
HAL Id: hal-00540205
https://hal.science/hal-00540205v2

Submitted on 29 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cartesian closed 2-categories and permutation
equivalence in higher-order rewriting

Tom Hirschowitz

To cite this version:
Tom Hirschowitz. Cartesian closed 2-categories and permutation equivalence in higher-order rewrit-
ing. Logical Methods in Computer Science, 2013, 9 (3), pp.10. �10.2168/LMCS-9(3:10)2013�. �hal-
00540205v2�

https://hal.science/hal-00540205v2
https://hal.archives-ouvertes.fr

CARTESIAN CLOSED 2-CATEGORIES AND PERMUTATION
EQUIVALENCE IN HIGHER-ORDER REWRITING

TOM HIRSCHOWITZ

Abstract. We propose a semantics for permutation equivalence in higher-
order rewriting. This semantics takes place in cartesian closed 2-categories,

and is proved sound and complete.

1. Introduction

It is known since the end of the 80’s that 2-categories with finite products provide
a semantics for term rewriting [3]. Higher-order rewriting [10, 17, 14, 15] is a
framework for specifying rewrite systems on terms with variable binding. Many
results from standard term rewriting have been generalised to higher-order rewriting,
notably normalisation or confluence results. An important tool for confluence results
is the notion of permutation equivalence, which was generalised to the higher-order
case by Bruggink [1]. He defines a calculus of proof terms for specifying reductions
in a higher-order rewrite system.

We here propose a categorical semantics for a variant of this calculus, in terms of
cartesian closed 2-categories. We first define cartesian closed 2-signatures, which
generalise higher-order rewrite systems, and organise them into a category Sig. We
then construct an adjunction

(1.1) Sig ⊥ 2CCCat,

H

W

where 2CCCat is the category of small cartesian closed 2-categories. From a given
higher-order rewrite system S, the functor H constructs a cartesian closed 2-category,
whose 2-cells are Bruggink’s proof terms modulo permutation equivalence, which
we prove is the free cartesian closed 2-category generated by S.

We review a number of examples and non-examples, and sketch an extension to
deal with the latter.

Related work. Our cartesian closed 2-signatures are a 2-dimensional refinement of
cartesian closed sketches [16, 4, 9]. Bruggink’s calculus of permutation equivalence
is close in spirit to Hilken’s 2-categorical semantics of the simply-typed λ-calculus [7],
but technically different and generalised to arbitrary higher-order rewrite systems.
Capriotti [2] proposes a semantics of so-called flat permutation equivalence in
sesquicategories. More related work is discussed in Section 4.2.

1991 Mathematics Subject Classification. D.1.1;D.3.1;F.3.2;F.4.1;
Key words and phrases. Cartesian closed 2-categories, lambda calculus, higher-order rewriting,

combinatory reduction systems, categorical semantics.
This work has been partially funded by the French ANR projet blanc ”Curry Howard pour la

Concurrence” CHOCO BLAN07-1 189926.

1

2. Cartesian closed signatures and categories

We start by recalling the well-known, or at least folklore, adjunction between
what we here call (cartesian closed) 1-signatures and cartesian closed categories.

For any set X, define types over X by the grammar:

A,B, . . . ∈ L0(X) ::= x | 1 | A×B | BA,

with x ∈ X.

Proposition 1. L0 defines a monad on Set.

Let the set of sequents over a set X be S0(X) = L0(X)∗ × L0(X), i.e., sequents
are pairs of a list of types and a type. The assignment X 7→ S0(X) extends to an
endofunctor on Set.

Definition 1. A 1-signature consists of a set X0 of sorts, and an
S0(X0)-indexed set X1 of operations, or equivalently a map X1 → S0(X0).

A morphism of 1-signatures (X0, X1)→ (Y0, Y1) is a pair (f0, f1) where fi : Xi →
Yi such that

X1 Y1

S0(X0) S0(Y0)

f1

S0(f0)

commutes. Morphisms compose in the obvious way, and we have:

Proposition 2. Composition of morphisms is associative and unital, and hence
1-signatures and their morphisms form a category Sig1.

There is a well-known adjunction

Sig1 ⊥ CCCat

H1

W1

between 1-signatures and the category CCCat of small cartesian closed categories
(with chosen structure) and (strict) cartesian closed functors.

The functor W1 sends a cartesian closed category C to the signature with sorts C0,
its set of objects, and with operations A1, . . . , An → A the set C(JA1×. . .×AnK, JAK),
where J−K denotes the function L0(C0)→ C0 defined by induction:

(2.1)

JcK = c c ∈ C0

J1K = 1
JA×BK = JAK× JBK

JBAK = JBKJAK.

Conversely, given a 1-signature X, consider the simply-typed λ-calculus with
base types in X0 and constants in X1. Terms modulo βη form a category H1(X)
with objects all types over X0 and morphisms A→ B all terms of type B with one
free variable of type A.

A less often formulated observation, which is useful to us, is that the adjunction
H1 aW1 decomposes into two adjunctions

2

Sig1 ⊥ L1-Alg ⊥ CCCat,

L1

U1

F1

V1

where L1-Alg is the category of algebras for the monad L1 defined as follows (and
L1 is shorthand for the functor X 7→ (L1(X), µ)).

For any 1-signature X, let L1(X) denote the 1-signature with
• as sorts the set X0, and
• as operations Γ ` A the λ-terms Γ `M : A, modulo βη.

L1 extends to an endofunctor on Sig1, whose action on morphisms of 1-signatures

X
f−→ Y substitutes constants c ∈ X1 with f1(c). We obtain

Proposition 3. L1 is a monad on Sig1.

The functor V1 sends any cartesian closed category C to the L1-algebras (C0,C1)
defined as follows. First, C0 is the set of objects of C. It has a canonical L0-algebra
structure, say h0 : L0(C0)→ C0, obtained by interpreting type constructors in C as
in (2.1). Extending this to contexts G by h0(G) =

∏
i h0(Gi), let the operations in

C1(G,A) be the 1-cells in C(h0(G), h0(A)). Beware: the domain and codomain of
such an operation are really G and A, not h0(G) and h0(A). Similarly, interpreting
the λ-calculus in C, the 1-signature (C0,C1) has a canonical L1-algebra structure,
say h1 : L1(C0,C1)→ (C0,C1):

h1(G ` xi : Gi) = πi
h1(G ` () : 1) = !

h1(G ` c(M1, . . . ,Mn)) = c ◦ (h1(M1), . . . , h1(Mn))
h1(G ` λx : A.M : BA) = ϕ(h1(G, x : A `M : B))

h1(G `MN : B) = ev ◦ (h1(M), h1(N))
h1(G ` (M,N) : A×B) = (h1(M), h1(N))

h1(G ` πM : A) = π ◦M
h1(G ` π′M : A) = π′ ◦M,

where ! is the unique morphism h0(G)→ 1, ϕ is the bijection C(h0(G,A), h0(B)) ∼=
C(h0(G), h0(BA)), and ev is the structure morphism h0(BA ×A)→ h0(B).

L1-algebras are much like cartesian closed categories whose objects are freely
generated by their set of sorts. A perhaps useful analogy here is with multicategories
M, seen as being close to monoidal categories whose objects are freely generated by
those of M by tensor and unit. Here, the functor F1 sends any L1-algebra (X,h) to
the cartesian closed category with

• objects the types over X0, i.e., L0(X0),
• morphisms A→ B the set of operations in X1(A,B).

This canonically forms a cartesian closed category, with structure induced by the
L1-algebra structure. We define it in more detail in dimension 2 in Section 7.2.

3. Cartesian closed 2-signatures

Given a 1-signature X, let X|| denote the set of pairs of parallel operations,
i.e., pairs of operations M,N above the same sequent. Otherwise said, X|| is the
pullback

X|| X1

X1 S0(X0).

3

Any morphism f : X → Y of 1-signatures yields a function f|| : X|| → Y||, via the
dashed arrow (obtained by universal property of pullback) in

X|| X1

Y|| Y1

X1 S0(X0)

Y1 S0(Y0).

f1

S0(f0)f1

Definition 2. A 2-signature consists of a 1-signature X, plus a set X2 of reduction
rules with a function X2 → L1(X)||.

A morphism of 2-signatures (X,X2)→ (Y, Y2) is a pair (f, f2) where f : X → Y
is a morphism of 1-signatures and f2 : X2 → Y2 makes the diagram

X2 Y2

L1(X)|| L1(Y)||

f2

L1(f1)||

commute. We obtain:

Proposition 4. Composition of morphisms is associative and unital, and hence
2-signatures and their morphisms form a category Sig.

4. Examples

4.1. Higher-order rewrite systems. The prime example of a 2-signature is that
for the pure λ-calculus: it has a sort t and operations

a : t× t→ t ` : tt → t,

with a reduction rule β above the pair

x : tt, y : t ` a(`(x), y), x(y) : t

in L1({t}, {`, a})||. Categorically, this will yield a 2-cell

t× t

tt × t t.

`× t a

ev

β

This is an example of a higher-order rewrite system in the sense of Nipkow [14].
Nipkow’s definition is formally different, but his higher-order rewrite systems are in
bijection with 2-signatures h : X2 → L1(X)|| such that for all rules r ∈ X2, letting
(Γ `M,N : A) = h(r):

• M is not a variable,
• A is a sort,
• each variable occurring in Γ occurs free in M .

4

These restrictions help formulating and proving decidability problems on higher-order
rewrite systems, whose extension to our setting we leave open.

Let us now anticipate over our main results below and state our soundness and
completeness theorem. Given a higher-order rewrite system X, i.e., a 2-signature
satisfying the above conditions, let R(X) be the following locally-preordered 2-
category. It has:

• objects are types in L0(X0);
• morphisms A→ B are λ-terms in L1(X)(A ` B), modulo βη;
• given two parallel morphisms M and N , there is one 2-cell M → N exactly

when there is a sequence of reductions M →∗ N in the usual sense [14].

Proposition 5. R(X) is 2-cartesian closed.

R(X) and H(X) have the same objects and morphisms. But because our inference
rules for forming reductions are the same as deduction rules for proving the existence
of a reduction in the usual sense, we may send any reduction P : M → N to the
unique reduction M → N in R(X).

Theorem 1 (Soundness and completeness). This defines an identity-on-objects,
identity-on-morphisms, locally full cartesian closed 2-functor R(X) !−→ H(X).

4.2. Theories with binding. Understanding reduction rules as equations, it is
easy to define the free cartesian closed category generated by a 2-signature. This
yields an adjunction

(4.1) Sig ⊥ CCCat.

H′

W′

This adjunction provides a categorical semantics for theories with binding, which
is more general than other approaches by Fiore and Hur [6], Hirschowitz and
Maggesi [8], and Zsidó [18], and which is in line with Lambek’s seminal paper [11].

If I understand correctly, the motivation for Fiore and Hur’s subtle approach is
the will to explain the λ-calculus by strictly less than itself. The present framework
does not obey this specification, and instead tends to view the λ-calculus as a
universal (parameterised) theory with binding.

We end this section by giving a formal construction of the adjunction (4.1).
Cartesian closed categories form a full, reflective subcategory of 2CCCat, via the
functor J : 2CCCat→ CCCat sending a cartesian closed 2-category C to the cartesian
closed category with:

• objects those of C,
• morphisms those of C, modulo the congruence generated by f ∼ g iff there

exists a 2-cell f → g.
Here, J(C) is thought of as the free cartesian closed 2-category with trivial 2-cells
(i.e., 0 or 1). The desired adjunction is obtained by composing the adjunctions

Sig ⊥ 2CCCat ⊥ CCCat.

H

W

J

4.3. Non-examples. Non-examples are given by calculi whose reduction semantics
is defined on terms modulo a so-called structural congruence, e.g., CCS [12], or the
π-calculus [5, 13].

For example, consider the CCS term (a | 0) | a. In CCS, it is structurally
equivalent to (a | a) | 0, which then reduces to 0 | 0.

5

In order to account for this, we would have to consider a 2-signature with
reduction rules for structural congruence, here (M1 |M2) |M3 →M1 | (M2 |M3)
for associativity, and M | N → N |M for commutativity. But then, these reductions
count as proper reductions, which departs from the desired computational behaviour.
For example, the term a | a has an infinite reduction sequence, using commutativity.

Anticipating the development in the next sections, a potential solution is to
extend 2-signatures to 2-theories. For any 2-signature X, let X|| denote the set of
pairs of reduction rules r, s with a common type G `M → N : A. A 2-theory is a
2-signature X, together with a set of equations between parallel reductions, i.e., a
subset X3 of L(X)||.

The main adjunction announced above (1.1) extends to an adjunction between
2-theories and cartesian closed 2-categories. Using equations, we may specify that
any reduction M → M using only structural rules be the identity on M , and
consider the computational behaviour of a 2-category to consist of its non-invertible
morphisms, as proposed by Hilken [7]. A question is whether for a given calculus
this can be done with finitely many equations.

5. A 2-lambda-calculus

We now begin the construction of Adjunction (1.1). We start in this section by
defining a monad L on Sig, which we will use to factor Adjunction (1.1) as

Sig ⊥ L-Alg ⊥ 2CCCat,

L

U

F

V

where:
• L-Alg is the category of L-algebras,
• L : Sig→ L-Alg is a shortcut for X 7→ (L2X

µ−→ LX),
• U(LX h−→ X) = X,
• 2CCCat is the category of cartesian closed 2-categories, which we define in

Section 6.
The left-hand adjunction holds by L being a monad, thus we concentrate in

Section 7 on establishing the right-hand one.
But for now, let us define the monad L.

5.1. Syntax. Given a 2-signature X = ((X0, X1),
h : X2 → L1(X)||) (actually L1(X) is L1(X0, X1)), we construct a new 2-signature
L(X), whose reduction rules represent reduction sequences in the “higher-order
rewrite system” defined by X, modulo permutation equivalence. The 2-signature
L(X) has the same base 1-signature (X0, X1), and as reduction rules the terms of a
2λ-calculus (in the sense of Hilken [7]) modulo permutation equivalence, which we
now define.

First, terms, called reductions, are defined by induction in Figure 1. The typing
judgement has the shape Γ ` P : M → N : A, where A is a type in L0(X0), Γ is a
list of pairs of a variable and a type, with no variable appearing more than once, M
and N are terms of type Γ ` A modulo βη, and P is a reduction. In the sequel, we
often forget the variables in such pairs (Γ ` A), and identify them with sequents in
S0(X0).

When clear from context, we abbreviate substitutions [M1/x1, . . . ,Mn/xn] by
[M1, . . . ,Mn]. For a context G, Gi denotes its ith type. Also, for (M,N) ∈ L1(X)||,
we let X(M,N) be the set of all reduction rules r ∈ X2 such that h(r) = (M,N).
We write X(Γ ` M,N : A) to indicate the common type of M and N . Similarly,
X(G ` A) denotes the set of operations in X1 above G ` A.

6

. . . Γ ` Pi : Mi → Ni : Gi . . .

Γ ` r(P1, . . . , Pn) : M [M1, . . . ,Mn]→ N [N1, . . . , Nn] : A
(r ∈ X(G `M,N : A))

Γ ` P : M1 →M2 : A Γ ` Q : M2 →M3 : A
Γ ` P ;M2 Q : M1 →M3 : A

Γ, x : A,∆ ` x : x→ x : A

Γ ` () : ()→ () : 1

Γ ` P1 : M1 → N1 : G1 . . . Γ ` Pn : Mn → Nn : Gn
Γ ` c(P1, . . . , Pn) : c(M1, . . . ,Mn)→ c(N1, . . . , Nn) : A

(c ∈ X1(G ` A))

Γ, x : A ` P : M → N : B

Γ ` λx : A.P : λx : A.M → λx : A.N : BA

Γ ` P : M →M ′ : BA Γ ` Q : N → N ′ : A
Γ ` PQ : MN →M ′N ′ : B

Γ ` P : M →M ′ : A Γ ` Q : N → N ′ : B
Γ ` (P,Q) : (M,N)→ (M ′, N ′) : A×B

Γ ` P : M → N : A×B
Γ ` πA,BP : πA,BM → πA,BN : A

Γ ` P : M → N : A×B
Γ ` π′A,BP : π′A,BM → π′A,BN : B

Figure 1. Reductions

5.2. Substitution. Next, we define substitution, which has “type”

(5.1)
Γ ` Q : N → N ′ : ∆ ∆ ` P : M →M ′ : A

Γ ` P [Q] : M [N]→M ′[N ′] : A,

i.e., given a reduction P and a tuple of reductions Q, it produces a reduction of the
indicated type, which we denote P [Q]. Here, we denote by Γ ` Q : N → N ′ : ∆ a
tuple of reductions Γ ` Qi : Ni → N ′i : ∆i, for 1 ≤ i ≤ |∆|.

The definition is a bit tricky:
• first we define left whiskering, which has “type”

Γ ` Q : N → N ′ : ∆ ∆ `M : A
Γ `M [Q] : M [N]→M ′[N ′] : A,

• then we define right whiskering, which has “type”

Γ ` N : ∆ ∆ ` P : M →M ′ : A
Γ ` P [N] : M [N]→M ′[N] : A,

(where N denotes a tuple),
• then we define substitution by

P [Q] = (P [N] ;M ′[N] M
′[Q]).

There is of course another legitimate definition, namely

P [Q] = (M [Q] ;M [N ′] P [N ′]).

The two will be equated by permutation equivalence in the next section.
7

Left whiskering is defined by induction, with ∆ = (x1 : A1, . . . , xn : An) and
Q = (Q1, . . . , Qn), by:

()[Q] = ()
xi[Q] = Qi

c(M1, . . . ,Mp)[Q] = c(M1[Q], . . . ,Mp[Q])
(λx : B.M)[Q] = λx : B.(M [Q, x]) (for x /∈ dom(∆))

(MN)[Q] = (M [Q]N [Q])
(M,N)[Q] = (M [Q], N [Q])

(πA,BM)[Q] = πA,B(M [Q])
(π′A,BM)[Q] = π′A,B(M [Q]).

Right whiskering is defined by induction, with ∆ = (x1 : A1, . . . , xn : An) and
N = (N1, . . . , Nn), by:

(r(P1, . . . , Pp))[N] = r(P1[N], . . . , Pp[N])
(P1 ;M ′′ P2)[N] = (P1[N] ;M ′′[N] P2[N])

()[N] = ()
xi[N] = Ni

c(P1, . . . , Pp)[N] = c(P1[N], . . . , Pp[N])
(λx : B.P ′)[N] = λx : B.(P ′[N, x]) (for x /∈ dom(∆))

(P1P2)[N] = (P1[N]P2[N])
(P1, P2)[N] = (P1[N], P2[N])

(πA,BP ′)[N] = πA,B(P ′[N])
(π′A,BP

′)[N] = π′A,B(P ′[N]).

Definition 3. Let P [Q] = (P [N] ;M ′[N] M
′[Q]).

Proposition 6. Given reductions P and Q as above, the capture-avoiding substitu-
tion P [Q] is a well-typed reduction Γ ` P [Q] : M [N]→M ′[N ′] : A.

Similarly, there is a weakening operation with “type”

Γ ` P : M → N : A
Γ, x : B ` P : M → N : A.

(x /∈ Γ)

5.3. Permutation equivalence. We now define permutation equivalence on re-
ductions, by the equations in Figures 3 and 4, in Appendix A. The congruence
rules in Figure 3 are bureaucratic: they just say that permutation equivalence is
a congruence. The category rules make reductions of a given type Γ ` A into a
category. In Figure 4, the beta and eta rules mirror the term-level beta and eta
rules. Finally, the lifting rules lift composition of reductions towards toplevel.

So, L(X) has sorts X0, operations X1, and as reduction rules in L(X)(G `
M,N : A) all reductions G ` P : M → N : A, modulo the equations.

This easily extends to:

Proposition 7. L is a functor Sig→ Sig.

Now, consider LL(X). We define a mapping µX : LL(X)→ L(X), by induction
on reductions. The typing rule for reduction rules specialises to:

(R ∈ L(X)(G `M,N : A))
Γ ` P1 : M1 → N1 : G1 . . . Γ ` Pn : Mn → Nn : Gn
Γ ` R(P1, . . . , Pn) : M [M1, . . . ,Mn]→ N [N1, . . . , Nn] : A

·

8

We set µ(R(P1, . . . , Pn)) = R[µ(P1), . . . , µ(Pn)]. The other cases just propagate the
substitution:

P ; Q 7→ µ(P) ; µ(Q)
x 7→ x
() 7→ ()

c(P1, . . . , Pn) 7→ c(µ(P1), . . . , µ(Pn))
λx : A.P 7→ λx : A.µ(P)

PQ 7→ µ(P)µ(Q)
(P,Q) 7→ (µ(P), µ(Q))
πP 7→ π(µ(P))
π′P 7→ π′(µ(P)).

Lemma 1. This defines a natural transformation µ : L2 → L, which makes the
diagram

L3 L2

L2 L

Lµ

µL µ

µ

commute.

Similarly, there is a natural transformation η : id → L, sending each r ∈ X(G `
M,N : A) to the reduction G ` r(x1, . . . , xn) : M → N : A, and we have:

Lemma 2. The diagram

L L2 L

L

ηL Lη

µ

commutes.

Corollary 1. (L, µ, η) is a monad on Sig.

A crucial result is:

Proposition 8. For all Γ ` Q : N → N ′ : ∆ and ∆ ` P : M →M ′ : A, we have:

Γ ` P [Q] ≡ (M [Q] ;M [N ′] P [N ′]) : M [N]→M ′[N ′] : A.

Proof. We proceed by induction on P . Most cases are bureaucratic. Consider for
instance P = c(P1, . . . , Pp). Then, by definition:

P [Q] = (c(P1[N], . . . , Pp[N]) ;c(M ′
1[N],...,M ′

p[N]) c(M ′1[Q], . . . ,M ′p[Q]).

By the third lifting rule, this is ≡-related to

c(P1[N] ;M ′
1[N] M

′
1[Q], . . . , Pp[N] ;M ′

p[N] M
′
p[Q]).

By p applications of the induction hypothesis, we obtain

c(M1[Q] ;M1[N ′] P1[N ′], . . . ,Mp[Q] ;Mp[N ′] Pp[N ′]),

which by lifting again yields the desired result:

c(M1[Q], . . . ,Mp[Q]) ;c(M1[N ′],...,Mp[N ′]) c(P1[N ′], . . . , Pp[N ′]).

The case where something actually happens is P = r(P1, . . . , Pp), with r ∈ X(G `
M0,M

′
0 : A) and each ∆ ` Pi : Mi →M ′i : Gi. Then, the left-hand side is

r(P1[N], . . . , Pp[N]) ;M0[M1,...,Mn][N] M
′
0[M ′1, . . . ,M

′
p][Q].

9

By lifting, omitting indices of vertical compositions, we have

r(P1[N], . . . , Pp[N]) ≡ r(M1[N], . . . ,Mp[N]) ; M ′0[P1[N], . . . , Pp[N]].

Observing that M ′0[M ′1, . . . ,M
′
p][Q] = M ′0[M ′1[Q], . . . ,M ′p[Q]], the whole is ≡-related

to
r(M1[N], . . . ,Mp[N]);
M ′0[P1[N], . . . , Pp[N]];
M ′0[M ′1[Q], . . . ,M ′p[Q]],

i.e., by lifting (inductively):

r(M1[N], . . . ,Mp[N]);
M ′0[(P1[N] ; M ′1[Q]), . . . , (Pp[N] ; M ′1[Q])].

This is by induction hypothesis ≡-related to

r(M1[N], . . . ,Mp[N]);
M ′0[(M1[Q] ; P1[N ′]), . . . , (M1[Q] ; Pp[N ′])],

i.e., by lifting again to
r(M1[N], . . . ,Mp[N]);
M ′0[M1[Q], . . . ,M1[Q]];
M ′0[P1[N ′], . . . , Pp[N ′]].

The second lifting rule then yields

r(M1[Q], . . . ,Mp[Q]);
M ′0[P1[N ′], . . . , Pp[N ′]].

And then the first lifting rule yields

M0[M1[Q], . . . ,M1[Q]];
r(M1[N ′], . . . ,Mp[N ′]);
M ′0[P1[N ′], . . . , Pp[N ′]],

so, by the second lifting rule again:

M0[M1[Q], . . . ,M1[Q]];
r(P1[N ′], . . . , Pp[N ′]),

i.e., the right-hand side. �

6. Cartesian closed 2-categories

6.1. Definition. In a 2-category C, a diagram A
p←− C

q−→ B is a product diagram
iff for all object D, the induced functor

C(D,C) ∆−→ C(D,C)× C(D,C)
C(D,p)×C(D,q)−−−−−−−−−−→ C(D,A)× C(D,B)

is an isomorphism. Because this family of functors is 2-natural in D, the inverse
functors will also be 2-natural.

Similarly, an object 1 of C is terminal iff for all D the unique functor

C(D, 1) !−→ 1

is an isomorphism (where the right-hand 1 is the terminal category).

Definition 4. A 2-category with finite products, or fp 2-category, is a 2-category
C, equipped with a terminal object and a 2-functor

C× C
×−→ C,

plus, for all A and B, a product diagram

A
p←− A×B q−→ B.

10

In such an fp 2-category C, given objects A and B, an exponential for them is a
pair of an object BA and a morphism ev : A × BA → B, such that for all D, the
functor

C(A,A)× C(D,BA) C(A×D,A×BA)

C(D,BA) C(A×D,B)

(idA!, id)

×

C(A×D, ev)

is an isomorphism. As above, because this family of functors is 2-natural in D, the
inverse functors will also be 2-natural.

Definition 5. A cartesian closed 2-category, or cartesian closed 2-category, is an fp
2-category, equipped with a choice of exponentials for all pairs of objects. The category
2CCCat has cartesian closed 2-categories as objects, and stricly structure-preserving
functors between them as morphisms.

7. Main adjunction

7.1. Right adjoint. Given a cartesian closed 2-category C, define V(C) = (C0,C1,
C2) as follows. First, let as in Section 2 (C0,C1) = V1(C), and recall the canon-
ical L0 and L1-algebra structures h0 and h1. Let then the reduction rules in
C2(G `M,N : A) be the 2-cells in C(h0(G), h0(A))(h1(M), h1(N)), abbreviated to
C(G,A)(M,N) in the sequel.

This signature VC has a canonical L-algebra structure h2 : L(VC)→ VC, which
we define by induction over terms in Figure 2. In the case for λ, ϕ denotes the
structure isomorphism C((

∏
Γ)×A,B) ∼= C(

∏
Γ, BA).

In order for the definition to make sense as a morphism L(VC)→ VC, we have to
check its compatibility with the equations. We have first:

Lemma 3. For all ∆ ` Q : N → N ′ : Γ and Γ ` P : M →M ′ : A in L(VC),

∆ A

M [N]

M ′[N ′]

h2(P [Q]) = ∆ Γ A.

N

N ′

M

M ′

h2(Q) h2(P)

Proof. By induction on P and the axioms for cartesian closed 2-categories. �

Lemma 4. Any two equated reductions are mapped to the same 2-cell in C.

Proof. We proceed by induction on the proof of the considered equation. The rules
of Figure 3 hold because, in C, vertical composition is associative and unital, and
equality is a congruence. The beta rule is less easy, so we spell it out.

The left-hand reduction is interpreted in C as

∏
Γ BA ×A B

(ϕM,N)

(ϕM ′, N ′)

ev
(ϕP,Q)

which is equal to
11

(G ` xi : xi → xi : Gi) 7→ (idπi
: πi → πi :

∏
G→ Gi)

(G ` () : ()→ () : 1) 7→ (id ! : !→! :
∏
G→ 1)

(Γ ` c(P1, . . . , Pn) : c(M1, . . . ,Mn)→ c(N1, . . . , Nn) : A) 7→

∏
Γ

∏
G A

(M1, . . . ,Mn)

(N1, . . . , Nn)

c
P (c ∈ C1(G,A), P = (P1, . . . , Pn))

(Γ ` r(P1, . . . , Pn) : M [M1, . . . ,Mn]→ N [N1, . . . , Nn] : A) 7→

∏
Γ

∏
G A

(M1, . . . ,Mn)

(N1, . . . , Nn)

M

N

rP (P = (P1, . . . , Pn))

(G ` P ;M2 Q : M1 →M3 : A) 7→ ∏
G A

M1

M3

P

Q

(Γ ` λx : A.P : λx : A.M → λx : A.N : BA) 7→ ϕ(P : M → N : (
∏

Γ)×A→ B)

(Γ ` PQ : MN →M ′N ′ : B) 7→ ∏
Γ BA ×A B

(M,N)

(M ′, N ′)

ev
(P,Q)

(Γ ` (P,Q) : (M,N)→ (M ′, N ′) : A×B) 7→ ∏
Γ A×B

(M,N)

(M ′, N ′)

(P,Q)

(Γ ` πA,BP : πA,BM → πA,BN : A) 7→ ∏
Γ A×B A

M

N

π
P

(Γ ` π′A,BP : π′A,BM → π′A,BN : B) 7→ ∏
Γ A×B B

M

N

π′
P

Figure 2. The L-algebra structure on V(C)

12

∏
Γ

∏
Γ×A BA ×A B

(id , N)

(id , N ′)

(id,Q)

ϕM ×A

ϕM ′ ×A

ev
ϕP×A

which is in turn equal (by cartesian closedness of C) to:

∏
Γ

∏
Γ×A B

(id , N)

(id , N ′)

(id,Q)

M

M ′

P

and hence to the right-hand side of the equation by Lemma 3. The other beta and
eta rules similarly hold by the properties of products, internal homs, and terminal
object in C.

The lifting rules hold by (particular cases of) the interchange law in C and
functoriality of the structural isomorphisms

C(A×B,C) ∼= C(B,CA) and C(C,A×B) ∼= C(C,A)× C(C,B),

which concludes the proof. �

This assignment extends to cartesian closed functors and we have:

Proposition 9. V is a functor 2CCCat→ Sig.

7.2. Left adjoint. Given an L-algebra h : L(X)→ X, we now construct a cartesian
closed 2-category F(X,h). It has:

• objects the types in L0(X0);
• 1-cells A→ B the terms in L1(X0, X1)(A,B);
• 2-cells M → N : A→ B the reduction rules in X2(M,N).

We then must define the cartesian closed 2-category structure, and we start with
the 2-category structure. Composition of 1-cells A M−→ B

N−→ C is defined to be

A
N [M]−−−→ C. Vertical composition of 2-cells

A B

M1

M2

M3

α

β

is given by h(η(α) ;M2 η(β)).
Horizontal composition of 2-cells

(7.1) A B C

M

M ′

N

N ′

α β

is obtained as h(β(η(α))).
To show that this yields a 2-category structure, the only non obvious point is the

interchange law. We deal with it using the following series of results. First, consider
the left whiskering

13

A B C

M

M ′

N
α

of a 2-cell α by a 1-cell N , i.e., the composition idN ◦ α = h((h(N))(η(α))).

Lemma 5. We have: h((h(N))(η(α))) = h(N [η(α)]).

Proof. Indeed, consider the term N(η(η(α))) in L(L(X)). Its images by h◦L(h) and
h◦µ coincide, and are respectively h((h(N))(η(α))), i.e., idN ◦α, and h(N [η(α)]). �

Similarly, consider the right whiskering

A B C

N

N ′

M γ

of a 2-cell γ by a 1-cell M , i.e., the composition γ ◦ idN = h(γ(η(h(M)))).

Lemma 6. We have: h(γ(η(h(M)))) = h(γ(M)).

Proof. Consider (ηγ)(ηM) in L(L(X)). Its images by h ◦ L(h) and h ◦ µ coincide,
and are respectively h(γ(η(h(M)))) and h(γ(M)). �

Now, we prove that the two sensible ways of mimicking horizontal composition
using whiskering coincide with actual horizontal composition:

Lemma 7. For any cells as in (7.1),

(β ◦ idM) ; (idN ′ ◦ α) = β ◦ α = (idN ◦ α) ; (β ◦ idM ′).

Proof. Consider first the reduction η(β(M)) ; η(N ′[η(α)]) in L(L(X)). Taking
h ◦ L(h) and h ◦ µ as above respectively yields

• h(η(h(β(M))) ; η(h(N ′[α]))), and
• h(β(M) ; N ′[η(α)]) = h(β(η(α))),

hence the left-hand equality. Then consider η(N [η(α)]) ; η(γ(M ′)). Evaluating as
before yields the right-hand equality. �

Finally, consider any configuration like:

A B C.

M

M ′

M ′′

Nα

β

Lemma 8. We have (idN ◦ α) ; (idN ◦ β) = idN ◦ (α ; β).

Proof. Consider η(N [η(α)]) ; η(N [η(β)]). Evaluating yields equality of
• h(η(h(N [η(α)])) ; η(h(N [η(β)]))), i.e., the left-hand side, and
• h(N [η(α)] ; N [η(β)]), i.e., h(N [η(α) ; η(β)]) by lifting.

But now consider N [η(η(α) ; η(β))]. Evaluating yields equality of
• h(N [η(α) ; η(β)]), as above, and
• h(N [η(h(η(α) ; η(β)))]), i.e., h(N [η(α ; β)]) (where α ; β denotes vertical

composition in our candidate 2-category), i.e., the right-hand side. �

Lemma 9. The interchange law holds, i.e., for all reduction rules as in
14

A B C,

M1

M2

M3

N1

N2

N3

α

β

γ

θ

we have
(γ ; θ) ◦ (α ; β) = (γ ◦ α) ; (θ ◦ β).

Proof. By the previous results, we have

(γ ; θ) ◦ (α ; β)
= ((γ ; θ) ◦M1) ; (N3 ◦ (α ; β))
= (γ ◦M1) ; (θ ◦M1) ; (N3 ◦ α) ; (N3 ◦ β)
= (γ ◦M1) ; (N2 ◦ α) ; (θ ◦M2) ; (N3 ◦ β)
= (γ ◦ α) ; (θ ◦ β).

�

Now, let us show cartesian closedness. We have a bijection of hom-sets L1(X)(C `
A×B) ∼= L1(X)(C ` A)× L1(X)(C ` B), given by

L1(X)(C ` A×B) → L1(X)(C ` A)× L1(X)(C ` B)
M 7→ πM, π′M

and
L1(X)(C ` A)× L1(X)(C ` B) → L1(X)(C ` A×B)

M,N 7→ (M,N).
These are mutually inverse thanks to the beta and eta rules for products in the
simply-typed λ-calculus.

On 2-hom-sets, we have

L(X)(C `M,N : A×B) → L(X)(C ` πM, πN : A)× L(X)(C ` π′M,π′N : B)
P 7→ πP, π′P

and (omitting C)

L(X)(M1, N1 : A)× L(X)(M2, N2 : B) → L(X)((M1,M2), (N1, N2) : A×B)
P1, P2 7→ (P1, P2),

which are mutually inverse thanks to the beta and eta rules for products in Figure 4.
We use these to define the desired isomorphism (u, v)

X2(C `M,N : A×B) ∼= X2(C ` πM, πN : A)×X2(C ` π′M,π′N : B),

as in the diagrams

X2(M,N) X2(πM, πN)×X2(π′M,π′N)

L(X)(M,N) L(X)(πM, πN)× L(X)(π′M,π′N)

u

η

∼=

h× h

and

X2(πM, πN)×X2(π′M,π′N) X2(M,N)

L(X)(πM, πN)× L(X)(π′M,π′N) L(X)(M,N).

v

η × η

∼=

h

15

Starting from r ∈ X2(M,N), we obtain

v(u(r)) = h(η(h(π(η(r)))), η(h(π′(η(r))))).

But consider (η(πη(r)), η(π′η(r))) in L(LX); its images by h ◦ Lh and h ◦ µ are
respectively:

• h(η(h(π(ηr))), η(h(π′(ηr)))), and
• h(πη(r), π′η(r)), i.e., h(η(r)), i.e., r,

which must be equal because h is an L-algebra, hence v ◦ u = id .
Conversely, starting from (r, s) ∈ X2(M1,M2)×X2(N1, N2), we obtain the pair

with components

h(π(η(h(η(r), η(s))))) and h(π′(η(h(η(r), η(s))))).

Considering π(η(η(r), η(s))) ∈ L(L(X)), its images by h ◦ L(h) and h ◦ µ are
respectively:

• h(π(η(h(η(r), η(s))))), and
• h(π(η(r), η(s))) = h(η(r)) = r.

As above, they must be equal, and by symmetry the second component is s, and we
have proved u ◦ v = id . Similar reasoning for the terminal object and internal homs
leads to:

Proposition 10. This yields a cartesian closed 2-category structure on C.

This extends to morphisms of L-algebras, so we have constructed a functor
F : L-Alg→ 2CCCat.

7.3. Adjunction. Consider any L-algebra (X,h). What does (Y, k) = V(F(X,h))
look like? Sorts in Y0 are types in L0(X0). Operations Y1(G ` A) are terms in
L1(X0, X1)(

∏
G ` A). Reduction rules in Y2(G ` M,N : B) are reductions in

L(X)(
∏
G ` M ′, N ′ : B), where M ′ = M [π1x/x1, . . . , πnx/xn] (and similarly for

N ′).
Let ηX send:

• each sort ι ∈ X0 to the type ι ∈ L0(X0),
• each operation c ∈ X(G ` A) to the term c(π1x, . . . , πnx), and
• each reduction rule r ∈ X2(G ` M,N : A) to the reduction x :

∏
G `

r(π1x, . . . , πnx) : M ′ → N ′ : A.

Theorem 2. This η is a natural transformation which is the unit of an adjunction

L-Alg ⊥ 2CCCat.

F

V

Proof. Consider any morphism f : (X,h)→ V(C), and let (Y, k) = V(F(X,h)) and
V(C) = (C0,C1, h2 : C2 → C1). We now define a uniquely determined cartesian closed
functor f ′ : F(X,h)→ C making the triangle

X V(F(X))

V(C)

ηX

f
V(f ′)

16

commute.
On objects, it is determined by induction: on sorts by f0, and on type constructors

by the requirement that f ′ be cartesian closed. On morphisms, it is similarly
determined by f1 and f ′ being cartesian closed. On 2-cells, define f ′ to be f2 : X2(A `
M,N : B)→ C(f ′(A), f ′(B))(f ′(M), f ′(N)), which is also the only possible choice
from f .

We thus only have to show that f ′ is cartesian closed, which follows by f being a
morphism of L-algebras. For example, to show that binary products of reductions
are preserved, consider r ∈ X2(C `M1,M2 : A) and s ∈ X2(C ` N1, N2 : B). Their
product in F(X) is obtained by considering the atomic reductions x : C ` r(x) :
M1 → M2 : A and x : C ` s(x) : N1 → N2 : B and taking h(r(x), s(x)), which is
sent by f2 to f2(h(r(x), s(x))). But, because f is a morphism of L-algebras, this
is the same as h2((f2(r))(x), (f2(s))(y)), which is by definition (i.e., Figure 2) the
product (f2(r), f2(s)) in C. �

References

[1] H. J. Sander Bruggink. Equivalence of reductions in higher-order rewriting. PhD thesis,

Utrecht University, 2008.

[2] Paolo Capriotti. Concurrent semantics with variable binding. Master’s thesis, University of
Pisa, 2009.

[3] Andrea Corradini, Fabio Gadducci, and Ugo Montanari. Relating two categorial models of

term rewriting. In Jieh Hsiang, editor, RTA, volume 914 of Lecture Notes in Computer Science,
pages 225–240. Springer, 1995.

[4] Thierry Despeyroux and André Hirschowitz. Principles for functional abstract syntax. Draft,

1995.
[5] Uffe Engberg and Mogens Nielsen. A calculus of communicating systems with label passing.

Technical Report PB-208, Aarhus University, 1986.
[6] Marcelo P. Fiore. Second-order and dependently-sorted abstract syntax. In LICS, pages 57–68.

IEEE Computer Society, 2008.

[7] Barney P. Hilken. Towards a proof theory of rewriting: The simply typed 2λ-calculus. Theor.
Comput. Sci., 170(1-2):407–444, 1996.

[8] André Hirschowitz and Marco Maggesi. Modules over monads and linearity. In WoLLIC ’07,
volume 4576 of LNCS. Springer, 2007.

[9] Yoshiki Kinoshita, John Power, and Makoto Takeyama. Sketches. Journal of Pure and Applied
Algebra, 143(1-3), 1999.

[10] Jan W. Klop. Combinatory Reduction Systems. PhD thesis, CWI, Amsterdam, 1980.
[11] Joachim Lambek. From λ-calculus to cartesian closed categories. Academic Press, 1980.

[12] Robin Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer, 1980.

[13] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I/II.

Information and Computation, 100(1):1–77, 1992.

[14] Tobias Nipkow. Higher-order critical pairs. In LICS, pages 342–349. IEEE Computer Society,
1991.

[15] Vincent van Oostrom and Femke van Raamsdonk. Comparing combinatory reduction systems

and higher-order rewrite systems. In Jan Heering, Karl Meinke, Bernhard Möller, and Tobias
Nipkow, editors, HOA, volume 816 of Lecture Notes in Computer Science, pages 276–304.

Springer, 1993.

[16] Charles Wells. A generalization of the concept of sketch. Theor. Comput. Sci., 70(1):159–178,
1990.

[17] David A. Wolfram. The Clausal Theory of Types. Number 21 in Cambridge Tracts in Theo-

retical Computer Science. Cambridge University Press, 1993.
[18] Julianna Zsidó. Typed Abstract Syntax. PhD thesis, Université de Nice-Sophia Antipolis, 2010.

Appendix A. Equations on reductions

Current address: CNRS, Université de Savoie

17

Congruence

Γ ` P : M → N : A
Γ ` P ≡ P : M → N : A

Γ ` P ≡ Q : M → N : A
Γ ` Q ≡ P : M → N : A

Γ ` P1 ≡ P2 : M → N : A Γ ` P2 ≡ P3 : M → N : A
Γ ` P1 ≡ P3 : M → N : A

Γ ` P ≡ P ′ : M1 →M2 : A Γ ` Q ≡ Q′ : M2 →M3 : A
Γ ` (P ;M2 Q) ≡ (P ′ ;M2 Q

′) : M1 →M3 : A

(r ∈ X(G `M,N : A))
Γ ` P1 ≡ Q1 : M1 → N1 : G1 . . . Γ ` Pn ≡ Qn : Mn → Nn : Gn

Γ ` r(P1, . . . , Pn) ≡ r(Q1, . . . , Qn) : M [M1, . . . ,Mn]→ N [N1, . . . , Nn] : A

(c ∈ X(G ` A))
Γ ` P1 ≡ Q1 : M1 → N1 : G1 . . . Γ ` Pn ≡ Qn : Mn → Nn : Gn
Γ ` c(P1, . . . , Pn) ≡ c(Q1, . . . , Qn) : c(M1, . . . ,Mn)→ c(N1, . . . , Nn) : A

Γ, x : A ` P ≡ Q : M → N : B

Γ ` (λx : A.P) ≡ (λx : A.Q) : λx : A.M → λx : A.N : BA

Γ ` P ≡ P ′ : M →M ′ : BA Γ ` Q ≡ Q′ : N → N ′ : A
Γ ` (PQ) ≡ (P ′Q′) : MN →M ′N ′ : B

Γ ` P ≡ P ′ : M →M ′ : A Γ ` Q ≡ Q′ : N → N ′ : B
Γ ` (P,Q) ≡ (P ′, Q′) : (M,N)→ (M ′, N ′) : A×B

Γ ` P ≡ Q : M → N : A×B
Γ ` (πA,BP) ≡ (πA,BQ) : πA,BM → πA,BN : A

Γ ` P ≡ Q : M → N : A×B
Γ ` (π′A,BP) ≡ (π′A,BQ) : π′A,BM → π′A,BN : A

Category

Γ ` P1 : M1 →M2 : A Γ ` P2 : M2 →M3 : A Γ ` P3 : M3 →M4 : A
Γ ` (P1 ;M2 (P2 ;M3 P3)) ≡ ((P1 ;M2 P2) ;M3 P3) : M1 →M4 : A

Γ ` P : M → N : A
Γ ` (P ;N N) ≡ P : M → N : A

Γ ` P : M → N : A
Γ ` (M ;M P) ≡ P : M → N : A

Figure 3. Equations on reductions (Congruence and category)

18

Beta and eta

Γ, x : A ` P : M →M ′ : B Γ ` Q : N → N ′ : A
Γ ` ((λx : A.P)Q) ≡ P [Q/x] : (λx : A.M)N →M ′[N ′/x] : B

Γ ` P ≡M → N : BA

Γ ` P ≡ λx : A.(Px) : M → N : BA
(x /∈ Γ)

Γ ` P : M1 →M2 : A Γ ` Q : N1 → N2 : B
Γ ` π(P,Q) ≡ P : π(M1, N1)→M2 : A

Γ ` P : M1 →M2 : A Γ ` Q : N1 → N2 : B
Γ ` π′(P,Q) ≡ P : π′(M1, N1)→ N2 : A

Γ ` P : (M1, N1)→ (M2, N2) : A×B
Γ ` P ≡ (πP, π′P) : (M1, N1)→ (M2, N2) : A×B

Γ ` P : M → N : 1
Γ ` P ≡ () : M → N : 1

Lifting

(r ∈ X(Γ ` 〈M1,M2〉 : A)) ∆ ` P : N1 → N2 : Γ ∆ ` Q : N2 → N3 : Γ
Γ ` r(P ;N2 Q) ≡M1[P] ;M1[N2] r(Q) : M1[N1]→M2[N3] : A

(r ∈ X(Γ ` 〈M1,M2〉 : A)) ∆ ` P : N1 → N2 : Γ ∆ ` Q : N2 → N3 : Γ
Γ ` r(P ;N2 Q) ≡ r(P) ;M2[N2] M2[Q] : M1[N1]→M2[N3] : A

Γ ` P : M1 →M2 : G Γ ` Q : M2 →M3 : G
Γ ` (c(P ;M2 Q)) ≡ (c(P) ;c(M2) c(Q)) : M1 →M3 : A

(c ∈ X(G ` A))

Γ, x : A ` P : M1 →M2 : B Γ, x : A ` Q : M2 →M3 : B
Γ ` (λx : A.(P ;M2 Q)) ≡ ((λx : A.P) ;λx : A.M2 (λx : A.Q))

: λx : A.M1 → λx : A.M3 : BA

Γ ` P : M1 →M2 : BA

Γ ` P ′ : M2 →M3 : BA Γ ` Q : N1 → N2 : A Γ ` Q′ : N2 → N3 : A
Γ ` ((P ;M2 P

′)(Q ;N2 Q
′)) ≡ ((PQ) ;M2N2 (P ′Q′)) : M1N1 →M3N3 : B

Γ ` P : M1 →M2 : A
Γ ` P ′ : M2 →M3 : A Γ ` Q : N1 → N2 : B Γ ` Q′ : N2 → N3 : B

Γ ` ((P ;M2 P
′), (Q ;N2 Q

′)) ≡ ((P,Q) ;(M2,N2) (P ′, Q′))
: (M1, N1)→ (M3, N3) : A×B

Γ ` P : M1 →M2 : A×B Γ ` Q : M2 →M3 : A×B
Γ ` (πA,B(P ;M2 Q)) ≡ (πA,BP ;πA,BM2 πA,BQ) : M1 →M3 : A

Γ ` P : M1 →M2 : A×B Γ ` Q : M2 →M3 : A×B
Γ ` (π′A,B(P ;M2 Q)) ≡ (π′A,BP ;π′

A,BM2 π
′
A,BQ) : M1 →M3 : B

Figure 4. Equations on reductions (beta-eta and lifting)

19

	1. Introduction
	Related work

	2. Cartesian closed signatures and categories
	3. Cartesian closed 2-signatures
	4. Examples
	4.1. Higher-order rewrite systems
	4.2. Theories with binding
	4.3. Non-examples

	5. A 2-lambda-calculus
	5.1. Syntax
	5.2. Substitution
	5.3. Permutation equivalence

	6. Cartesian closed 2-categories
	6.1. Definition

	7. Main adjunction
	7.1. Right adjoint
	7.2. Left adjoint
	7.3. Adjunction

	References
	Appendix A. Equations on reductions

