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Abstract—Traffic Engineering (TE) has become a challenging optimization, computing a single routing configuration for
mechanism for network management and resources optimizath  al| demands within anuncertainty set While this routing
due to the uncertainty and the difficulty to predict c_ur_rent_trafflc configuration is not optimal for any single traffic matrix (TM
patterns. Recent works have proposed robust optimizationdch- ithin th t it minimi h t f
niques to cope with uncertain traffic, computing a stable roting within the set, 1 mlnlmlzes € worst case per ormance over
configuration that is immune to demand variations within cetain ~ the whole set. RR provides performance guarantees (i.stwor
uncertainty set However, using a single routing configuration case bounds) for all possible traffic variations within the u
for long-time periods can be highly inefficient. Even more, he  certainty set. However, applying a single robust configanat
presence of abnormal and malicious traffic has magnified the in the presence of highly variable traffic raises a difficult

network operation problem, claiming for solutions which nat . . . .

only deal with traffic uncertainty but also allow to identify faulty question: how should this uncertalnty set be defined? Larger
traffic. In this paper, we propose two complementary methods Sets cover a broader group of possible demands, but at the
to tackle both problems. Based on expected traffic patternsye cost of routing inefficiency. On the other hand, tighter sets
adapt the uncertainty set and build a multi-hour yet robust produce more efficient routing schemes, but subject to poor
routing scheme that outperforms the stable approach. For 8 sarformance guarantees. RR presents another drawback: it
case of anomalous and unexpected traffic, we propose a fast o S
anomaly detection/isolation algorithm which relies on a nwel does not solve _the prob_lem (_)f faulty traffic |dentn_‘|ca_t|_on.
linear spline-based model of traffic demands to identify trdfic The early detection and isolation of unusual and significant
problems and decide routing changes. This algorithm is opthal changes in traffic demands allows not only to perform an

in the sense that it minimizes the decision delay for a given 8an  accurate routing reconfiguration but also provides adutio
false alarm rate and false isolation probabilities. Both poposals information for improving network operation.

are validated using real traffic data from two Internet backbone
networks. A. Related Work

There is a large literature on traffic engineering with un-
certain traffic demands. Traditional algorithms rely on akm

Traffic engineering (TE) represents a major issue for nejroup of expected TMs (representative traffic demands from
work operators in today’s scenario. TE allows the optimaat past observations) or estimated TMs to compute optimal and
of network resources usage through multiple mechanismsliable routing configurations. An extreme case is presknt
In this work, we focus on routing optimization over arin [12], where routing is optimized for a single estimated TM
Autonomous System (AS). This optimization is becomingnd it is then applied for long-time periods (24hs periods).
increasingly difficult due to the dynamic nature of currerifraffic uncertainty is characterized by multiple TMs in [13]
traffic. Traffic demands present two different components §it4] (e.g. set of TMs from previous day, same day of previous
behaviors on one hand, a stable and predictable compweek, etc.), and different ways to find optimal routes forgae
nent due to normal traffic usage patterns (e.g. daily demaa presented. Given the dynamic nature of present demands,
fluctuation); on the other hand, an abrupt and unpredictaltkés perspective is no longer suitable for current scerfaticA
behavior due to unexpected events, such as network equipnufierent approach is provided by online reactive algarith
failures, flash crowd occurrences, security threats (eegiall TeXCP [15] and MATE [16] both balance load in realtime,
of service attacks, virus propagation), external routingnges responding to instantaneous traffic demands. Their maih goa
(e.g. inter-AS routing through BGP) and new spontaneoissto avoid network congestion by adaptively balancing the
overlay services (e.g. P2P applications). We use the teload among paths, based on measurement. Reactive routing
volume anomalyf17] to describe these unexpected networkresents a desirable property, that of keeping routing tadap
events (large and sudden link load changes). to current traffic. However, these adaptive algorithms gmées

Recent works [2]-[5] have proposed a new perspective poor performance under significant and abrupt traffic chenge
the routing optimization under traffic uncertainty: tRebust [5]. A third category of algorithms consists in Stable Rdbus
Routing (RR) approach. In a robust approach of TE, demarRouting techniques [2]-[6]. In [2], the authors capturdfita
uncertainty is taken into account directly within the rogti variations by introducing a polyhedral set of demands, ap-

|. INTRODUCTION



plying linear programming techniques to compute an optimble over time. This model allows to separate normal from
stable routing for all demands within this set. [4] appliest anomalous traffic, based on simple link load measurements.
robust technique to compute a robust MPLS routing configui@eth proposals are validated using real traffic data from two
tion without depending on TM estimation. Oblivious Routindgpackbone networks, the Internet2 Abilene backbone network
[3] also defines linear algorithms to optimize worst-case peand a private international Tier-2 network.

formance for different sizes of traffic uncertainty setsniag The remainder of this paper is organized as follows. In
to handle dynamic changes. [6] analyses the use of rob&gction II, we recall the basic aspects of the robust routing
routing through a combination of traffic matrix estimatiomda approach. Section Il presents the theoretical backgraumt

its corresponding estimation error bounds, in order tonghriempirical evaluation of the MHRR. The proposed algorithm
the uncertainty set. The drawback of stable robust rousiritsi and traffic model for anomaly detection/isolation are intro
inherent dependence on the definition of the uncertainty sdticed and validated in section IV. Finally, Section V codels
larger sets allow to handle a broader group of traffic demandsis work.

but at the cost of routing inefficiency; conversely, tightets 1. ROBUST ROUTING

produce more efficient routing schemes, but subject to POON ot us consider a network topology defined by a set

pe;\f;)rrrgag(r?sg:r?gi:atlleezetecti0n in data networks, the pro f— n nodes andL = {1,...,r} links with capacities in
9 y ’ P = (c1,¢2,...,¢). The TM demandd = {d; ;} denotes

lem has been extensively studied. In this section, we w, , _ - ;
. . . ) e traffic flow between every nodeand nodej (i # j)
just overview those works that have motivated our signal; -
. . . . . of the network. We re-arrangd as a column vectord =
processing based detection algorithm. Signal processitiy t : .
. : . ! dk, k=1..m }, Wheredy, represents the traffic flow transmitted
nigues have been applied to the anomaly detection field [9]-" ; .
. ) OD pair k (OD-flow k) andm = n x (n — 1) is the
[11]. The usual behavior of data flows is modeled by sever . o
] L ; . number of OD pairs. LelN = {ODy,...,0D,,} be the set of
approaches: spectral analysis, time series analysis, letave . S . o
e ) _— OD pairs. Link’s informationy; represents the total traffic (i.e.
decomposition, etc. Anomalies correspond to deviatioosfr aggregated OD flows) through lirikn a certain period of time
the usual behavior of the data flows. The general flaw of th greg 9 P '

. ) - . is information is available from router's MIB variablesd
algorithms is the lack of stability over time of the proposeﬁi is usually collected every 5 periods via SNMP [20]. Traff

traffic models, as well as the absence of optimality conrisﬁlod mands and links’ traffic are related through the routing

for the detection in most cases. A second class of methods, . :
T matrix R, ar x m matrix R = {r;;} where0 < r; <1
related to our model concerns statistical hypothesesntgsti . ’ TN

. represents the fraction of OD demahdouted through link:
[17]-[19]. When data flows are parametrically modeled, the

design of optimal algorithms is possible. Nevertheles$)-no y =Rxd. 1)

parametric approaches are particularly studied becautieeof yith y = {w. i-1..}. Routing optimization depends on
lack of parametric models, and these approaches are often sHe underlying data transport mechanism; we will focus on
optimal. The detection/isolation of traffic anomalies gesb path-based routing such as MPLS. This optimization camsist
was previously treated in [17], using a TM decomposition 0§f minimizing certain performance metric associated with
the Principal Component Analysis (PCA) basis. Howeves thiraffic demand. Throughout this work we consider maximum
approach presents a major stability problem: the PCA basgisk utilization (MLU) as the routing performance criterio
depends on the measurement period, rendering it unstadte Qyverloaded links tend to cause QoS degradation (e.g. larger
time. delays and packet losses, throughput reduction, etc.),ld0 M
represents a reasonable measure of network performanee. Th
are many other performance metrics that could be used thstea
We propose two novel and complementary approachesdpwLu, like path’s end-to-end delay or mean link utilizatio
deal with current dynamic traffic demands, separatelyitigat setting the focus too strictly on the MLU can often lead to
both traffic Uncertainw sources. FelXpeCted traffic fluctu- |Onger average trafﬁc paths and thus adversely affect thﬂ]me
ations we present a time varying approach of RR that oufjowever, we use the MLU as it is the most commonly applied
performs the currerdtableapproach: thé/ulti-Hour Robust  criterion and it represents an easy to understand perfarenan
Routing (MHRR) . We preserve the virtues of RR, but changgetric. For a given routing matri® = {r,} and a traffic

the routing configuration during time. The uncertainty Set demandd, the MLU (uyne.) is defined as the maximum of
optimally divided into several uncertainty sub-sets thettdr the ratio between link load and link capacity:

adapt to real traffic loads and a stable robust routing sclieme i dy ”
computed for each sub-set. The partitioning algorithmvedlo  %maz (C,d, R) = max ——— = max_ — (2)
to calculate the exact moments when routing changes must be ettt “ tetl..r} a
performed. For the case ahpredictable traffic behavigrwe Let P(k) be the set of possible paths for OD demahnd
propose a novel volume anomaly detection/isolation allgori Let a:’; be the proportion of traffic demand, that flows
to identify traffic problems and decide routing changes. Tibrough pathp € P(k), 0 < x’; < 1. Finally, let 2} be
overcome the limitations of the PCA approach [17], wthe proportion of traffic demand; that flows through link
propose a non data-driven traffic model which remains sta< L, 0 < zf < 1. We defineD as the uncertainty set

B. Contributions of the Paper



where traffic demand may vary. This set can be definedlily = {(d,t) ceR™ deu t<t<t, D(t), t1 <t < tT}.
different ways, depending on the available informationkli Figure 1(a) explains this idea. Assuming this set is an
load measurements and historical routing, a set of preljiousinion of polytopes, [7] provides a theoretical study of the
observed TMgd},d?,...,d°}, TM time seriesd(t), etc. [2] optimal partitioning ofD;, using a partitioning hyper plane.
defines this set as polytope based on the intersection of[7] proves that this is a NP-hard problem, except for the
several half-spaces that result from linear constrainfsosed case where a partitioning direction is previously fixed. We
to traffic demand. The Robust Routing Optimization Probledfefine a partitioning hyper plane by its direction vector
(RROP) consists of minimizing,,...., considering all demands« and a valuew: a.d = w. In the MHRR approach, we
within D (3). The RROP can be efficiently solved by lineaconsider a particular direction for partitioning: théme
direction In that casew represents the time of the day. We

minimize - tmae 3 define h + 1 hyperplanes at timegw;,ws, .., wp11}. The
sugt’:jec;tf ' 51 VkeN ) intersection betweeld; and the half-spaces defined by these
peP) - partitioning hyperplanes results ih uncertainty sub-sets
@y <af VkEN, VIEL D; = {D; N{d,a.d > w;} N{d,e.d < wi1}},¥i=1,.,h.
PeP““z):’f,fdk el VieL. vdeD Let D; be the smallest single-time set that contains all
s ’ demandsi(t) € Dy, w; <t < w1 (see figure 1(b)). A SRR
@y @] 20 VieLVpePk), VkeN configurationR?. , .., is computed for each sub-s&;. Each
Ymaz sl routing configuration is finally applied at each time intérva
The optimal values of routing changes® = {w3,...,w;}

programming techniques, applying a combined column ang, e sojution for the following optimization problena(
constraint generation method [2]. In a traditional robustty 4 wn.1 are fixed a priori, as they define the considered
ing application, the obtained routing configuration is agpl time interval of analysis):
during long-term periods of time (i.e. daily routing). Inigh
sense, we refer to robust routing 8&ble Robust Routing w*(D;) = arg min{_mla)% umam(Di)} (4)
(SRR). w o |i=1..

[1l. M ULTI-HOUR ROBUST ROUTING whereu,,q.(D;) is the solution for (3) for polytopeD;. [7]

In [1] we present the advantages of the SRR with resp(fcrtesenFS a S|mple.a_lgor|thm_ to appromma’gely.solve (4)i(u_mt

- . ) - an arbitrary precision), using a generalization of a simple
to _traditional rqutlng approaches. . SRR offers .Stap'm&ichotomy methodology. The MHRR presents a trade-off
guarantees against traffic -uncertainty and traffic tIm%'etween performance and routing stability. The more imtisrv

variations at a reasonable cost. However, considering a X
. : . . . “we use, the more adapted the routing becomes. However,
single routing scheme for long-time periods is consereati

. . he number of intervals should be bounded as many routing
and results in sub-optimal performance. We propose . 4
. . : changes may lead to instabilities and performance dedosdat
simple approach to shrink and adapt the uncertainty

. Jhi'a general case, 2 sub-sets are enough to handle the usual
along time that outperforms the SRR. Based on rougﬁ '

knowledge of traffic variations (i.e. considering expectedaIIy variation.
traffic behavior), we propose to optimally divide theMHRR Evaluation

uncertainty set and build a multi-hour routing configurafio s present a comparative analysis between SRR and
considering a single SRR configuration for each sub-SgirR in Abilene, an Internet2 backbone network. Abilene
Daily traffic changes can be seen as a time variation Efgjsts of 12 router-level nodes and 30 OC192 links (2
OC48). The used router-level network topology and traffic
demands are available at [25]. Traffic data consists in 6-
month traffic matrices collected every 5’ via Netflow from the
Abilene Observatory [26]. The time-variation of the poly&

is not a simple homothety [1]; in this sense, we will show
that a routing configuration change during the day improves
routing performance. LeR,, be the historical routing matrix of
Abilene, not necessarily optimaky, is available at [25]). We
consider a single time partitioning (i.e. 2 routing intdsya

wy; = 20:00, wy = w* and ws = 21:00, wherew* is

Fig. 1. (a) Daily variation of the polytop@, (b) time partitioning ofD:.  the golution for (4). For each time interval, we consider the

. , . . smallest polytope that includes all possible realizatiowsr
the uncertainty set. At each time the routing matrixR? 4t period:

and the link load valueg(t) = y' define an instantaneous .
uncertainty setD(t) = {d e R™,R xd <y', d > 0}. The Dap = {deR™ R, xd<yap d=0} (5
continuous union of infinite instantaneous uncertaintyherey, = y2:%0-v" andyp = y® -2V (maximum
sets along timet¢ defines the daily uncertainty set values for each link). In this wayD, includes all traffic




demands between 20:00 and® and Dp betweenw* and link loads as input to avoid relying on seldom availableficaf
21:00 (see figure 1(b)). For each polytope, we computedemands. In this work, we focus on detecting and isolating a
SRR configurationR#, ., andRB, . In order to compare “localized” anomaly,0 = 0 (614,...,0:i,...,0m.)" , Where
stable and multi-hour approaches, we apply both routig; = 0if ¢ # j andd; ; = 1 (this corresponds to a changé@
configurations during the whole evaluation period. We idelu OD flow 7). If several OD flows are simultaneously corrupted,
the routing performance obtained witR, (curve historical the detection/isolation algorithm produces an alarm aed-d
routing) to appreciate the time variation of traffic loads. Figuréfies only one faulty OD flow. The algorithm can be extended

to detect/isolate simultaneous anomalies, but its’ corifyle
S (n° hypotheses, see IV-B) grows highly. The isolation of the
048 :E:tz::ilg‘sg‘g: S :E:tz::ilg‘sg‘g: R . ..--."1 anomalous traffic is possible since an anomaly in a given OD
St Ry Y Criiou b g "« flowtypically spans multiple links. Real traffic demandddal

£, a non-observablenodel from link load measurements: since

r < m, it is impossible to retrievel(t) from y(¢) without
additional assumptions on the traffic demand. To overcome
this difficulty, we propose a parsimonious linear model for
non-anomalous traffic. This model renders traffic demands

oo o0 100 observable and therefore, it allows to separate usual from

0.4

<t

0.35)

0.3

Maximum Link Utilization
Maximum Link Utilization
°

X 10:00 14:00 20:00 : X
Time (hours) Time (hours)

(a) Expected daily behavior (b) Anomalous unexpected evergnomalous traffic.

5:0(

Fig. 2. Routing performance, stable vs. multi-hour robesiting. A. Stochastic Traffic Model for Anomaly Detection

2(a) compares the routing performance (MLU) between thegeV€ assume that the stochastip process O'f the OD traffic
two RR configurations. PolytopB 4 is well suited for smaller demandd(t) obeys the following linear model:
loads, soRA performs better during the first half of d(t) = A(t) + &(t) (6)

robust
the day, when network load is lower. However, when traﬁi\%/here A(f) € R™ is the mean traffic demand ang(t)
is a white Gaussian noise with covariance mafri§) that

increases, demands that do not belondtg produce higher

. oo . gs

link u_t|I|2<'_;1t|ons tha’.‘ those thamed W'mro_bust' The MHRR represents the model error together with the natural viitiab

consists in cqmpupng the t|me_when routing must _be Chan_gg the OD flows (based on the results obtained in [22]). The

(w f.% 8'?0 md this ggse), ustltr:g :.he co;reiapor&dmg routm@rocess\(t) represents the “regular” part of the OD TM which

go? '9‘”3 |ond ReBpen Infgt] onThe I\/IIITSRO © ??T'gbust gan be correctly modeled when the behavior of the network
eloréw= an ; after). The approach presentsg anomaly-free. We propose to parameterize this vector by

robus
a performance improvement a6% with respect to the SRR exploiting the stationarity of the spatial distributiontbe TM.
One of the few invariants of Internet traffic is that a small

approach beforev*, reaching a nea20% of over-efficiency
after w*. We repeat the same evaluation but considering a

traffic demand that drastically changes (i.e. a large time- d(t)
variation of the polytope, caused by a volume anomaly). feigu

2(b) presents an abrupt change in MLU (almost 14 times

higher) at time 18:00. In this case, we assume that this ahang

is known in advance (note that in the general case, it is not
possible to predict these abrupt changes). The optimal mbme
for changing routing isw* =~ 18:00. The MHRR approach
definitely outperforms the SRR in this experience, presgnti °

a MLU between10% and 60% smaller during the whole
evaluation period.

1500 »
P
/Ine /moo w ©

=N
(I, 50 w0 Large flows
'in) B Small flows

Medium-size flows

IV. DEALING WITH UNEXPECTEDEVENTS

The proposed MHRR approach offers a robust and efficient Fig- 3.  Approximation of real OD flows by the spline-based eiod
routing configuration, given a rough knowledge of the daily
uncertainty set. However, in the presence of volume an@®alpercentage of flows contribute to a large proportion of total
it is no longer possible to apply the MHRR as the dailyraffic [4], [8]. Hence, if we assume that the traffic disttiloun
uncertainty set is unknown. For those cases, we proposdeiween the different OD couples is spatially stationary in
fast volume anomaly detection/isolation algorithm to glyic the absence of an anomaly, the order of increasing OD flows
identify faulty traffic. This detection allows to decide ama remains constant during long time periods. The proposed
as possible the moment when routing configuration must baffic model takes advantage of the stationary properthisf t
changed. The goal of the algorithm is to detect/isolate ali-adordering. We propose to classify OD flows in three different
tive change) in the time series of traffic demant{¢t) from a classes, depending on their volume: large OD flows, small
sequence of link load measurement$) = R x d(t). We use OD flows and medium-size OD flows. The sorted components



can be interpreted as a discrete increasing signal. Thescueliminating the non-anomalous traffic. In this case, hypsi
obtained by interpolating this discrete signal is assurodoet (10) can be rewritten as

a continuous curve, hence it can be parameterized by using z(t) ~N(0,1,_,), t=1,... to—1,
a polynomial approximation. Figure 3 shows the OD rows,Hg' d2(t) ~N O, Ly), (11)
sorted in the increasing order of their volume of traffic, as ° 00 <|0;] <01, t=to,to+1,...

a function of the timet. Since data are vectors of finite . .

dimension, we propose to use the following method to desiV\ﬁhere v; is a known vector andk(f) are the normalized
. R C . PEsiduals obtained from(t) after filtering the non-anomalous

a discrete spline basis: (i) we choose a continuous spllpre

basis; (ii) we discretize all these splines accordingitpoints affic. The vectorv; corresponds to the signature in the

; . ) ) residuals of a change in OD floy. We use the optimal
uniformly chosen in the intervdll; m] and (iii) we rearrange recursive alaorithri T roposed in [24] to solve (11) :
all these discrete signals according to previous sortirtgror ursive algorithn(7;., v») prop ! v '

We finally obtain the following linear model for the anomaly- T, = 1£J£11€1<n {T.(k)}, v, = arg 1£I]1€1<n {T-(k)}
free traffic demand: Shsm Shsm
d(t) = Sp(t) + &(t) ) T;(k) =inf {t >1: min lgi(k,j) = hi ] > 0} (12)

where S = (s1s2...84) is am x ¢ known matrix with with g,(k,j) = g,(k,0) — g;(4,0). The recursive functions
columnss; and ¢ is small with respect ton. The vectors g:(k,0) are defined by
s;, which correspond to the rearranged discrete spline, form a

n
set of known basis vectors describing the spatial distigbut 90k, 0) = (ge-1(k, 0) + z(k, 0)) (13)
of the traffic andu(t) = (11 (t). .. uq(t))" is the unknown z(k,0) = log fr(2(t)) (14)
time varying parameter vector which describes the OD flow Jo(z(t))

intensity distribution with respect to the set of vectsysThe go(k,0) = 0 for everyl < k < m andg,(0,0) = 0 for all ¢.
model for the anomaly-free link traffic is given by: fo represents the probability density function of anomadsefr

_ traffic measurementsf; is the probability density function
y(t) = Hp(t) + (), ®) of residualsz(ty), z(to + 1), .. after a change of typé. The

where H = RS and {(t) = R§(t). In this way, we can thresholdshy ; are chosen by the following formula:

describe the usual behavior of traffic demands from simple e ifl<k<m andj = 0

link measurements. The computation of the rankHis not h,; = { hi if 1 ; k ;< m andj + k

simple since it depends on the routing matfix In practice, ) ) . ) )
since the number of columns @f is very small, the product where hy is the detection threshold anfd is the isolation

RS and its rank can be computed very fast. Therefore, areshold. For given bounds and §, this algorithm is
will assume that7 is full column rank. Finally, the covariance@Symptotically optimal, i.e. it reaches the lower boundfe t
matrix 3 is unknown. The remedy consists in computing aff@ximum mean delay for detection [24]. The choice of the

~

estimate>, of ¥. Results on the estimation &f can be found detection and isolation thresholfig andh; is discussed (with
in [21]. practical comments and simulations) in [23].

B. Volume Anomaly Detection/Isolation C. Validation

The detection/isolation of a volume anomaly at titgecan We demonstrate the ability of the detection/isolation algo
be treated as a hypothesis testing problem where the rifihm to detect and identify a volume anomaly in SNMP link
hypothesis?—(g0 = {the OD flows are anomaly-free at timeflow data from two different networks (different not only in
to} is tested againsi aIternativeSH-ZO = {the j-th OD flow the top.ology but also in the behavior of traffic .demands): a
presents an anomalous additional amount of traffimm the large Tier-2 network (50 nodes, 168 measured links and 2450

time, }. The change detection algorithm has to compute a p&en-zero OD flows, sampled at a 10 minute rate) and Abilene
(T,v), whereT is the alarm time at which a-type change (the Abilene dataset consists in Netflow traces, so we use the

(v € {1,2,...,m}) is detected and isolated, based on linRupplied routing matrix to retrieve link loads). Figure el
traffic observationsy;,y»,... The hypothesis testing can bethe typical realizations of the decision functioggi, 0) and
written as 5¢(1) = mino<izr<m[9¢ (2, k) — hi i) Vs the elapsed time. The

T functionss; (i) are used to “monitor” the OD flows; when the
Ho = y(t) ~N(Hp(t), RERT), t=1,2,.... ©) function s, (i) exceedsd, OD flow i is declared faulty. It is
. y(t) ~ N(H p(t), RERT), t=1,....to— 1, assumed that the anomaly in the Tier-2 network begins at time
My, y(t) ~ N(H p(t) + 0;1;, RERT), (10) 3660, and at time1070 in Abilene. Note that after this time,
Oja < 10| < b2, t=to,to+1,... several decision functiong (i, 0) rapidly grow. Each function
wherer; 1<;<m denotes the normalizedth column ofR and  ¢;(i,0) is associated with OD flow and when this function
0 <01 <02 < +oo are some known bounds on the changgrows, it means that OD flow is suspected of carrying an
intensity of thej-th OD flow (these bounds are introducedbnormal amount of traffic. Contrary tp(¢, 0), only decision
for technical reasons but they can be chosen arbitrarilg). Aunction s;(159) (s+(87) in Abilene) associated to faulty OD
we show in the Appendix, we can simplify this problem bylow 159 (87 respectively) grows and finally exceeds the



exploited in order to recompute routing in a more efficienywa
" » The impact of routing re-configuration on end-to-end traffic
must be explored, especially considering the imposed QoS

20 20
18
14 10
S Anomaly begins = Alarm on OD flow 159
s “ Level of alarm
8 0
6 -5
NI Y\
0 3460 3480 3500 3520 3540 3560 3580 3600 3620 3640 3660 - 3460 3480 3500 3520 3540 3560 3580 3600 3620 3640 ‘3660 [2]
Time ¢ (min) Time ¢ (min)
(a) Recursive functiory (i, 0) (b) Decision functions () 3]
15 ‘
. 10 Alarm on OD flow 87 ‘ [4]
“ ° Level of alarm
- 35 [5]
<% Anomaly begins
S5 [6]
20 [7]
15
10 [8]
5
0 [l
1020 1030 1040 1050 1060 1070 1020 1030 1040 1050 1060 1070
Time ¢ (min) Time ¢ (min)
(c) Recursive functiony; (i, 0) (d) Decision functions () [10]
Fig. 4. Typical realizations of decision functions for a FFEenetwork (a,b) [
and Abilene (c,d).

threshold. Hence, the functions (i) permit us to isolate 13
the faulty OD flow among all the OD flows associated to
functionsg; (i, 0) that have rapidly grown. At tima660 (1070 |14
respectively), an alarm is raised and the algorithm selibets
faulty OD flow 159 (87 respectively). The decision function™
st(i) needs onlyl observation 10 minutes in the Tier-2 [16]
network or5 minutes in Abilene, but this is the smallest delay, 7,
than can be achieved given these sampling-rates) to detdct a
isolate the faulty OD flow. An interesting observation istthd"®
the detection/isolation algorithm achieves good resaltsath  [19]
networks, even though the respective traffic demand betsavigy,
are completely different between these two networks.

[21]

V. CONCLUSIONS ANDFUTURE WORK
[22]

In this paper, we address the routing under traffic uncestai -
problem. We provide a solution that not only deals with
current dynamic traffic demands in a robust and efficief
way but also detects and isolates large-volume anomalqgts
traffic, improving network operation. We extend the robugt®!

restrictions in the current end-user Internet-servicenao.
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routing paradigm by introducing the notion of time-varyinga ppenpix - ELIMINATION OF NON -ANOMALOUS TRAEFIC

uncertainty set, setting up a multi-hour robust routingesab.

Non-anomalous trafficH u

(t) is eliminated by projecting the

than previous stable robust proposals in different sceaavi/e

invariant properties of the Gaussian law, the general cavee matrix
introduce an original linear spline-based parsimoniousieho in (10) is reduced to the identity one. Let us define the matrix
to parameterize normal traffic behavior from widely avdiab W=

(W1,..,wr_q) Of sizer x (r — ¢q) composed of eigenvectors

. . iaeti L _ T\~ LT
link load measurements. Based on this model, we presentg - Wr—q Of the projection matrixP; = I, — H(H H) ~H

statistical algorithm to detect and isolate volume anoesal

.corresponding to eigenvalue The matrix\V satisfies the following
, X , ! U conditions: W' H = 0, WWT = P& and W'W = I,_,. The
in network traffic. We apply this algorithm to cope Withmatrix 17" can be considered as a linear rejector that eliminates the

sudden and large traffic changes in current dynamic demanats-anomalous traffic. Under hypothesi§ , the sequencél "y (t)

complementing the multi-hour robust scheme. Many impartacan be modeled a8’ "y (t) = W ¢(t)+0; W' r;,

7=1..,m.

issues remain open for further study. A deep evaluation @f tﬁinceWTC(t) is a correlated Gaussian vector with covariance matrix

challenges involved in changing routing configuration afte” = or
the detection of the anomalous traffic should be performefiuare root matrix:=, z()

WTRER"W, each vectoWNT)lr(t) is normalized by using the
STEWhy(t) ~ N(0;v5, 1),

The isolation ability of the proposed algorithm can be hyghWith vi = AW



