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Statistical identification of articulation

constraints in the production of speech ?

Philip J.B. Jackson ∗ and Veena D. Singampalli

Centre for Vision, Speech and Signal Processing, University of Surrey, UK.

Abstract

We present a statistical technique for identifying critical, dependent and redundant
roles played by the articulators during production of English phonemes using articu-
latory (EMA) data. It identifies a list of critical articulators for each phone based on
changes in the distribution of articulator positions. The effect of critical articulation
on dependent articulators is derived from inter-articulator correlation. Articulators
unaffected or not correlated with the critical articulators are regarded as redun-
dant. The technique was implemented on 1D and 2D distributions of midsagittal
articulator coordinates, and the results of this data-driven approach are analyzed
in comparison with the phonetic descriptions from the IPA chart. The results us-
ing the proposed method gave a closer fit to measured data than those estimated
from IPA information alone and highlighted significant factors in the phoneme-to-
phone transformation. The proposed algorithm was evaluated against an exhaustive
search of critical articulators, and found to be as effective as the exhaustive search
in modeling phone distributions with the added advantage of faster execution times.
The efficiency of the approach in generating a parsimonious yet accurate represen-
tation of the observed articulatory constraints is described, and its potential for
applications in speech science and technology discussed.

Key words: critical articulator, speech production model, articulatory gesture,
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1 Introduction

An accurate model of speech articulation is important for understanding its
production and perception (Meister et al., 2007; Wilson et al., 2004) and for
integration into speech technologies (King et al., 2007). Yet coarticulation re-
mains one of the main problems faced in speech research. In the production
of speech, e.g., from a specified sequence of phonemes, coarticulation spreads
their influence across the utterance so that substitution of one phoneme for
another (or the change of one distinctive feature) alters it not only within
the corresponding phone segment but throughout the neighbouring segments.
The human speech articulators (jaw, tongue, lips, etc.) have limited freedom
to move, interconnections, stiffness, damping and inertia. Speech gestures are
thus planned in a coordinated sequence, controlled by intrinsic and extrinsic
muscles, and are relatively slow and overlapping. As a result, it is difficult
to match linguistic units with acoustic data and to account for all kinds of
observed variability in articulation. There have been many acoustic, pseudo-
articulatory and articulatory approaches to modeling the spatio-temporal ef-
fects of coarticulation. From observations of acoustic data, Lindblom (1963)
studied the formant target undershoots of vowels in CVC occurrences as a
function of vowel duration and consonantal context across different speaking
styles. His locus equation approach has been used to quantify the context sen-
sitive coarticulatory effects by many since. Öhman (1966) investigated coar-
ticulatory effects in VCV utterances, which he explained in terms of a conso-
nantal gesture superimposed on a continuous vocalic one. Those articulators
not actively involved in producing the consonantal gesture (i.e., not critical)
were most influenced by vowel context. Öhman’s (1967) model used static ar-
ticulatory configurations as idealized target vocal tract shapes and dynamic
functions to explain the degree of excursion of articulatory movements along
with a function to model coarticulation. Although this approach recognizes
the different reaction speeds of the intrinsic and extrinsic muscle groups that
drive these gestures, the many assumptions and parameters employed in his
model had to be set manually, which does not allow for cross-validation or
objective optimization.

Binary and discrete features

Coarticulation theories have tended to focus on one or other of the two main
stages in the linguistic-to-acoustic realization. The feature spreading theory
considers effects in the planning stage, converting phoneme sequences into
distinctive articulatory features, and co-production theory deals with the mo-
tor control and physical dynamics of the articulators. In the feature spreading
approach, a distinctive set of bipolar phonetic features encode the place, man-
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ner and voicing information of a phone (Chomsky and Halle, 1968; Fant, 1969),
while non-critical features are left unspecified. Anticipatory coarticulation has
been modeled as a spread of critical features to unspecified segments, from
right to left (Daniloff and Hammarberg, 1973; Moll and Daniloff, 1971; Henke,
1965). Feature spreading is blocked at the next specified segment. Based on
the features, the articulators were given spatio-temporal targets which were
assumed to be invariant although possibly not reached due to physical smooth-
ing. One alternative to fixed targets is the window model of Keating (1988),
in which a range of articulatory values are allowed for each segmental feature.
Some speech recognition systems have been inspired by the binary phonetic
feature concept as a means for incorporating articulatory information (Kirch-
hoff, 1999; Metze and Waibel, 2002; Frankel et al., 2004; Eide, 2001; Koreman
et al., 1998). However, the binary features do not describe how tight each
constraint is. In reality, the unspecified segments can be partially affected or
unaffected by the spreading feature, so the extent of anticipatory coarticula-
tion is not well explained by this theory.

Bladon and Al-Bamerni (1976) moved from a binary specification to discrete
coarticulation resistance (CR) for explaining cross-consonantal coarticulation
effects in VCV contexts. The CR quantifies the consonant’s resistance to V-
V coarticulation. Though simple, modeling coarticulation using a binary or
discrete set of non-overlapping features for each phone segment has many
drawbacks. The time units are discrete segments, which imply synchronous
feature boundaries. Articulation is a continuous process, in time and space,
and discrete features fail to represent even ideal articulatory configurations
adequately. For modeling real speech production, they are poorly suited.

Synchronous vs. asynchronous models

Some researchers have used discrete articulatory features, where the vocal-
tract configuration for a given phone was represented as a set of quantized
articulator positions which were then mapped to the states of a hidden Markov
model (Deng and Sun, 1994; Erler and Freeman, 1996; Richardson et al., 2000).
The overlap of the discrete gestures was modeled by spreading the quantization
values to the articulatory dimensions not crucially involved in the production
of a speech sound. Here, though the time domain was in discrete frames, the
feature boundaries were asynchronous. The values for each phone were set
manually from phonetic knowledge; in our approach, values are determined
directly from measured data.

Articulator movements have been recorded in many ways, e.g., using EMA
(electro-magnetic articulograph), X-ray (Westbury et al., 1994; Soquet et al.,
1999; Wrench, 2001) and tagged MRI (Parthasarathy et al., 2007). Efforts to
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capture in equations the dynamic movements of articulators towards phone
specific goals have led to gestural approaches (Browman and Goldstein, 1986;
Saltzman and Munhall, 1989; MacNeilage, 1970; Liberman, 1970). Articula-
tory gestures are associated with an intrinsic temporal structure that allows
for continuous and asynchronous movements. Overlap from co-production of
gestures results in coarticulation. Research has developed equations to model
muscle behaviour and articulator kinematics (Coker, 1976; Ostry et al., 1996;
Dang and Honda, 2004). In the dominance function approach to modeling coar-
ticulation (Löfqvist, 1990; Cohen and Massaro, 1993), each segment is viewed
as a bundle of gestures, one for each articulator, linked over time by exponen-
tial functions that vary in duration and magnitude. In these approaches, the
dynamic functions for the activated gestures are prescribed according to pho-
netic rules. Another use of rules is in determining gesture priorities. A scale
proposed for the tongue is degree of articulatory constraint (DAC) (Recasens
et al., 1997; Recasens and Pallarés, 1999), which describes the extent to which
a consonant or vowel constrains tongue dorsum motion in VCV contexts: the
higher the value, the larger the resistance to coarticulation. Mermelstein used
three levels to rank how critical an articulatory gesture was to a given phone
(Mermelstein, 1973). The idea of configurations critical in production of a
sound (crucial points) has been used in the study of coarticulation (Dang
et al., 2004). The crucial articulator was defined as being resistant to contex-
tual effects and having maximum coarticulatory influence on its neighbours.
The critical or non-critical roles of the articulators was specified from phonetic
rules. The present work aims to determine articulatory roles from quantitative
measurements.

Statistical techniques have long since taken over from rule-based approaches
for dealing with coarticulation in automatic speech recognition (ASR). Dang
et al. (2005) proposed a descriptive statistical model based on Öhman’s view
of coarticulation, and incorporating features like CR and DAC that were esti-
mated from the articulatory data in their model. Using an HMM to provide a
probabilistic representation of articulatory target distributions was proposed
by Bakis (1991), which is an extension of Keating’s rectangular windows (Keat-
ing, 1988). Other techniques for generating smooth trajectories from proba-
bilistic descriptions include dynamical models (Richards and Bridle, 1999) and
trajectory HMMs (Tokuda et al., 2007). Context-sensitive effects on those dis-
tributions from articulator acceleration have also been modeled (Blackburn
and Young, 2000). Statistical models are powerful in making good use of avail-
able articulatory data to describe phone-sequence characteristics, but fail to
identify the cause of the constraints offered by the speech production sys-
tem and hence are not parsimonious. State-of-the-art TTS and ASR systems
tend to use ever longer units and models to accommodate coarticulatory ef-
fects without explicit knowledge of the articulatory constraints that convert a
phoneme string into speech.
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Fig. 1. Critical articulator identification process.

We present a statistical approach for identifying constraints in the articulatory
domain considering the roles that articulators play during speech production.
We categorize the roles as critical, dependent and redundant. If an articula-
tory gesture or movement plays a crucial role in the production of a phone, it
is considered to be critical. As in previous work, the critical articulators were
associated with smaller variance when compared with the non-critical artic-
ulators (Papcun et al., 1992; Frankel and King, 2001). Here, we considered
that an articulator can also be critical if characterized by a significant shift in
mean position with respect to its neutral average state. Furthermore, the form
of articulatory variation in space could be specific to production of a certain
phone, such as when the tongue impinges on the roof of the mouth changing
the correlation with respect to its average, so we considered changes in covari-
ance too. We defined a dependent articulator as one whose position follows
from the influence of a critical articulator because of the bio-mechanical cor-
relations between them. In gestural theory, this kind of articulatory gesture
is termed as a passive gesture following its correlation with the active tract
variable (Saltzman and Munhall, 1989), and is explained using the concept of
controlled and uncontrolled manifolds. A redundant articulator is free to move
and, as its position does not affect the phone’s production in a critical way,
coarticulation effects tend to be strong inducing a full range of movements.
The algorithm we propose makes use of correlations (amongst articulators and
correlated movements of each articulator in space) to identify the critical, de-
pendent and redundant articulators for every phone. The model is entirely data
driven and generates parsimonious representations of the articulatory target
configurations for each phone, based on phone transcriptions of the synchro-
nised audio signal. Our original approach to the problem of coarticulation
offers an experimental and quantitative validation of most of the traditional
IPA phoneme descriptions. The next sections present the method, phonolog-
ical analysis of results, evaluation and discussion of the possible applications
of the algorithm, and conclusion.

2 Method for identification of articulatory roles

We present a statistical algorithm for identifying the critical, dependent and
redundant roles of articulators during speech production of English phonemes.
Ideally, the algorithm should accurately identify what constraints each artic-
ulator experiences throughout the production of a given speech utterance.
These constraints should be related to phoneme units, specified quantitatively

5



 

 

 

ACCEPTED MANUSCRIPT 

 

and derived from realistic speech data. Also, for practical reasons, it would
be advantageous to find an efficient algorithm. The work here is based on
the statistical analysis of quantitative articulatory measurements obtained by
electro-magnetic articulography (EMA). As shown in Figure 1, our iterative al-
gorithm has five main steps, described in detail later in this section: estimation
of articulatory statistics, model initialisation, distance calculation, identifica-
tion of next critical articulator (C step), and update of dependent articulators
(D step). Section 3 examines the algorithm’s accuracy, Section 4 carries out a
phonological analysis and Section 5 evaluates the proposed method against a
‘brute force’ approach.

We take samples of articulator coordinates (horizontal and vertical) at the mid-
dle of each phone label to provide an approximation of the target distribution
for that phone. The complete set of these samples defines the grand distribu-
tion for each articulator coordinate. The corresponding means and variances
are used to form Gaussian pdfs (probability density functions) to represent
the phone and grand distributions. Similarly, we compute the inter-articulator
correlations from these data to give grand correlations. For 1D and 2D ver-
sions of the algorithm, these are respectively univariate and bivariate. The
algorithm identifies a list of critical articulators for each phone based on the
distance of the phone pdfs from the grand distributions. Meanwhile, there are
dependent articulators that are influenced by their relation to the critical artic-
ulators. So, the pdfs of dependent articulators in the model are adjusted based
on the critical articulator pdfs using grand correlation amongst articulators.
Kullback-Leibler divergence (KLD) is used as the distance measure between
distributions of articulator coordinates (Kullback, 1968), which is minimised
during operation as the identification and update steps are repeated.

2.1 Preparation of articulatory data

In this paper, the algorithm was applied to EMA data for two subjects from
the MOCHA-TIMIT database (Wrench, 2001). These 14-channel data repre-
sent the horizontal (x) and vertical (y) midsagittal movements of 7 fleshpoints:
upper lip ul, lower lip ll, lower incisor li, tongue tip tt, tongue blade tb,
tongue dorsum td and velum v. The movements of these points are calibrated
and registered with upper incisor and the bridge of the nose as reference points.
Recordings of 460 English TIMIT sentences from one male (msak) and one fe-
male (fsew) speaker were used. Their EMA data were smoothed and downsam-
pled to 100Hz. We use these EMA fleshpoint coordinates as a low-dimensional
representation of the articulators. Although they are continuously deformable,
a few well-selected points can faithfully represent the full shape of the articu-
lators with reasonable accuracy (Badin and Serrurier, 2006; Qin et al., 2008)
For our 1D algorithm, we treat the EMA data as 14 separate ‘articulators’;
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Fig. 2. Outline of grand (thin solid black) and phone (dashed coloured) midsagittal
configurations for [b] (left, blue) and [g] (right, green) from male subject, with
covariance ellipses (thick solid coloured) representing phone pdfs.

for the 2D case, we combine x and y coordinates to 7 ‘articulators’.

During our analysis, we discovered some errors with the phone annotations.
There were 8 sentences with incorrect text for each subject, which were given
phonetic transcriptions derived from the corrected text with manual align-
ment. One sentence held corrupted EMA data and was discarded. There were
some cases where the database’s automatic alignment had failed and others
where the dictionary transcripts did not match the utterances. These were
identified and corrected manually, with particular attention to alveolar ob-
struents, /t/, /d/ and /n/, which suffered high levels of elision and deletion.
Full details of the changes can be found online (Jackson et al., 2004). Samples
at phone midpoints were selected to characterise phoneme targets and con-
stitute the phone distributions. From a minimum of 17 for [Z] to a maximum
∼1400 for [@], the average number of samples was 293.

Figure 2 depicts the phone distributions for [b] and [g] overlaid on a schematic
outline of the vocal tract. 1 For the bilabial stop [b], distributions of upper
and lower lips appear closely constrained whereas the tongue tip, blade and
dorsum maintain large variances. For [g], the tongue dorsum, which is criti-
cal for producing the velar stop, has a shifted mean and modified covariance
compared with the neutral configuration, although there remains considerable
variation about the new mean. The tongue blade and tip are affected by the
tongue dorsum’s movement due to correlations across the tongue, and act as
dependent articulators for that phone; distributions of ul and li show little
change and are redundant. The following section describes how these statistics
are used to determine the difference articulatory roles.

1 Vocal tract outlines were derived from mean flesh point positions using splines and
other heuristics, for visualisation. The sketched shape of the lips, teeth and velum
are linked to the corresponding articulator positions, whereas the hard palate was
drawn to circumscribe the complete set of recorded tongue positions.
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Fig. 3. Grand 1D correlation matrix R∗ from male (left) and female (right) data
containing strong and significant correlations (|rij | > 0.1, α = 0.05).

2.2 Proposed algorithm with independent coordinates (1D)

The proposed algorithm identifies critical articulators for each phone based
on the distance between grand and phone pdfs, calculated as symmetrical
Kullback-Leibler divergence. Using grand correlations amongst articulators,
the pdfs of dependent articulators are conditioned on the critical articulator
pdfs, reflecting statistical properties of muscle and tissue linkages in speech
production. Since some phones engage more than one critical articulator, the
algorithm builds up a list of critical (and dependent) articulators incrementally
until the model pdfs converge onto the phone pdfs, to within a threshold. Artic-
ulators not correlated with any critical articulator are declared redundant. The
algorithm was implemented for 1D and 2D pdfs, where x and y coordinates
from each flesh point were treated independently (1D), or their covariation
incorporated (2D). First, we explain the 1D version of the algorithm.

Derive statistics and initialise model. As a precursor to running the
algorithm, it is essential to gather the grand and phone statistics and calculate
the significant correlations amongst the articulator coordinates. We look first
at the 1D case, which treats x and y coordinates as separate articulatory
measurements. Univariate correlations were computed from the 14-channel
articulatory data, R = {rij} for i, j = {1..a} and a=14. Where there were small
or insignificant correlations, we chose to eliminate them to ensure that the
parameters we kept were supported by strong statistical evidence. So statistical
significance of the correlations was given Pearson’s test, and insignificant and
weak correlations were set to zero (α = 0.05 and |rij| < 0.1). Figure 3 depicts
the grand correlation matrix R∗ = {r∗ij} of the remaining significant and strong
correlations for male (left) and female (right) data. So, using Mi and Σi denote
the grand mean and covariance of each articulator i, the covariance between
articulators i and j is Σij = Σ

1/2
i r∗ijΣ

1/2
j . The overall mean and covariance

for each articulator in the data set were used to define a normally-distributed
grand pdf, N (Mi, Σi). The subset of data corresponding to each phone φ was
similarly used to define Gaussian phone pdfs, N (µφ

i , Σ
φ
i ).
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Fig. 4. Left: scatter plot of grand (red dot) and phone [b] (blue plus) upper lip
coordinates (ulx and uly) at the centre of each phone label for male subject’s
data; ellipses show ± 2 standard deviations of the corresponding grand (solid) and
phone (dashed) normal distributions, which encompass 95% of the points. Right:
histograms with fitted Gaussian distributions of the vertical upper lip coordinate
(uly) for grand (red with solid black), phone [b] (blue with dashed black) and phone
[g] (green with dash-dot black).

Highlighting the biomechanical behaviour of human speech apparatus, Fig-
ure 3 (left) shows the strong and significant correlations between tongue tip
tt, blade tb and dorsum td in the x direction and the y direction, although
there was almost no correlation between the tongue’s x and y coordinates.
The y correlations (vertical or transverse) were less than in the x direction
(horizontal or axial). The absence of correlation between tty and tdy also
shows how the vertical movement of the tongue tip was independent from that
of the tongue dorsum. The lower lip ll was strongly correlated in both x and
y directions to the jaw li and, to a lesser extent, to the upper lip ul. Velum x
and y movements showed strong correlation, but little with other articulators.
Some correlation existed between the jaw liy and tty, but otherwise the ar-
ticulatory system behaved like three largely-independent components: the lip
and jaw group, the tongue and the velum. The main patterns for the female
speaker, in Figure 3 (right), were consistent with the male correlations. Some
differences were possibly due to speaking style and anatomy: correlations be-
tween x and y movements of ul, ll and li were weaker; uly with llx had
negative correlation; liy with ttx, tbx and tdx were stronger. Across both
speakers, slightly less than half of the correlations (37%) were found to be
statistically insignificant or weak. At the start of the algorithm’s operation,
we define model distributions for the current phone and set them equal to the
grand pdfs: N (mφ,0

i , Sφ,0
i ) = N (Mi, Σi).

Compute KLD. The KLD, which provides the distance metric between
model and phone distributions, is based on the integral of their log-likelihood
ratios and is related to the Bayes factor. Unlike other measures based on
the difference between grand and phone means (e.g., Mahalanobis distance,
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student’s t-test, Hotelling’s T2 test) or ratio of variances (Fischer’s linear dis-
criminant), the KLD incorporates changes both in mean and covariance.

The symmetric KLD is calculated for each articulator as (Kullback, 1968):

J =

∞∫
−∞

f1(x) ln
f1(x)

f2(x)
dx +

∞∫
−∞

f2(x) ln
f2(x)

f1(x)
dx

=
1

2

[
tr (S − Σ)

(
Σ−1 − S−1

)
+ tr

(
S−1 + Σ−1

)
(m− µ) (m− µ)T

]
(1)

where tr(·) denotes the trace of the matrix, T denotes the transpose, and
the pdfs that we consider are assumed to be Gaussian, f1 = N (m, S) and
f2 = N (µ, Σ). The KLD values lie between zero (for perfectly matching dis-
tributions) and infinity. We made maximum likelihood estimates of the Gaus-
sian distribution of phone data, using the sample mean and variance. Next,
we took account of the uncertainty over the precise position of the distribu-
tion by including the estimation error of the mean (i.e., the standard error√

Σ/N with N samples) as an additional source of variation. For example, the

variance Σ we used in the KLD was replaced by Σ + Σ/N , which allowed us
to factor in the range of all likely distributions within one calculation. This is
a conservative step, which helps to regularise the small-sample distributions
for the KLD calculation, although it makes little difference to the empirical
results.

Figure 4 illustrates distributions used in the KLD calculation for two phones,
[b] and [g]. Fig. 4 (left) gives a scatter plot of ul data for phone [b] and overall.
Fig. 4 (right) shows the distribution of uly samples overall (grand), and for
[b] and [g]. The KLD between grand and phone [b] was high (9.1), identifying
uly as critical for the labial. As a consequence, the correlated lly is flagged
as dependent. Whereas for [g], the divergence was low (0.2) and uly therefore
redundant for the velar.

C step: identify next critical articulator. The algorithm iteratively iden-
tifies a list of critical articulators for each phone, initialising a model with the
grand pdfs and converging towards the phone pdfs. In the C step, the KLD
between the model and phone distributions, termed the identification diver-
gence, was the distance metric used to identify as critical the articulator whose
pdf differed most from the phone pdf.

The algorithm detail is given in Figure 5, for which we define the phone
set Φ, the grand statistics as R∗ and Γ = {M, Σ, N} where N is the to-
tal sample size, and the phone statistics as the inter-articulator correlations
Rφ and Λφ = {µφ, Σφ, νφ}, where νφ denotes the sample size for phone φ.
The algorithm iterates through the levels, k = 0..a, which determine the
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length of critical articulator list Cφ,k. The function computeIdiv computes
the identification divergence, Jφ,k

i , and the state of the model is denoted by
∆φ,k = {mφ,k, Sφ,k, nφ,k} which consists of the set of model means mφ,k

i , vari-
ances Sφ,k

i and sample sizes nφ,k
i for each articulator i. At each level k, the

algorithm considers (a − k) candidates to extend the list to the next level.
The algorithm selects the articulator j with the maximum divergence. If j’s
divergence exceeds the convergence threshold θC, it is added to the critical list
and its distribution set equal to the phone pdf, N

(
mφ,k

j , Sφ,k
j

)
= N

(
µφ

j , Σ
φ
j

)
.

D step: update dependent articulators. In the D step, a dependent ar-
ticulator i (one substantially correlated with the critical articulator) has its

pdf, N
(
mφ,k

i , Sφ,k
i

)
, adjusted according to the effect of specifying the critical

articulator (Anderson, 1984):

mi = Mi + ΣijΣ
−1
j (mj −Mj) (2)

Si = Σi + ΣijΣ
−1
j (Sj − Σj) Σ−1

j Σji. (3)

The distributions of dependent articulators are updated based on all critical
articulators identified up to level k, using the grand and phone statistics, Γ
and Λφ. The dependence threshold θD avoids over-updating the dependent
articulators. A value θD = 0.1 was used for all experiments. The algorithm
repeats the KLD calculation, the C step and the D step, until all Jφ,k are
within tolerance θC. Thus, we obtain the final list of critical, dependent and
(by elimination) redundant articulators for phone φ. The procedure is repeated
for all phones in the inventory, φ ∈ Φ.

The upper part of Figure 6 illustrates operation of the 1D algorithm on male
speaker data for [b]. Grand, phone and model distributions are represented by
dotted-red, dashed-green and solid-blue variance ellipses respectively, which
show ±2 standard deviations around the mean. The upper lip was identified
as the first critical articulator (Fig. 6, left), having maximum identification
divergence of the initial model (grand) pdf from the phone pdf. The 1D model
distribution for uly was set to the phone pdf in the algorithm’s C step. The
effect of the lip’s configuration on the other articulators was calculated in
the D step from the grand correlations (Fig. 6, top centre): stronger corre-
lations induced greater effects. Here, uly influenced ulx and lly, but there
was no change in the lix or liy distributions, for instance, since they had no
substantial correlation with uly. On the other hand, the horizontal tongue
coordinates ttx, tbx and tdx were not updated because their distributions
already matched the corresponding phone pdfs, giving divergences below the
dependence threshold θD. At the next level (Fig. 6, top right), the lower lip
height lly was chosen as critical, which adjusted the jaw distribution liy,
and llx taking both critical articulators so far identified into account. With
all identification divergences below the convergence threshold θC = 1.7, no
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Derive statistics
Global statistics Γ = {M,Σ, N}: means (a×K), variances (a×K ×K) and sample size, and correlation R∗

Phone statistics Λφ = {µφ,Σφ, νφ}: means (a×K), variances (a×K ×K) and sample size, and correlation Rφ

Model statistics ∆φ,k = {mφ,k,Sφ,k, nφ,k}: means (a×K), variances (a×K ×K) and sample size (a× 1)
Threshold Θ = {θC, θD}
Initialise model
mφ,0

i = Mi; Sφ,0
i = Σi; nφ,0

i = N , for all articulators i = {1..a}
Empty critical articulator list: Cφ,0 = { }
Prepare for main loop: k = 0; isConverged = false
while ((k ≤ a) and (!isConverged))

Compute identification divergence
Jφ,k

i = computeIdiv(∆φ,k
i ,Λφ

i ), for all articulators i = {1..a}
Find articulator with maximum divergence: j = argmax{Jφ,k

1 .. Jφ,k
a }

C step
if (Jφ,k

j > θC)
Increment the level: k ←[ k + 1
Replicate model: ∆φ,k = ∆φ,k−1

Add critical articulator: Cφ,k = {Cφ,k−1} ∪ {j}
Set distribution: mφ,k

j ← [ µφ
j ; Sφ,k

j ← [ Σφ
j ; nφ,k

j ← [ νφ

D step
∆φ,k = updateDep(Γ,R∗,Λφ,Rφ,∆φ,k,Θ, Jφ,k−1,Cφ,k)

else
isConverged = true

Store final critical articulator list: Ĉ
φ

= Cφ,k

Store model statistics: m̂φ = mφ,k; Ŝ
φ

= Sφ,k; n̂φ = nφ,k

Store no. critical articulators: k̂φ = k
end if

end while

function computeIdiv(∆φ,k
i ,Λφ

i )
Incorporate standard error: S1 = Sφ,k

i + (Sφ,k
i /nφ,k

i ); S2 = Σφ
i + (Σφ

i /νφ)

J = 1
2

(
tr(S1 − S2)(S−1

2 − S−1
1 ) + tr(S−1

1 + S−1
2 )(mφ,k

i − µφ
i )(mφ,k

i − µφ
i )

T
)

return J

function updateDep(Γ,R∗,Λφ,Rφ,∆φ,k,Θ, Jφ,k−1,Cφ,k)
Get critical grand statistics from Γ and R∗: MC = {Mi}i∈Cφ,k ; ΣCC = {Σij}i,j∈Cφ,k

Get critical phone statistics from Λφ and Rφ: µφ

C = {µφ
i }i∈Cφ,k ; Σφ

CC = {Σφ
ij}i,j∈Cφ,k

for i = {1..a} − {Cφ,k}
if (Jφ,k−1

i > θD)
Get dependent covariance: ΣiC = {Σij}j∈Cφ,k

Update mean: mφ,k
i ←[ Mi + ΣiCΣ−1

CC

(
µφ

C −MC
)

Update variance: Sφ,k
i ← [ Σi + ΣiCΣ−1

CC

(
Σφ

CC −ΣCC
)
Σ−1

CCΣiC
T

Update sample size: nφ,k
i ←[ νφ

end if
end for

return ∆φ,k

Fig. 5. Algorithm for articulatory role identification for phone φ, including functions
for computnig KLD and updating model distributions using critical articulator in-
formation and inter-articulator correlations. The 1D (K=1) or 2D (K=2) versions
use scalar or vector means, M , µφ and mφ,k, and scalar or matrix (co-)variances,
Σ, Σφ and Sφ,k.

further articulators were identified here. This demonstrates how the correla-
tions of dependent articulators affect the model distributions that are used for
identifying subsequent critical articulators. Given uly and lly were critical,
the grand correlations offered some dependence for all other articulators ex-
cept the velum vx. So, the dependent articulators were ulx, llx, liy, tty,
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Fig. 6. Mid-sagittal schematic of convergence of 1D (upper) and 2D (lower) phone
models of [b] for male data, using grand (thick dotted red, +), phone (medium
dashed green, ◦) and model (thin solid blue, ·) distributions as the algorithm pro-
gresses (from left to right): first critical articulator is identified k=1, dependent
articulators are updated k=1, second iteration is completed k=2.

tby, tdy, and vy. This is largely expected as a consequence of jaw raising,
although the small tongue and velum correlations are all less than one third.
The redundant articulators were lix, ttx, tbx, tdx, and vx.

2.3 Proposed algorithm with correlated coordinates (2D)

The major and minor axes of the drawn ellipses are aligned with the covari-
ance’s eigenvectors. The 2D version of the algorithm follows a similar course to
the 1D version, selecting ul then ll in this case. It incorporates the covaria-
tion found within an articulator’s x and y movements, and updates dependent
articulators in line with canonical correlations, as now described.

The lower part of Figure 6 shows the algorithm working with 2D distributions,
where bivariate correlations from the 2D articulatory data are computed us-
ing canonical correlation analysis (Johnson and Wichern, 1998), which finds
orthogonal directions in which a pair of articulators, i and j, are maximally
correlated: ρij = diag(ρ1

ij, ρ
2
ij) denotes the canonical correlations, and Ui and

Uj the corresponding 2D eigenvectors. Like before, statistically insignificant
and weak canonical correlation values are set to zero (α = 0.05, |ρij| < 0.15).
This gives the bivariate correlation matrix R∗ = {r∗ij}, for i, j = 1..7, where

r∗ij = UiρijU
T
j . The covariance between i and j is Σij = Σ

1/2
i r∗ijΣ

1/2
j , where

Mi and Σi denote the grand 2D mean vector and covariance matrix of artic-
ulator i.
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Fig. 7. First (thick red) and second (thin blue) canonical correlations for male data,
within their respective (solid) grand covariance ellipses (from left): li-tt, tt-tb
and tb-td.

To illustrate the effect of this transformation, Figure 7 shows the direction and
strength of canonical covariation between three adjacent fleshpoint pairs (male,
from left): li-tt, tt-tb and tb-td. Only one significant canonical correlation
from jaw rotation was found for the first pair: ρ1

li,tt = 0.62, ρ2
li,tt = 0. For

the last two pairs along the tongue, the eigenvector directions indicate primary
correlation for axial (forward/backward) motion (ρ1

tt,tb = 0.93, ρ1
tb,td =

0.93), and secondary for raising/lowering (ρ2
tt,tb = 0.53, ρ2

tb,td = 0.75).
A third of the articulator combinations had two significant, strong correla-
tions, no correlation was found for one pair in seven, and the rest (52%) had
one significant canonical correlation. The female data painted a very simi-
lar picture (2 sig.×8 pairs, 1 sig.×11 pairs, 0 sig.×2 pairs), and the bivariate
correlations were similar to the univariate correlations in absolute value. Al-
though the 1D correlations capture the relation between critical articulator
dimensions and those of dependent articulators, the 2D canonical correlations
provide additional accuracy by modeling the correlations within each critical
and dependent articulator.

In the 2D version of the algorithm, the grand, model and phone distributions
are assumed to be bivariate Gaussians with a=7. The identification divergence
is thus defined as the KLD between 2D model and phone distributions, where
the means, m and µ, in eq. 1 are 2D column vectors and the variances, S and
Σ, are 2×2 matrices.

3 Running the algorithm with EMA data

This section assesses the factors limiting the performance of the proposed
method on the MOCHA-TIMIT articulatory data.
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Fig. 8. Convergence of 1D (left) and 2D (right) algorithms: evaluation diver-
gence between 14D phone pdfs and the model pdfs with critical threshold
θC = {0.1, 0.2, . . . , 5}, averaged over Φ; male (thick blue line), female (thin red
line). Symbols show divergence between phone pdfs and ones based on IPA-derived
phonetic rules fitted the data, without (4) and with (◦) considering articulator
dependencies, for male (blue/filled) and female (red/open) data.

3.1 Assessment of model convergence

As we saw in Figure 6, the model pdfs tend toward those of the phone as
the critical articulators are identified. To evaluate the goodness of fit of model
pdfs to the phone distributions, we defined an evaluation divergence as the full
dimensional KL divergence between the model and phone distributions. The
1D model means and variances of each articulatory dimension were collated
into a 14D mean vector and 14D diagonal covariance matrix. With the 2D
models, the intra-articulator x and y covariation was included in the covari-
ance matrix either side of the diagonal. The covariance matrix of each phone
distribution was the full 14D, whereas the model covariance matrices reflected
the 1D and 2D assumptions. The divergence was calculated as in equation (1)
using function computeIdiv in Fig. 5. The convergence of the model was evalu-
ated as a function of the convergence threshold θC , which is applied to the 1D
and 2D identification divergence. As we reduce the threshold, we expect the
algorithm to identify a greater number of critical articulators and to match
the phone pdfs more closely. This evaluation procedure allows us to quantify
the goodness of the fit, to test how it trades with θC , and to compare the 1D
and 2D versions of the algorithm.

3.2 Effect of the convergence threshold

Using the evaluation divergence, we measured the effect of adjusting the con-
vergence threshold θC . Figure 8 shows the evaluation divergence between the
14D phone pdfs and the collated 1D and 2D models. Each plotted point marks
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one value of the threshold θC , which was reduced from 5.0 to 0.1 in steps of
0.1. The horizontal axis reports the average number of critical dimensions per
phone (number of critical articulators times model dimensionality), and the
vertical axis shows the mean evaluation divergence over the phone set Φ. The
mean divergence between the initial 1D model (diagonal covariance) and the
full covariance phone pdfs was 99 for the male speaker and 80 for the female,
who was consistently lower at all θC values. As the threshold was lowered
(Fig. 8, left), convergence improved at the expense of increased critical dimen-
sions: a 32% reduction in the male evaluation divergence was achieved and
critical dimensions rose from 0.4 to 3, as the threshold went from 5 to 1. A
similar trend was observed in female divergence. Lowering the threshold down
to 0.1 claimed half of the articulatory dimensions (∼7) and reduced divergence
by a further 15% for both speakers.

The fit of the 2D model pdfs to the full covariance phone models includes
correlations between x and y movements within each measured articulatory
fleshpoint (Fig. 8, right). The initial divergence was cut by 12% and 3% for
male and female data relative to the initial 1D evaluation divergence. The
trend was for similar reductions (25% male, 20% female) as θC was lowered
from 5 to 1, increasing critical dimensions per phone from 2 to 6. Convergence
improved by a mere 5% for θC = 0.1 with all but one articulator on average
deemed critical (∼12 critical dimensions), for both male and female speakers.
With the additional flexibility to describe correlations between x and y move-
ments of each articulator, the fit of the 2D model pdfs to the (full covariance)
phone pdfs was better than the 1D pdfs, at all levels of threshold.

3.3 Limitations of the data set

The MOCHA-TIMIT database has provided a valuable number of EMA
recordings over many read sentences and two labeled subjects. Having cor-
rected some alignment and transcription errors in the phone labels, the mid-
phone sampled distributions gave sufficient information to determine good lists
of critical, dependent and redundant articulators, despite known problems with
fleshpoint calibration (Frankel, 2003; Richmond, 2007). Improvements could
be made, therefore, with further recordings of speech articulation, e.g., new
capture techniques, larger corpora, multiple subjects and various speaking
styles. The algorithm can be readily extended to work with 3D data. Also,
the model pdfs in the algorithm could be developed better to fit measured
distributions, e.g., by Gaussian mixture or numerical methods (Hershey and
Olsen, 2007).
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4 Analysis of phonological findings

The previous section’s quantitative analysis shows the trade off between mod-
eling accuracy and model complexity for two different versions, 1D and 2D.
It also demonstrates that the algorithm captures the characteristics of the
phone distributions more effectively than phonetic rules derived from a con-
ventional IPA description at an equivalent level of complexity, which will now
be described in detail. To interpret the results in the context of IPA’s place
and manner of articulation, we compare of the automatically-identified critical
articulators for each phone with the phonetic descriptions from the IPA chart.

4.1 Comparison with IPA

The lists of critical articulators that were obtained for each phone are com-
pared with the international phonetic alphabet (IPA) descriptions for con-
sonants and vowels. IPA is a widely accepted representation of a language’s
phonetic repertory that provides an articulatory description of speech sounds,
which lets us make a comparative analysis of the results obtained using our role
identification algorithm. Although the IPA has been designed as a notational
standard for phonetic description of the speech sound categories in the world’s
languages, it provides a good basis for comparison because it is an interna-
tionally agreed summary of the knowledge built up over many generations.
Its main purpose involves the transcription of human speech by phoneticians,
and is therefore tailored (i) to encapsulate meaningful distinctions in the con-
text of language, (ii) for utterances produced by humans and (iii) observed by
phoneticians. Increasingly, there is a need for phonological descriptions for use
in speech technologies that can (i) model the characteristics of typical phones
within a language, (ii) include the implicit effects found in human phoneme-
to-phone realization, such as coarticulation, and (iii) incorporate knowledge
from other types of observations, such as spectrograms, X-ray, MRI and artic-
ulography data. For purposes of comparison with the results of the proposed
algorithm, IPA-based pdfs were generated by using IPA manner and place
attributes to define a set of critical articulators for each phone, in contrast to
the algorithm’s C step. For both 1D and 2D versions, two kinds of realization
were considered: one that only updated the IPA-specified articulators, and
one that also incorporated their effect on dependent articulators. As before,
the evaluation divergence measured the goodness of fit to the recorded phone
distribution data.

Simply setting the distributions equal to the phone pdfs for the articulators
specified by IPA (the remainder equal to the grand pdfs) gave little benefit
(Fig. 8): the evaluation divergence was similar to that between the phone pdfs
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and the grand pdfs. For IPA-based consonant pdfs, including articulator de-
pendencies via the algorithm’s D-step made divergence fall by approximately
30% (1D: 24% male and 23% female; 2D: 35% male and 37% female). However,
at the same number of average critical dimensions per phone, the model pdfs
using articulators identified by our proposed algorithm showed reductions of
approximately 40% (1D: 37%/37%; 2D: 43%/45% for male/female). So, given
that there is little dispute over the correct classification of most phonemes’
manner and place, what differences enable the algorithm to obtain a better fit
to the observed data without increasing the level of complexity? The answer,
below, lies in the detail of the critical articulators specified for each phone.

4.2 Consonants

Place and manner descriptors from the IPA chart were used to specify a set
of critical articulators for each phone, for both 1D and 2D cases. Beginning
with the consonants, place descriptors were related to the articulators actively
involved in the realization of phonemes, as follows for 1D: uly and lly for
bilabials /p,b,m/; llx and lly for labio-dentals /f,v/; ttx and tty for inter-
dentals, alveolars and post-alveolars /T,ð/, /s,z,l,ô/ and /S,Z,Ù,Ã/; tbx and
tby for palatal /j/; only tty for alveolar obstruents /t,d,n/ and tdy for velars
/k,g,­/. For nasals /m,n,­/, vx was also made critical. For labio-velar /w/,
ulx, llx and tdy were specified. None was specified for glottal /h/ from the
available articulator measurement points. Thus, the average was 1.8 critical
articulator coordinates or dimensions. Similar lists were specified in the 2D
case, yielding an average 2.8 articulatory dimensions or 1.4 articulators per
phone.

For fair comparison, the convergence threshold θC was set to give the same
number of critical articulators as the IPA descriptions (1D: θC = 1.7 for both
speakers; 2D: θC = 2.3/2.0 for male/female). Binary features were obtained
to describe the direction of articulator shifts from the neutral (grand mean)
position. The statistical significance of any shift was determined using a stu-
dent’s t-test (α = 0.05, with compensation for non-homogeneous grand and
model variances). At the chosen thresholds, the proposed algorithm identified
critical articulators for over 90% of the consonants, and the patterns of results
were similar for 1D and 2D. For the glottal [h], no articulators were identified
as critical. No critical articulators were identified for the lateral alveolar [l]
from the mid-sagittal EMA data. The critical articulators that were identified
generally agreed with those derived from the IPA chart, but there were some
notable differences.

The velum vx was identified as critical for the male nasals at the chosen
threshold; for the female, the velum had next highest KLD, albeit below the
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threshold. For both speakers, binary positional features consistently showed
the velum displacement for all nasal and oral (non-nasal) sounds. Setting a
lower threshold identified one velum dimension as critical for nasal sounds.

For all sibilants [s,z,S,Z] and affricates [Ù,Ã], the vertical tongue tip movement
tty (normally considered to be the primary articulation) was identified as
critical. Yet, even considering their interdependency, the jaw position liy was
equally identified as a critical articulator. The position of the lower teeth may
thus be considered a secondary articulation for these sounds, for which the
tongue tip constricts the flow into a jet, creating turbulence that impinges
on the teeth. This mechanism hugely increases the acoustic efficiency of the
sibilant noise source, so it is important to ensure the jet and obstacle are
aligned (Shadle, 1985).

Some differences between the expected and identified critical articulators were
inconsistent across speakers. For [T] (female), the tongue blade tby also low-
ered to achieve the expected tip position; there was no significant change in
the position of the male tongue blade which was not identified as critical. For
[S,Z,Ã], the positions of either tb or td were different for male and female
speakers, leading to an extra critical tongue dimension. The number of critical
dimensions was the highest for [Z], despite standard-error compensation for
the small sample size, although its voiceless counterpart [S] and the affricates
were equal second in terms of critical articulator list length [Ù,Ã]. This finding
suggests that fricatives and affricates are the most constrained phonemes to
pronounce in British English.

The stops showed the best agreement with the expected set of critical articula-
tors (75%). Only the upper lip was chosen for [p] (both) and tty for alveolars
[t,d]. This echoes the constraint on tdy but not tdx for velars. For two or
three phones, the algorithm identified articulators that were strongly corre-
lated with those anticipated. For [t] (female), liy was selected in addition to
tty. For [w] (male and female), a vertical upper lip gesture uly was identified
which was highly correlated with the expected horizontal specification of ulx
and llx. For [ô] (male), the expected and identified critical articulators differed
by one tongue position: tb replaced tt. Only tby was identified for [y].

Having defined place and manner descriptions of consonants from the IPA
chart in terms of articulatory coordinates, the algorithm’s convergence thresh-
old was adjusted to match the number of articulatory constraints identified.
No critical articulation was specified for [h] (male) and the alveolar [l] (both).
Sibilant fricatives identified a secondary articulation, of the lower incisors, Few
substitutions and insertions were made of correlated articulators. Some male-
female differences were found in the tongue position, which could be attributed
to individual anatomical or stylistic variation until further data are available.
The findings demonstrate that the algorithm not only produces plausible ex-
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planations that fit the observations, showing broad agreement with the IPA
descriptions, but has capability to make explicit significant details that might
be implicit or absent from IPA alone. Hence, we conclude that the algorithm
can be used to determine from data the constraints that are important in
speech articulation.

4.3 Vowels

Unlike consonants, vowel phonemes do not have such well-defined places of
articulation. The target articulatory configurations shown on the IPA chart
are part acoustic and part articulatory, so it is not trivial to state the criti-
cal articulators for vowels. Tongue height, the backness of the tongue and lip
rounding are the key factors that describe vowels’ articulatory configurations.
Thus, we might expect the tongue y-dimension to be critical for closed (high)
vowels, the jaw for open (low) vowels, tongue x for front and back configura-
tions, and lip x for rounded ones. The point on the tongue chosen as critical
would likely reflect backness: i.e., tt for front [æ, E, I, i:, i], tb for mid [@, Ä,
2] and td for back [A, 6, O, U, u] vowels.

Using the same thresholds as for the consonants, the algorithm identified crit-
ical articulators for three quarters of the vowels. No critical articulators were
identified for [@, I, U] for either speaker in 1D or 2D cases, which reflects schwa’s
general properties across the phonetic inventory (rather than a precise neutral
configuration) and weak distinctions for the near front and back vowels [I] and
[U]. No critical articulators were identified for the open mid back vowel [u]
with male data.

Though various parts of the tongue are involved in shaping the vocal tract,
our algorithm showed the tongue blade and dorsum to be most critical for
production of vowels, together with the lower lip. For close front vowels [i:,
i], ttx was identified once for male and female; whereas tbx or tdx were
identified two or three times for open back vowels [O, 6, A]. In the vertical
direction, high front and back vowels selected tby or tdy; open and low vowels
tended to choose lly. Low back vowels also picked tby.

The IPA specification of vowel height, backness and roundedness was described
in terms of articulatory dimensions. The tongue blade and tongue dorsum fea-
tured strongly amongst most vowels, but no critical articulation was specified
for 1 in 4 vowels: the short, central and reduced ones, including schwa. Lower
lip caught the open vowels and tongue dorsum the closed ones. Lip rounding
was not clearly evidenced in the mid-sagittal data. Although less straightfor-
ward to specify, the critical articulations identified for vowels reflect the main
tendencies across the vowel quadrilateral, and indicate the different nature of
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Fig. 9. Proposed depth-first (left) and exhaustive (right) searches for best critical
articulator combination.

their constraints, especially for short and mid vowels. These results of auto-
matic identification offer some interesting statistical insights into real-world
production of phones that are largely compatible with the IPA description
framework. While IPA gives a constant level of specificity to all phones (ap-
proximately, at least within broad categories), the algorithm is able to identify
pronunication constraints from the data, as they are needed.

5 Algorithm evaluation

5.1 Comparison with exhaustive search

The proposed algorithm performs a kind of greedy or depth-first search (DFS)
in identifying a new critical articulator at each level k, depending on the pre-
viously identified critical articulators up to level (k− 1). To evaluate the per-
formance of the algorithm, an exhaustive search (ES) procedure was adopted
that, at each level, searches through all possible combinations of the critical
articulators. The ES proceeds independent of any previously selected set of
critical articulators, and uses a minimax approach to identify the best criti-
cal articulator combination (Coppin, 2004). Thus, the ES finds the globally
optimal combination of critical articulators to match model and phone pdfs,
for a given level of model complexity. The ES and proposed DFS algorithms’
performance was compared using the evaluation divergence, and their critical
articulator lists analysed level by level: (i) to see whether the identified crit-
ical articulators for each phone differ, (ii) to determine any effect on model
convergence of changes in the critical articulator order, and (iii) to find which
search procedure gives better fitting models.
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5.2 Exhaustive search method

The model statistics were initialized with the grand distributions, as before.
However for the exhaustive search, all possible articulator combinations were
considered at each subsequent level, k = 1..a, which number P k. This is de-
picted in Figure 9. For each phone φ, the identification divergences between
the model and phone pdfs Jφ,k

i were computed by the computeIdiv function
for all P k combinations at level k. According to the minimax criterion, the
articulator combination that minimized the maximum divergence was chosen
as the critical set at that level, Ĉφ,k. The number of articulatory combinations
and permutations evaluated by the ES algorithm increased at almost factorial
rate from one level to the next. For example at level k = 6, the number of
articulatory combinations considered for the search were over 2 million. The
exhaustive search algorithm was implemented on the 1D and 2D models up
to level 6 only, due to computational time constraints.

5.3 Results and evaluation

The results offer a comparison of the DFS and ES algorithms based on eval-
uation divergence, the critical articulator sets and the computational effort.
The computed evaluation divergence was averaged across all phones to indi-
cate which search procedure gave better overall fit to the articulatory data
at each level, k = 1..6. As before, a range of critical threshold values was
used (0.1 ≤ θC ≤ 5), to find the effect of the critical threshold on the search
procedures’ performance. For comparison of the consonant and vowel critical
articulator sets for the 1D case, the convergence threshold was set to match
the number of dimensions from IPA (ES at θC = 1.5 for male and female;
c.f. DFS at θC = 1.7). A lower second threshold was chosen at double this
number of critical articulators, θC = 0.5, which captured more detail (c.f.
DFS at θC = 0.6/0.7 for male/female). We refer to these two operating points
as the IPA and lower thresholds respectively. Further decreasing the thresh-
old showed only 10–12% improvement in the model convergence. Finally, we
compare the two search techniques in terms of the computational effort.

Figure 10 shows the average evaluation divergence computed between model
and phone pdfs as 0.1 ≤ θC ≤ 5, for DFS and ES algorithms. For all values of
convergence threshold, there was a negligible difference in their performance,
both for 1D and 2D versions. There was a difference in the value of θC needed
to yield any given number of critical dimensions, e.g., DFS had θC = 1.7
whereas ES had θC = 1.5 at IPA complexity. At the lower threshold θC = 0.5,
the maximum identification divergence was reduced by 15% overall by ES
over the proposed algorithm, but this reduction did not convert into better
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Fig. 10. Average 1D (left) and 2D (right) evaluation divergence between model
pdfs and phone pdfs for proposed DFS (solid) and ES (dashed) algorithms with
θC = {0.1, 0.2, . . . , 5.0}, for male (thick blue) and female (thin red) data.

performance. The change in evaluation divergence with the ES relative to
DFS was small and even positive (+3%/2% for male/female). The differences
were smaller for the 2D comparison. With only 0.5% decrease in evaluation
divergence, averaged across both threshold levels and speakers, we found that
ES provided a negligible benefit.

At the IPA threshold, there was good agreement: the two 1D critical articu-
lator lists were identical for half the phones and, allowing permutations, the
same for 60%/71% (male/female). In general, the order of critical articulator
identification was found not to affect significantly the phone models’ conver-
gence. Treating any changes in the critical articulator lists from DFS to ES as
errors, the overall identification accuracy was 74%. The largest proportion of
discrepancies resulted from substitution of one or two articulators for strongly
correlated ones. For instance, for female [s], the third critical articulator tbx
was replaced by tdx, whereas the male list included the expected ttx with
liy and tty. No other meaningful patterns were found in the comparison.

The ES algorithm was computationally expensive when compared with the
proposed algorithm. It took 1.0×106 s (1D) and 5.8×103 s (2D) to run ES for
one speaker upto level 6 (implemented in Matlab v7.5.0 on a machine with four
3.3GHz processors with 32GB RAM), whereas the DFS algorithm took less
than 1 s in both 1D and 2D cases. Thus, the main difference between the two
search strategies was the computational load. The proposed DFS algorithm
was as effective as the ES method with an added advantage of faster execution
times.
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6 Implications and applications of the algorithm

6.1 Efficient articulatory modeling

In its current 1D and 2D forms, the critical articulator identification algo-
rithm provides a compact representation of the articulatory configuration for
each phone. The phone distributions were approximated here using the iden-
tity, statistics and correlations of critical articulators, with the grand statistics
and correlations. To count the number of parameters, we use the number of
articulators a=14 for 1D or a=7 for 2D, the model dimensionality K=1 for
1D or K=2 for 2D, and the number of phones nΦ=44 in the inventory Φ.
Thus, the means of phone pdfs require anΦK parameters, and the symmet-
rical (co)variances anΦ

K
2
(K + 1). The grand means, (co-)variances and inter-

articulator correlations are needed to define the model pdfs, but then only the
critical articulator statistics are needed for each phone. The grand statistics
use a

(
2K + K

2
(aK − 1)

)
, and each phone uses γC

(
2K + K

2
(γCK − 1)

)
where

γC is the average number of critical articulators.

With complexity equivalent to the IPA descriptions, γC=1.8 for 1D and γC=1.4
for 2D, the reductions in the models’ parameters were 80% and 77% respec-
tively, averaged across the two subjects. The models became less compact as
the number of critical dimensions increased, e.g., reductions in parameters of
61% and 28% were achieved at the lower threshold for 1D and 2D (with average
3.6 and 5.6 critical dimensions/phone). Thus, the representation from the pro-
posed algorithm is more compact than a conventional, statistical description.
Transformation of articulator coordinates may provide additional information
compression, e.g., via principal or linear component decomposition (Maeda,
1990; Hoole et al., 2008; Badin et al., 2002). The authors have presented pre-
liminary work in this direction (Jackson and Singampalli, 2008b). Yet here,
the identified constraints of primary and secondary articulations are available
for interpretation.

6.2 Potential impact in speech science and technology

Accurate statistical models of coarticulation are of prime importance for future
advances speech synthesis and ASR. Such models aim to capture effects of tar-
get undershoot and overshoot, smooth and continuous articulator movement,
and passive gestures of dependent articulators. The constraints encapsulated
in the articulatory roles that our algorithm identifies can be used to prioritise
speech gestures and to determine unconstrained degrees of freedom. 2 Allowing

2 The latter relate to the uncontrolled manifold in gestural dynamic terms.
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articulators to relax when redundant, for instance, could account for tongue
dipping during bilabial VCV sequences. 3 A preliminary experiment by the
authors relates our data-driven method to feature spreading: in synthesis of
articulatory trajectories from phone labels (Singampalli and Jackson, 2007),
modified redundant segments showed a small improvement over a baseline sys-
tem that included inertial coarticulation effects. Extensions of the algorithm
could derive gestural activation patterns of phone sequences from 2D or 3D ar-
ticulatory data, rather than by phonetic rules. The quantitative description of
articulatory contraints that we advocate provides structure of the phoneme-to-
phone transformation in speech production, which can be used for improving
context sensitivity.

In phonetics, critical articulations are typically specified by subjective feature-
based or gestural descriptions; uncritical articulators have unspecified features
or gestures, and different realizations are detailed using diacritics in ‘narrow’
phonetic transcriptions. Some variation can be explained using theories such
as feature spreading (Henke, 1965; Moll and Daniloff, 1971; Daniloff and Ham-
marberg, 1973) and overlap of articulatory gestures (Browman and Goldstein,
1986; Saltzman and Munhall, 1989). The articulatory roles obtained using our
algorithm can supplement these theories with objective, statistical evidence of
significant coarticulation effects. It differentiates between critical articulator
targets, consequent movements of linked parts of the anatomy, and redundant
parts that are most susceptible to the biomechanical effects of coarticulation
from targets of neighbouring phonemes. A brief phonetic analysis of identified
articulatory constraints is presented in Jackson and Singampalli (2008a), that
offers opportunities for modeling anticipatory and carry-forward coarticula-
tion effects, based on MOCHA-TIMIT data. The algorithm can be used for
linguistic studies of various languages, dialects and speakers, for instance in
determining phonetic inventories.

In engineering, many ASR systems have attempted to incorporate articula-
tory constraints(King et al., 2007), inspired by distinctive features (Kirchhoff,
1999; Metze and Waibel, 2002; Frankel et al., 2004; Eide, 2001; Koreman
et al., 1998), in the form of quantized gestural configurations (Deng and Sun,
1994; Erler and Freeman, 1996; Richardson et al., 2000), or within a hidden
(pseudo-)articulatory layer via forward (Russell and Jackson, 2002; Richards
and Bridle, 1999) or inverse mapping (Richmond, 2006; Frankel et al., 2000).
The physiological constraints offered by human speech production have been
incorporated into speech synthesis via articulatory codebooks, regression and
neural-network approaches for forward mapping from articulatory to acoustic
domains, as in (Schroeter and Sondhi, 1994). It is widely accepted that appro-
priate use of articulatory information provides constraints that can improve

3 The tongue acts like a lazy ballerina, drooping to save effort while the spotlight
is on another dancer and recovering her pose when it shines on her again.
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the performance of speech technologies; the remaining open problem concerns
how to do so. The present research contributes in identifying essential gestural
commands in the planning and articulation of real speech utterances.

7 Conclusion

In this paper, we have proposed an algorithm for identifying critical, depen-
dent and redundant roles played by articulators during speech production.
The algorithm finds critical articulators using the identification KL divergence
between the phone and grand distributions, and updates pdfs of dependent ar-
ticulators based on their overall correlation with the critical articulators. The
1D and 2D version of the method were applied to EMA data from MOCHA-
TIMIT. Results were analysed and compared to IPA descriptions of the speech
sounds. The accuracy of fit to the measured phone distributions was evaluated
by computing the evaluation divergence (with full phone covariance), across
a range of thresholds. As expected, the 1D models were outperformed at all
threshold values by the 2D ones that modeled the covariance between x and y
movements. These models also fitted the measured distributions better than
ones derived from IPA descriptions of phoneme articulation, despite consider-
able benefit from incorporating the biomechanical dependencies between the
articulators.

Phonetic analysis showed that the algorithm output compared well to IPA
descriptions for consonants, while fricatives claimed additional critical artic-
ulators. It distinguished between full and central or reduced vowels, whose
configurations were more susceptible to coarticulation and had no critical ar-
ticulator. Some insertions and substitutions occurred where there was strong
correlation between articulators, and various speaker differences were seen. In
evaluation of the proposed algorithm against an exhaustive search, where all
critical articulator combinations were tested according to a minimax criterion,
we found that the proposed method performed as well as the exhaustive search
for much less computation.

The model of phone distributions obtained using the proposed algorithm,
through recognition of articulatory roles, is shown to be more compact and
more informative than a conventional statistical description. Applications that
exploit models of coarticulation and trajectory generation for audio and vi-
sual speech synthesis and recognition abound, offering plenty of scope for
development of data-driven approaches to mapping the relationship between
phonemes and their realization as phones. In the field of phonetics, knowledge
of real articulatory roles has potential for explaining coarticulation effects,
and studying phonetic inventories for different languages, speakers and styles.
One attempt at generating synthetic trajectories from phone labels was men-
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tioned that gave encouraging results. Further work is needed to investigate
dynamic behaviour of articulatory constraints. Opportunities exist to extend
critical articulator analysis to other types of speech data, and to explore knowl-
edge of articulatory roles in the synthesis of speech, whether explicitly, e.g.,
for visual/articulatory speech synthesis, or implicitly, e.g., in a join cost or
smoothing function for concatenative synthesis. Our interest focuses on ways
of exploiting new knowledge of articulatory constraints as conditional depen-
dencies in probabilistic speech models for ASR.
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