P. Casas and S. Vaton, An Adaptive Multi Temporal Approach for Robust Routing, Euro-FGI Workshop on IP QoS and Traffic Control, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00565957

W. Ben-ameur and H. Kerivin, Routing of Uncertain Traffic Demands, Optimization and Engineering, pp.283-313, 2005.
DOI : 10.1007/s11081-005-1741-7

D. Applegate and E. Cohen, Making intra-domain routing robust to changing and uncertain traffic demands, Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications , SIGCOMM '03, 2003.
DOI : 10.1145/863955.863991

M. Johansson and A. Gunnar, Data-driven traffic engineering: techniques, experiences and challenges, 2006 3rd International Conference on Broadband Communications, Networks and Systems, 2006.
DOI : 10.1109/BROADNETS.2006.4374362

H. Wang, H. Xie, L. Qiu, Y. Yang, Y. Zhang et al., COPE: Traffic Engineering in Dynamic Networks, Proc. ACM SIGCOMM, 2006.

I. Juva, Robust Load Balancing, IEEE GLOBECOM 2007-2007 IEEE Global Telecommunications Conference, 2007.
DOI : 10.1109/GLOCOM.2007.513

W. Ben-ameur, Between fully dynamic routing and robust stable routing, 2007 6th International Workshop on Design and Reliable Communication Networks, 2007.
DOI : 10.1109/DRCN.2007.4762277

A. Medina, K. Salamatian, S. Bhattacharyya, and C. Diot, Traffic Matrix Estimation: Existing Techniques and New Directions, Proc. ACM SIGCOMM, 2002.

P. Barford, J. Kline, D. Plonka, and A. Ron, A signal analysis of network traffic anomalies, Proceedings of the second ACM SIGCOMM Workshop on Internet measurment , IMW '02, 2002.
DOI : 10.1145/637201.637210

J. D. Brutlag, Aberrant Behavior Detection in Time Series for Network Monitoring, Proc. 14th Systems Administration Conference, 2000.

C. M. Cheng, H. Kung, and K. S. Tan, Use of spectral analysis in defense against DoS attacks, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE, 2002.
DOI : 10.1109/GLOCOM.2002.1189011

C. Zhang, Z. Ge, J. Kurose, Y. Liu, and D. Towsley, Optimal Routing with Multiple Traffic Matrices: Tradeoff between Average case and Worst case Performance, Proc. 13th International Conference on Network Protocols (ICNP), 2005.

C. Zhang, Y. Liu, W. Gong, J. Kurose, R. Moll et al., On Optimal Routing with Multiple Traffic Matrices, Proc. IEEE INFOCOM, 2005.

S. Kandula, D. Katabi, B. Davie, and A. Charny, Walking the Tightrope: Responsive yet Stable Traffic Engineering, Proc. ACM SIGCOMM, 2005.

A. Elwalid, C. Jin, S. Low, and I. Widjaja, MATE: MPLS adaptive traffic engineering, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213), 2001.
DOI : 10.1109/INFCOM.2001.916625

A. Lakhina, M. Crovella, and C. Diot, Diagnosing Network-Wide Traffic Anomalies, Proc. SIGCOMM, 2004.

A. Lakhina, Characterization of network-wide anomalies in traffic flows, Proceedings of the 4th ACM SIGCOMM conference on Internet measurement , IMC '04, 2004.
DOI : 10.1145/1028788.1028813

M. Thottan and C. Ji, Anomaly detection in IP networks, IEEE Transactions on Signal Processing, vol.51, issue.8, 2003.
DOI : 10.1109/TSP.2003.814797

A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford et al., Deriving traffic demands for operational IP networks: methodology and experience, IEEE/ACM Transactions on Networking, vol.9, issue.3, pp.265-279, 2001.
DOI : 10.1109/90.929850

Y. Vardi, Network Tomography: Estimating Source-Destination Traffic Intensities from Link Data, Journal of American Statistical Association, 1996.
DOI : 10.1080/01621459.1985.10477119

I. Nikiforov, A simple recursive algorithm for diagnosis of abrupt changes in random signals, IEEE Transactions on Information Theory, vol.46, issue.7, pp.2740-2746, 2000.
DOI : 10.1109/18.887891

I. Nikiforov, A lower bound for the detection/isolation delay in a class of sequential tests, IEEE Transactions on Information Theory, vol.49, issue.11, pp.3037-3046, 2003.
DOI : 10.1109/TIT.2003.818398

Y. Zhang, Abilene Dataset 04

A. Traffic, Non-anomalous traffic Hµ(t) is eliminated by projecting the measurement vector y(t) on the null space of H. By using the invariant properties of the Gaussian law, the general covariance matrix in (10) is reduced to the identity one, Let us define the matrix W = (w1, .., wr?q) of size r × (r ? q) composed of eigenvectors