Accéder directement au contenu Accéder directement à la navigation

The non-parametric sub-pixel local point spread function estimation is a well posed problem

Abstract : Most medium to high quality digital cameras (DSLRs) acquire images at a spatial rate which is several times below the ideal Nyquist rate. For this reason only aliased versions of the cameral point-spread function (PSF) can be directly observed. Yet, it can be recovered, at a sub-pixel resolution, by a numerical method. Since the acquisition system is only locally stationary, this PSF estimation must be local. This paper presents a theoretical study proving that the sub-pixel PSF estimation problem is well-posed even with a single well chosen observation. Indeed, theoretical bounds show that a near-optimal accuracy can be achieved with a calibration pattern mimicking a Bernoulli(0.5) random noise. The physical realization of this PSF estimation method is demonstrated in many comparative experiments. They use an algorithm estimating accurately the pattern position and its illumination conditions. Once this accurate registration is obtained, the local PSF can be directly computed by inverting a well conditioned linear system. The PSF estimates reach stringent accuracy levels with a relative error in the order of 2-5%. To the best of our knowledge, such a regularization-free and model-free sub-pixelPSF estimation scheme is the first of its kind.PSF
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00540637
Contributeur : Mauricio Delbracio <>
Soumis le : lundi 28 février 2011 - 07:00:07
Dernière modification le : jeudi 19 décembre 2019 - 01:05:14
Document(s) archivé(s) le : dimanche 29 mai 2011 - 02:24:31

Fichiers

psf_estim_submitted_ijcv.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Mauricio Delbracio, Pablo Musé, Andrés Almansa, Jean-Michel Morel. The non-parametric sub-pixel local point spread function estimation is a well posed problem. International Journal of Computer Vision, Springer Verlag, 2011, pp.1-20. ⟨10.1007/s11263-011-0460-0⟩. ⟨hal-00540637⟩

Partager

Métriques

Consultations de la notice

754

Téléchargements de fichiers

722