1) can be rewritten as:

The detection problem consists in detecting a significaht vo x(K) = X(ik, j) ~ d~*-h(w(k)) (2)

ume anomaly in an OD flow(i, j) by using only SNMP \yhareqy(k) = R(iy) - A(ji) represents the importance of OD

measurementy(1),....y(n). For example, in Fig. 1, itiS oy kin terms of traffic volume outgoing froimp and incom-
necessary to detect a sudden increase of the traffic vqurqﬁg to jx. Without any loss of generality, it is assumed that

X(1,3) by usingy(1), y(2) andy(3) (typical anomalies to be

detected in SNMP measurements are presented in [6]). AosS w(k) < 1forallk

it was mentioned above, the main problem with gathering > Spatial stationarity

the traffic matrix from SNMP measurements is thak m. ) o )

To overcome this problem a parsimonious linear model ofirstly, it is assumed that the order of importance between
non-anomalous traffic has been used. The idea of this mod&lD flows remains stable in time, i.e.

is that the non-anomalous (ambient) tratiacan be repre-

sented at each timeby using a known family ofy basis wik) < wke) < ... < k), 3)
functionsB = (b1, by, ..., bq) such thaty < n. Therefore, the for all timet, wherek; is the index of the OD flow with the
ambient traffic can be expressedXs: B where themx g j-th rank of importance (the relevance of this assumption is
matrix B is assumed to be known apde RY is a vector of  shown in section 5). Secondly, one of the few invariants of
unknown coefficients which describes the OD flows’ varia-Internet traffic is “the elephants and mice phenomenon”[15]
tion with respect to the set of vectots. The advantages a few percentage of flows contributes to a large proportion of
of such a parametric model are the following: firstly, a non-total traffic. Hence, OD flows can typically be classified in
parametric basis, typically the PCA basis, can be used to gethree classes of traffic depending of their volume of traffic:
erate the matri® but this solution needs direct OD flow mea- dominating OD flows, negligible OD flows and medium-size
surements (infeasible in practice) and the PCA basis depen®D flows. This last class of traffic is defined to add more
on the period when the measurements are made [11]. Seftexibility to the classification of OD flows. These classes in
ondly, the parametric detection methods’ performancetis beduce a segmentation of the inter{@]1] in three part$0; ra],

ter than the non-parametric one provided the adopted modgis ; 5] and[7e; 1], with 0 < 13 < 7B < 1, corresponding re-

is accurate enough. Therefore, the parametric approach $pectively to negligible, medium and dominating OD flows.
used to design a reliable detection algorithm derived from @s it has been experimentally confirmed, the segmentation is
spline-based OD flow model. time-stable, at least during several days (see section 5).



3.3 OD flow spline-based model The aim is to detect the presence of an anomalous véctor

The functionh is assumed to be non-decreasing with a cer0t €xplicable by the ambient traffic model (4).

tain smoothness and defined piecewise, with respect to knots L&t-%a ={¢: SURera Pro—o.u(¢(Z) = 74) < a} be the

m and 7, on the intervall0;1. Therefore, it is linearly class of testg: R" — {77, .71} with upper-bounded max-
approximated by using polynomial splines (basic defingion iImum false alarm probability, where the probabilitysfr

and results on polynomial splines can be found in [16]). Le§tands for the vector of observatiahbeing generated by the
{@w— by(w),...,w— by(w)} be a basis ofj = p+ 3 func- distribution./" (6 +Hp, Y2 1) anda is the prescribed proba-
tions for the space of splines of degrpavith p— 1 con- bility of false alarm. The power functighis defined with the
tinuous derivatives and 2 knots. By using (2), there exist%’)ba_l?r']“ty Olggot”e(;ttgetegtlorﬁ(e?#) Z(';rr]e#O,utE](P(Z) T .

a unique time-dependent vector= (u(1),..., T such 1). 1he subtlety orthe above mentioned hypotheses (esting
asX i Bu wherepB is them sz mz(alilri(x)whosﬁé(%%zament at Problem consists of choosing betweéfy and 771 with the
position (i, j) is bj(w(i)). Here, since the functioh is un- best possible performance indexes 3) while considering
known, sampling pointsy(i) can be arbitrarily chosen in the H as @ nuisance parameter.

interval [0; 1] provided condition (3) is verified. The exis- .
tence of dominant OD flows is sometimes modelled by using-2 Anomaly detection methodology

a-stable laws [17]. In such a context, the spline-based apit is easy to see that the problem remains invariant under
proximation is naturally justified by the necessity to have ahe group of translation& = {g: g(Z) = Z+Hc, c € RY}
piecewise approximation of such a heavy-tailed power lawsee an introduction to the principle of invariance in [18])
distribution. Finally, itis assumed that model errors thge  The maximal invariant statistics (also called “parity vec-
with the natural variability of the OD flows follow a spatial tor”) U = WZ is the transformation of the measured out-

Gaussian distribution [1], which leads to the model: put Z into a set ofn— q linearly independent variables by
projection onto the left null space of the mattk The
X=Bu+¢ (4)  matrix WT = (wy,...,Wn_q) of size nx (n—q) is com-

) ) ) ) posed of the eigenvectong, . .., wn_q Of the projection ma-
whereg ~ .#(0,y*2) is a Gaussian noise with thiax m Pt =Iln—H(HTH) 'HT corresponding to eigenvalue 1.
spatial diagonal covariance matrik = diag0f,....0%).  The matrixW satisfies the following conditionsVH = 0,
The matrixZ is assumed to be known and stable in time. Oy Ty — P4, WWT =1, . Let.# be the family of surfaces
the contrary, the scalaf serves to model the mean level of ) a2 )

the variance (due to the natural OD flow time variability) and-” = {S : ¢ > 0} with S = {6 : ||R{8]/y* = c*}. Then,

it may depend on the time. In practiGandy? are estimated It i shown [19] that the test

from a few anomaly-free SNMP measurements. _ 2
V(@)= { A5t N2) = REZIG/ P <ha | (g)

4. ANOMALY DETECTION PROBLEM J else
The goal is to detect an anomaly with the highest probabilityyhere the threshold, is chosen to satisfy the false alarm

of detection for a given probability of false alarm, i.e.ieat- bounda, Prg_ ,(A(Z) > Aq) = @, is Uniformly Best Con-

Ien\?ezp alarm in absence of anomaly, which is an undeSIrablé'}tantly Powerful (UBCP)in the class’#, over the family of

surfaces?’. The statistics\ is distributed according to the
x? law with n— q degrees of freedom. This law is central

_ ) ] ~underz# and non-central undetq with the non-centrality
According to the previous section, the non-anomalous “”‘barameteBTPﬁe/yz.

load measurement model is given by the following linear
model: 5. NUMERICAL RESULTS

Y =ABu+AE =Gu+{, (5) o
This section shows the relevance of the model and the per-

whereY = (y(1),...,y(n))" and{ ~ .#'(0,y?ASAT). With-  formance of the detection algorithm.
out any loss of generality, the resulting mat= AB is

assumed to be full column rank. Since the ma®ix ASAT 5.1 Description of the data set
is known, the testing problem consists of choosing betwee
the two alternatives:

4.1 Hypotheses testing: problem statement

The evaluation of the proposed methods requires the knowl-
edge of the real OD traffic flows. Such measurements are
{7 Cp_ q quite difficult to obtain in a commercial network but are
Ay={Z~ N (B +HULYIn); 6=0, HeRT}  (6) available for the Abilene network. The Abilene backbone
(7 ) q is composed of = 12 core routers anch = 144 OD flows.
Ha={Z~ N (O+HK, V2|”>' 070, ueR™, (1) For these numerical experimentss= 42 backbone links are
With Z = d~3Y, H = 3G, ® 7 is the square-root matrix Measured. More details on this network are given in [14] and

of ®~1, @1 s the inverse ofp andl, is the identity matrix real Qata are ava|Ia_bIe in [20]. The prlmary_data inputs are
of sizen. Herep is considered as a nuisance vector paramihe time series of link loads (by_tes across interfaces)-gath
eter since i) it is completely unknown, ii) it is not necegsar €red through SNMP. The sampling rate is one measurement
for the anomaly detection and iii) it can mask the anomaliesP€r 10 minutes, i.e. each measurement corresponds to the to-
Typically, when an anomaly occurs in OD flojwthe vector tal of volume of traffic (in bytes) which has passed through a

0 has the formd = s@*%a(j) wherea(j) is the j-th nor- A testg* € H#q is UBCP ons if 1) By (8') = By (8"),V6',0" € &;
malized column ofA ande¢ is the intensity of the anomaly. 2) B, (8) > By(0), V6 € &, Ve > O for any testp € #; which satisfies 1).




given link during 10 minutes. Two sets of measurements are Method SG TG SML

used: the first one, the anomaly-free data set, is composed Total RMSE || 93369 | 39349 | 37656
of 6 anomaly-free SNMP measurements (one hour measure- o

ment period) and the second one, the testing data set, is corfable 1: Total RMSE (in kilobytes) for 680 anomaly-

posed of 720 SNMP measurements (five days measureméffe measurements for gravity (SG), tomogravity (TG) and
period). LetT, (respectivelyT,,) be the set of time index as- Spline-based (SML) models.

sociated to SNMP measurements of the anomaly-free (resp.

Leoslilrng()afg?éatﬁg tiel'gr?gagr?? aly-free data set is measured O'rllﬁe mean valug T®(k) is also used as an estimaig of o2,

To identify the set of “true” anomalies in the testing datawhich leads to an estimate of ® (quite efficient and suffi-
set (as a precursor to the validation step), unusual dewsti cient in practice). In this estimation step, it is not neeegs
from the mean in each OD flow are manually detected. Manto know )¢ as explained in [21].
ual inspection declares an anomaly if the unusual deviation
intensity of the guilty OD flow leads to an augmentation of
traffic 1) larger than 5% of the total amount of traffic on the
network and 2) larger than 1% of the amount of the traffic
carried by the links routing this guilty OD flow. Hence, only
significant volume anomalies are considered as “true anoma-
lies” (small volume anomalies have little influence on link
utilisations). LetT, C T}, be the set of time indekassoci-
ated to the 680 non consecutive SNMP measurements of the
testing data set manually declared as anomaly-free (40 mea-
surements of the testing data set are affected by at least one ‘ ‘ ‘ ‘ ‘
significant volume anomaly). ' " SNMP measurement index

RMSE (in kilobytes)

5.2 Numerical validation of the model

Although many aspects could potentially be included in the i9ure 2: Comparison between the SG, TG and SML RMSE
evaluation, the focus is on the potential impact of perforfor 680 anomaly-free measurements.

mance errors on traffic engineering tasks. Hence, the root _
mean square error (RMSE) is used: Fig. 2 shows the error RMSE) over the sefly. Thex-
axis of the figure has no time meaning and it corresponds to

the index of each measurement. The s{/@ﬂg RMSE(t)?

on this time period is computed in Table 1 as a global in-
dicator to compare the methods. Clearly, the spline-based
Here, x (i) denotes the true traffic volume of OD flowat ~ €stimate gives better results than the others. To verify the
timet € T§, andx'® (i) denotes the corresponding estimatesPatial Ga})ussmn assumption, residuglsre computed for

for the method entitledlabel’. Three estimates are com- €acht € Ty. The Kolmogorov-Smirnov test [18] at the level
pared: 1) simple gravity estimate [14] with label ‘'SG’, 2) to 5% accepts the Gaussian hypothesis for 670 of these mea-
mogravity estimate [12] with label ‘TG’ and 3) spline-based SUrements (acceptation.886 of the time).

Maximum Likelihood (ML) estimate with the label ‘SML'.
Since the measurement model (5) is a Gaussian linear one,
the optimal estimate ok is the ML estimate [21]X M-
given by:

RMSE®4 (t) = \/i (%29 (i) —x (i), Vt € T,

)*(tSML(k) % (K)

XM =BHTH) HT z.

The statistical properties of the ML estimate are well
known [21] contrary to the simple gravity and tomogravity
estimates [14, 12]. The temporal correlation of the noise se 0
quence({ ), is ignored for the following reason: it can be

— i

theoretically shown that the integration of the ARMA (Au- , b \mgh flows
toRegressive and Moving Average) mode{én:)tZl does not S (. Medium flows
change the covariance matrix (and the biaskoM. ) Small flows

The spline-based model is computed by using SNMP
measurements of the short anomaly-free data set : 1) the
tomogravity estimate,"®(k) is computed for all OD flow  Figure 3: Approximation of real OD flows (full lines) by the
k and allt € Ty, 2) the mean flow valuex"®(k) =  spline-based model (dashed lines).
Ster, % ©(k) are computed and 3) sorted in ascending order
to obtain a rough estimate of the OD flow ranks. The spline-  Typical non-anomalous OD flows, sorted in the increas-
based model is designed with cubic splinps<(3) and knots  ing order of their volume of traffic, are shown as functions
m = 0.8507 andu = 0.9830 with sampling point&)(k) uni-  of timet in Fig. 3. Since the “shape” of sorted OD flows is
formly distributed in the interval0; 1]. Small variations on almost constant over the time, only a few sorted OD flows
the valuesry and m have no serious effect on the results. are plotted. The SML estimated profiles of the OD flows are



| Type of situation || Spline-based PCA |
Normal working 672 (98.82 %)| 673 (98.97 %)
False alarms 8 (1.18 %) 7 (1.03%)

Missed detections
Correct detections

9 (22.50 %)
31 (77.50 %)

35 (87.50 %)
5 (12.50 %)

Table 2: Results of the detection for 720 measurements con;
posed of 680 anomaly-safe measurements and 40 anomalo[B
measurements for the spline-based and PCA tests.

6. CONCLUSION

The problem of anomaly detection in OD traffic volume from
SNMP measurements has been considered as a statistical
hypotheses testing problem with nuisance parameters (non-
anomalous traffic). Since the number of SNMP measure-
ments is significantly lower than the number of OD flows, an
réginal linear spline-based parsimonious model is pregos
describe the non-anomalous traffic and to overcome the
ill-posed nature of the SNMP measurement model. Results

obtained with real data traffic from a United States back-
bone network show that both the OD traffic matrix estima-

also pIoEted on”the same figure with dashed lines. It showgon and the volume anomaly detection approaches outper-
that the “shape” of the OD flows is well modeled by the pro-orm the methods previously applied in the field.

posed spline-based model and is stable over the time. Hence,
the spatial stationarity assumption is quite reasonable.
5.3 Numerical validation of the detection algorithm [1]
The detection algorithm is applied to the SNMP measure-[2]
ments of the testing data set. For the detection purpose, it
crucially important to have a good estimate of the noiselleve [3]
y2. This parameter is estimated from the short anomaly-free
data set by using the ML estimate of noise variance [21] in
residualdJ;. Since this parameter can slowly vary in time,
its value is updated during the test. During the test, at timel®
t, if no anomaly has been declared one hour befgfeis
estimated by its value one hour before. B3l
The results are presented in Table 2. The second col-
umn shows that the proposed test obtains a false alarm raté
of 1.18% comparable with the prescribed level of false alarm
a = 0.01. The probability to detect a volume anomaly is Y
about 775%. The third column presents the results obtained
by the PCA test described in [6]. The threshold of this test is
chosen to obtain a similar false alarm rate @f3%. Clearly,
the PCA test is not as sensitive (correct detection ratetabou
12.50%) as the proposed test. Indeed, the PCA decompo[9
sition of SNMP measurements is too rough to detect small
(but significant) anomalies. Finally, Fig. 4 shows the cotrre [10]

(8]

1 —— [11]
goo, /—— 7>
= 0.8L Spline-based test [12]
S 07
Q
2o6f e
Sos| 0 LT
8 04 [13]
E PCA test
gos
02f ;7 (14]
0.1}
O6—01 02 03 04 05 06 07 08 09 1 [15]

False alarm rate
[16]

Figure 4: Correct detection rate versus false alarm ratinéor
spline-based test (solid line) and the PCA test (dotted.line

(17]

(18]
detection rates of the spline-based test and the PCA test for
different false alarm rates varying between 0 and 1. For ex49]
ample, for a correct detection rate of 80%, the false alarm
rate of the spline-based test %) is clearly better than that
of the PCA test4 70%). Hence it can be concluded that the[20]
numerical results confirm the theoretical properties otlie
tection method and shows that the proposed test outperforni]
the PCA approach, at least for the Abilene data set.
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