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ABSTRACT 

Among the large matrix metalloproteinases (MMPs) family, MMP-12, also referred to as 

macrophage elastase, plays a significant role in chronic pulmonary pathologies characterized by an 

intense tissue remodeling such as asthma and COPD. This review will summarize knowledge about 

MMP-12 structure, functions and mechanisms of activation and regulation, including potential MMP-12 

modulation by microRNA. As MMP-12 is involved in many tissue remodeling diseases, efforts have 

been made to develop specific synthetic inhibitors. However, at this time, very few chemical inhibitors 

have proved to be efficient and specific to a particular MMP. The relevance of silencing MMP-12 by 

RNA interference is highlighted. The specificity of this approach using siRNA or shRNA and the 

strategies to deliver these molecules in the lung are discussed. 
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1 TISSUE REMODELING IN LUNG DISEASE 

Matrix metalloproteinases (MMPs) are believed to be the main physiological mediators of 

extracellular matrix macromolecule degradation and to be the initiators of tissue remodeling. These 

enzymes play a pivotal role in tissue remodeling during physiological processes such as embryonic 

development, morphogenesis, post natal development and during pathological conditions [1]. 

MMPs comprise a family of 25 related, yet distinct, zinc-containing enzymes [2]. Collectively, 

they are able to degrade all extracellular matrix components at neutral pH. MMP-12, also known as 

macrophage elastase (EC 3.4.24.65) shares common structural domains with other MMPs such as 

collagenase 1 (MMP-1), stromelysin-1 (MMP-3), stromelysin-2 (MMP-10) and is often classified into 

the stromelysin-subgroup of MMPs due to its structure and substrate specificity. As several other 

MMPs (MMP-1, -3, -7, -8, -13 and -20), MMP-12 gene is located on human chromosome 11, at 

11q22.3 [2]. 

MMP-12 is considered to be highly associated with inflammatory diseases implicating 

macrophage infiltration. The enzyme contributes to macrophage migration through basement 

membranes, a mandatory process allowing their recruitment to inflammatory sites where they rapidly 

expand the inflammatory cascade. However, one should bear in mind that MMP-12 expression, at 

both transcriptional and protein levels, is dependent upon the state of cellular differentiation and is not 

dectected in monocytes [3], cells from which macrophages derive. 

Role of MMP-12 is well documented in lung diseases such as COPD, emphysema and 

asthma. Its production results from macrophage activation but also from resident cells synthesis 

(epithelial cells, smooth muscle cells and endothelial cells) along alveolar wall of lungs [4-8]. Elastin 

represents about 2.5 % (w/w) of the dry weight of the lung and is distributed widely throughout the 

lungs [9] and is crucial for elasticity and resistance of alveoli and bronchi. Increasing MMP-12 activity 

results therefore in an important elastin degradation and lung parenchyma disorganization. 

COPD is characterized by progressive but not fully reversible airways obstruction that leads to 

cough, sputum production and dyspnea. The pathogenesis involves chronic airway inflammation, 

associated with an infiltration of inflammatory cells (macrophages and neutrophils), oxidative stress, 

parenchymal destruction, recurrent infection and imbalance between proteases and antiproteases 

activity where an excess of proteolytic enzymes (MMPs, cysteine and serine proteinases) is not 

counterbalanced by a similar rise of antiproteolytic compounds [10-13]. COPD embraces two separate 

chronic lung diseases: pulmonary emphysema and chronic bronchitis. Pulmonary emphysema 

involves destruction of the alveoli in the lungs that results in poor gas exchange capabilities. Cigarette 

smoking is the major known risk factor of this pathology, contributing to the activation and the 

recruitment of inflammatory cells to the lung [14, 15] and inducing a chronic MMP-12 production by 

alveolar macrophages [16] and epithelial cells [4, 17]. MMP-12 plays a pivotal role in the disease 

evolution as MMP-12 (-/-) knock-out mice were completely protected from development of 
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emphysema and had impaired recruitment of monocytes/macrophages into lung [18]. Other authors 

have suggested that this difference was linked to a decrease of dendritic cells migration into tobacco-

exposed lungs in MMP-12 (-/-) knock-out mice [19]. Emphysema is also associated with a deficiency 

of α1-antitrypsin [11] which is, as described before, an inhibitor of pro-MMP-12 release by 

macrophages. MMP-12 production by macrophages is significantly increased in sputum of COPD 

patients compared to never or long-time former smokers [12, 14, 20]. This production is suggested to 

last for some time following smoking cessation, possibly because secretion of MMP-12 leads to a 

persistent alveolar inflammation [14] before complete depletion from intracellular stores. 

Asthma symptoms can be caused by environmental factors such as allergens, pollutants and 

respiratory infections. Asthma is associated with airway inflammation. During the course of the 

disease, an airway remodeling usually develops that includes epithelial damage, smooth muscle and 

mucus gland hyperplasia, bronchial hyper-responsiveness, angiogenesis, collagen deposition and 

airway wall fibrosis [21]. Mediators released by epithelial cells and invading leukocytes such as 

cytokines (TNF-α, IL-1β), growth factors (TGF-β, GM-CSF, EGF) and endothelins (ET-1) are largely 

involved in the inflammation process and airways remodeling [22, 23] by strongly regulating the gene 

expression pattern and the activation state of many different target cells.  

Over the past 15 years, many authors reported the sensitization of mice and rats with various 

allergens to mimick asthma development allowing to address mechanisms leading to airway 

remodeling and inflammation [8, 24-27]. The airway wall thickening is correlated to smooth muscle 

proliferation that leads to bronchial hyper-responsiveness resulting in bronchoconstriction. Smooth 

muscle cell contraction is calcium-dependent and cytokines such as TNF-α and IL-1β can increase 

intracellular calcium concentrations in these cells and further exaggerate the pathological process [28]. 

Few data have been published on the potential role of MMP-12 in asthma. MMP-12 mRNA levels have 

been shown to increase in the lungs of mice subjected to allergens exposure as compared to sham 

exposed counterparts [29]. MMP-12 deficient mice display less inflammation than wild type mice [30] 

and show a less important peribronchial fibrosis when challenged repetitively for 3 months with 

allergens (Fig. 1). 

Patients with chronic asthma are largely resistant to steroid treatment because progressive 

fibrosis occurs at a subepithelial level. Fibroblasts proliferate, secrete large amount of extracellular 

matrix component, such as collagen type III and V, laminin, fibronectin and tenascin [22], differentiate 

into myofibroblasts and finally acquire the ability to contract. 

2 BRIEF OVERVIEW OF MMP-12 STRUCTURE AND 

FUNCTION 

Human MMP-12 is translated as a 1.8 kb transcript encoding a 470 amino acid proenzyme 

that is 64% identical to the mouse protein [31]. Its molecular mass is 54 kDa and comprises three 

domains (Fig. 2).  
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A 9 kDa amino-terminal propeptide domain I (following a short signaling peptide) includes a 

highly conserved cysteine residue where the thiol interacts with the zinc ion in the proenzyme form: 

this interaction is involved in the maintenance of enzyme latency. 

Domain II or catalytic domain (22 kDa) bears the zinc-binding HExxHxxGxxH sequence motif. 

This motif is conserved in every known mammalian MMP-12 orthologs (Fig. 3). The catalytic domain 

contains three conserved histidine (H) in the sequence HExxHxxGxxH, which coordinate the zinc ion, 

necessary for the catalytic integrity of the protease. The glutamate residue (E) within the catalytic motif 

activates a zinc-bound H20 molecule providing the nucleophile that cleaves peptide bonds. The 

conserved glycine residue (G), orientated C-terminal to the second coordinating histidine, allows a 

sharp turn, permitting the most C-terminal histidine in the triad to associate with the zinc ion. 

Haemopexin-like carboxy-terminal or domain III (23 kDa) exhibits sequence homology to 

vitronectin and haemopexin. This domain determines substrate recognition and/or tissue inhibitor of 

metalloproteinases (TIMP) binding, and further participates in enzyme localisation in the extracellular 

matrix compartment as this type of structure is traditionally associated with proteins involved in 

protein-protein interactions. The haemopexin domain is attached to the catalytic domain by a 

disordered hinge region, which is suggested to be a flexible junction between the catalytic and the 

haemopexin domains [2, 11, 32-35]. 

As a general mechanism, the substrate enters the active site of MMP-12 and interacts with the 

catalytic zinc ion through carbonyl group of the scissile peptide bond while the peptide group is 

hydrogen bonded to the carbonyl carbon atom of Ala 182. The peptide substrate is finally hydrolyzed 

at the peptide bond [36]. 

One of the most significant role of MMP-12 appears related to the remodeling of the 

extracellular matrix in tissues, from fetal development to the entire adult life [37]. As suggested by its 

trivial name (metalloelastase), MMP-12 is clearly the most active MMP against elastin [38] although it 

can cleave many of the other components of the extracellular matrix such as fibronectin, fibrillin-1, 

laminin, entactin, type IV collagen fragments, chondroitin sulfate and heparan sulfate proteoglycans 

and vitronectin [35, 39, 40]. However, MMP-12 can not significantly degrade fibrillar collagen or gelatin 

[39]. In vivo, MMP-12 has the ability to activate other MMPs such as pro-MMP-2 and pro-MMP-3, 

which, in turn, can activate pro-MMP-1 and pro-MMP-9. This cascade of proteolytic events might 

explain why MMP-12 exaggerates the cascade of proteolytic processes and leads to the degradation 

of a wide variety of extracellular matrix proteins, including collagen types I, III, IV and V and gelatin 

[41]. 

Extracellular matrix degradation processes are often related to macrophages migration which 

is largely regulated by MMP-12 expression and activation [42]. Chemotactic activity of the elastin 

fragment released by MMP-12 [43] and processing of pro-TNF-α to active TNF-α by MMP-12 [44] 

further emphasize the importance of this protease for macrophage function in various physiological 

and pathological conditions. 
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Several other substrates of MMP-12 have been described such as myelin basic protein, α1-

antitrypsin [44] and tissue factor pathway inhibitor (TFPI) [45], plasminogen [46, 47] and N-cadherin 

[48]. 

Cleavage of TFPI provides for MMP-12 the capacity to interfere with the coagulation pathway 

in inflammatory diseases and to enhance hemostasis as TFPI inhibits tissue factor (TF) pathway by 

binding to factor Xa (Fig. 4). The degradation of TFPI is accompanied by considerable loss of 

anticoagulant and anti-factor Xa activity, leading to thrombosis predisposition [45].  

MMP-12 proved to be the most efficient MMP for producing an endogenous inhibition of 

endothelial cell proliferation from specific degradation of plasminogen [38] therefore designating MMP-

12 as one of the regulators of angiogenesis and tumor evolution. 

Recently, MMP-12 has been shown to be directly or indirectly involved in N-cadherin 

cleavage, and so in cell-cell contact disruption. The consequence of this cleavage is the release of β-

catenin, that can act as a transcription factor and has central role in human diseases [49]. MMP-12, 

known as a pro-atherogenic metallopeptidase [50], can contribue to atherosclerotic plaque formation 

through this mechanism, although it remains to be unambiguously demonstrated. 

3 REGULATION OF MMP-12 EXPRESSION AND 

ACTIVATION IN THE LUNG 

Gene expression can be regulated during various steps leading from DNA to mRNA and finally 

to protein. These regulations can occur at a transcriptional level (control of RNA transcription), at a 

post-transcriptional level (control of mRNA maturation, stabilization or degradation, splicing, transport 

and/or localization), at a translational level (control of ribosomal translation of mRNA to protein), at a 

post-translational level (glycosylation, control of protein activity, degradation, storage, secretion). 

Regulation can also be achieved through a mechanism of mRNA degradation mainly by RNA 

interference. MMP-12 gene expression is known to be controlled at both transcriptional and post-

translational levels and is strongly suspected to be regulated by microRNA. 

3.1 TRANSCRIPTIONAL LEVEL CONTROL 

Transcriptional control can occur through cascades leading to the release of various 

transcription factors that bind to specific conservated sites at the promoter region of the gene. 

Promoter region of MMP-12 gene contains at least 6 potential binding sites for sequence 

specific for transcription factors and one TATA box [51, 52] (Fig. 5). Among them, an AP-1 site 

spanning the -81 to -75 bp from the start site region and a STAT5 site spanning the -59 to -51 bp 

region are most probably critical for the induction of MMP-12 promoter activity. Cytokines such as 

granulocyte-macrophage colony-stimulating factor, GM-CSF [3] or the homodimeric isoform of platelet 

derived growth factor, PDGF-BB [53] have been shown to induce AP-1 complex following binding to 

their membrane receptor. GM-CSF receptor, when activated, is also involved in docking and activation 
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of members of the STAT family of transcription factors STAT1, STAT3 and STAT5 isoforms [54]. 

Interleukin-1β (IL-1β), is also known to cause spontaneous overexpression of MMP-12 during chronic 

obstructive pulmonary disease (COPD) or asthma development [55] and one of the pathways induced 

by IL-1β involves AP-1 activation [56]. Elias research group [57] demonstrated that pulmonary 

emphysema could be induced in animals through the action of interferon-γ (IFN-γ) and interleukin-13 

(IL-13) on MMP-12-dependent pathways. The role of IFN-γ is probably indirect and could be the 

consequence of IFN-inducible proteins such as the Th1 chemokines CXCL9 and CXCL10 up-

regulating MMP-12 production by macrophages [58]. IL-13 is a major inducer of fibrosis in many 

chronic infectious and autoimmune disorders. However, the mechanism by which it regulates MMP-12 

is not fully understood since it requires complex interactions between different cell types, such as 

inflammatory and mesenchymal cells that are not easily modeled in vitro [4]. By monitoring the 

development of lung inflammation in IL-13 transgenic mice, Lanone and colleagues [59] demonstrated 

that IL-13 can induce alveolar remodeling, respiratory failure and death, and that upregulation of 

MMP-2, -9, -13 and -14 by IL-13 is mediated at least partially by a MMP-12-dependent pathway. Other 

studies also suggested that IL-13 was able to induce transforming growth factor-β1 (TGF-β1) 

expression in macrophages through the activation of a specific AP-1 complex variant in bleomycin-

induced lung fibrosis [60]. TGF-β1, that is often considered as an anti-inflammatory growth factor, 

inhibits cytokine-mediated induction of MMP-12 mRNA as well as protein and enzymatic activity in 

chondrosarcoma-derived HTB-94 cells [37]. This finding was confirmed in vivo in Fut 8-/- mouse, a 

model of deficiency in TGF-β1 cascade leading to MMP-12 overexpression [61]. MMP-12 inhibition by 

TGF-β1 is probably related to the AP-1 site. In response to TGF-β1, Smad3 has been shown to 

sequester Jun family members (subunits of AP-1 complex) that consequently fail to translocate to the 

nucleus preventing MMP-12 mRNA upregulation [53]. In light of these data, it has been proposed that 

IL-13 induces MMP-12 and TGF-β1 expression, leading to a delayed negative feedback from TGF-β1 

on MMP-12. 

Even if their specific pathways have not yet been completely elucidated, many other factors 

have been described to induce MMP-12 expression: low molecular fragments of hyaluronan, an 

extracellular matrix glycosaminoglycan that accumulate at sites of lung inflammation [62], amyloid-β 

peptide in the microglia through PI3K/Akt pathway [63], VEGF (vascular endothelial growth factor) 

[53], TNF-α (tumor necrosis factor-α) [37], the substance P, most likely through IL-1β and TNF-α [64], 

CD40 receptor ligand binding on macrophage cell surface [3] and cigarette smoke [65] as a result of 

massive production of reactive oxygen species during cigarette combustion. Hydrogen peroxide-

dependent pathway involving NADPH oxidase, AP-1 and TNF-α has been pointed out by Lavigne et 

al. [17] as regulating MMP-12 gene expression. It has also been reported to be induced upon HMG 

CoA reductase inhibition by statin drugs that alter the synthesis of cholesterol by blocking the 

conversion of HMG CoA to mevalonate [66]. This observation is correlated with the observations of 

Curci et al. [50] on the induction of MMP-12 associated with changes in cellular cholesterol 

metabolism, such as it may occur in the presence of excess cholesterol deposits in atherosclerotic 

plaques (that in turn inhibit HMG CoA reductase), where MMP-12 is expressed. 
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3.2 RNA INTERFERENCE 

miRNA are an abundant class of short (21 to 25 nucleotides), non-coding RNA that negatively 

regulate the expression of protein-coding genes at the post-transcriptional level by promoting mRNA 

degradation or inhibiting mRNA translation. 

MMP-12 synthesis is strongly suspected to be regulated by microRNA (miRNA) as miRBase 

[67], the official miRNA database, presents up to 40 potential effective miRNA for the human 

sequence and up to 17 for the mouse sequence. 

Our laboratory is currently studying pulmonary subepithelial fibrosis resulting from chronic 

asthma by using a model of ovalbumin sensitization [27]. As a complement to our gene expression 

study based on high density microarray [27], we are currently evaluating the implication of the RNA 

interference machinery during the evolution of the disease. Among several regulated miRNA, mmu-

miR-672 and mmu-miR-143 were found to be deeply down-regulated (preliminary data). In the 

miRBase, a database that uses the miRanda algorithm to identify potential binding sites for a given 

miRNA based on strict complementary of 5’-end seed region, thermodynamic stability and 

conservation through species, mmu-miR-672 and mmu-miR-143 are reported as valuable candidates 

for MMP-12 mRNA regulation. At every step of the sensitization model, from short term inflammation 

to long term fibrosis, an increased MMP-12 expression was observed at both mRNA and protein level. 

This inverse correlation between MMP-12 mRNA and both miRNA expression suggests that mmu-

miR-672 and mmu-miR-143 might act as regulators of both MMP-12 expression and long term asthma 

progression. mmu-miR-29c was also observed to be down-regulated in a time-dependent way as 

asthma tends to become chronical (9 times less following a 10 weeks ovalbumin exposure compared 

to vehicle-treated mice). Since mmu-miR-29c has recently been identified to target genes encoding 

extracellular matrix proteins (including multiple collagens, fibrillins, elastin and laminin γ1), its down-

regulation could take part in the enhanced fibrotic response [68, 69]. 

3.3 POST-TRANSLATIONAL LEVEL CONTROL 

In macrophages, MMP-12 is stored in cytoplasmic vesicles (Fig. 6) and can be promptly 

secreted as a 54 kDa cytosolic proenzyme. This secretion can immediately follow an appropriate 

stimulation and lasts for as long as 24 hours before requiring an active protein synthesis.  

Plasmin and thrombin are serine protease activators of proteinase activated receptor-1 (PAR-

1) that drives the release of MMP-12 from macrophages [70, 71]. The release of large amount of 

plasmin and thrombin is observed during inflammatory diseases and metastatic progression where 

tissue remodeling plays a preponderant role [72, 73]. PAR-1 is a G-protein coupled receptor (GPCR) 

that transduces plasmin or thrombin signals from the extracellular environment across the plasma 

membrane. GPCR activates several intracellular signaling pathways including the PKC and MAPK 

pathways that participate to the regulation of secretion of pro-MMP-12 granules [70, 74] (Fig. 4). α1-

Antitrypsin, an inhibitor of both plasmin and thrombin, has been shown to prevent the release of MMP-
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12 [71]. On the other hand, CXCL9 and CXCL10, by binding to CXCR3 chemokine receptor present 

on macrophage surface, are able to induce MMP-12 secretion [58, 75]. 

Once secreted, the 54 kDa MMP-12 proenzyme is activated by disruption of the thiol-zinc ion 

interaction in domain I and through the loss of the amino-terminal prodomain (domain I and signal 

peptide), leaving an active 45 kDa enzyme. The activation is completed by the cleavage of the 

haemopexin domain. At the end of the maturation process, the 22 kDa active form enzyme consists in 

the catalytic domain alone [11, 33]. 

Three distinct mechanisms can affect MMP-12 activation:  

(1) non-proteolytic modification of the interaction between the free thiol and the histidine-

ligated zinc atom by chemical compounds (endogenous or not, e.g. oxidants, electrophiles, heavy 

metal ions, alkylating agents...) and by allosteric modification [2], 

(2) proteolytic cleavage of domain I by another proteinase (e.g. plasmin [70, 76, 77]), 

(3) autolysis by chemical or allosteric perturbation (e.g. activation by SDS in an in vitro 

system) of the proenzyme leading to autolytic cleavage [2]. 

MMP-12 possesses three binding sites for Ca2+, of high, medium and low affinity which is 

crucial for the structure and the stability of the enzyme and also for its activity. Concentration of 

calcium is accurately regulated in extracellular environnement but in some particular circumstances, 

as during inflammation responses, local increase of calcium ions concentration dramatically enhance 

MMP-12 activity [78]. 

The activity of MMPs is naturally regulated by a class of natural physiological inhibitors called 

tissue inhibitors of metalloproteinases (TIMPs). TIMPs inhibit MMPs in a 1:1 inhibitor to enzyme ratio 

through interaction of the amino-terminal domain of the TIMP molecule with the active site of the 

MMPs. TIMP-1 inhibits the activity of most MMPs and, among them, of MMP-12 [79]. 

Macrophages have also been reported to restrain their MMP-12 activity, in vivo, by using their 

own reactive oxygen species produced during inflammatory tissue injury [80]. 

4 MOST EFFICIENT MMP-12 CHEMICAL INHIBITORS 

Since MMP-12 is not only involved in lung tissue remodeling-associated diseases [35, 37, 41, 

46, 50, 81-89], substantial efforts have been made to develop MMP-12 synthetic inhibitors. However, 

inhibiting a specific MMP is a difficult goal because of the high conservation between many MMPs in 

terms of overall 3D-structure, topology of the catalytic domain and requirement of specific amino-acid 

residues in the active site [90, 91]. This is why although many MMPs inhibitors have been developed, 

very few of them have proved to specifically target a particular MMP. 

Two major features characterize most of chemical MMPs inhibitors: a zinc chelating ligand and 

a chemical moiety which binds the substrate recognition site of the enzyme [11]. Inhibitors that have 

displayed a efficiency in vitro are hydroxamic acid, reverse hydroxamic acid, thiol, carboxylic acid, 
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phosphonic and phosphinic acid [92]. However, since they rely in zinc chelating for activity, a poor 

selectivity towards MMPs have been observed [93] and disappointing results have been obtained for 

most compounds except phosphinic acids (reviewed by [11]). 

In the present review, only the development of specific MMP-12 inhibitors will be addressed. 

An extensive review on matrix metalloproteinase inhibitors has recently been written by Hu et al. [94]. 

Phosphinic peptides are a family of pseudo-peptides where the peptide bond is replaced by a 

phosphinic acid moiety (reviewed by Dive et al. [93]). Zinc chelating properties of phosphinic group are 

of weaker potency than hydroxamate group but its chemical structure provides the opportunity to 

develop more selective inhibitors. The recent developments in phosphinic peptides lead to highly 

selective MMP-12 inhibitors having the formula p-Br-Ph-(PO2-CH2)-Xaa’-Glu-Glu-NH2. Based upon 

enzyme activity, the Ki values towards MMP-12 are at minimum 200 fold lower than towards other 

MMPs. The side chains of the two glutamate residues are in close proximity to the side chains of 

Thr239 and Lys177 of MMP-12 and can induce a polar interaction between residues[95]. However, 

these new derivatives have only been characterized in test tube [96] and the next critical step during 

their development will be to address their potential toxicity and their activity in vivo. 

Among MMP-12 specific non-peptidic inhibitors, a member of the hydroxamic acid group, 

AS111793 (2-hydroxy-3-[1-(thiophenyl-oxadiazolyl)-2,2-dimethyl-propylcarbamoyl]-methyl 

hexanohydroxamic acid), has been tested on mice to investigate its effect on acute airways 

inflammation induced by cigarette smoke [97]. This inhibitor, orally administrated at doses level of 30 

mg/kg, induced a decrease in MMP-12 activity and also resulted in a reduction of the synthesis of both 

sTNFRSF1A and sTNFRSF1B, the soluble receptors of TNF-α, IL-6 and MIP-1γ (also known as 

chemokine CCL9) [97]. 

Ma et al. [98] described a γ-keto carboxylic acid that displays selective inhibition of MMP-2, -9, 

and -12 with IC50 values between 0.20 and 1.51 µM, and shows protection against porcine pancreatic 

elastase-induced emphysema in male golden Syrian hamsters. Even if this compound demonstrates 

capacities to inhibit MMP-12, it is not completely selective. 

Recently, a new class of molecular heterocyclic compounds, based on 3-aza-6,8-dioxa-

bicyclo[3.2.1]octane skeleton, has been screened and a fairly selective MMP-12 inhibitor (binding 

affinity of 154 µM, IC50 value of 149 µM) possesses limited activity against other MMPs [99]. This 

compound could become a guide for future development of MMP-12 inhibitors. Another group of non-

peptidic MMP-12 inhibitors that does not interact with the zinc active-site atom is in development. A 

thiophene template, coupled with a biaryl motif fitting into the S1’ pocket of enzyme by mainly 

hydrophobic interactions, displayed MMP-12 affinities in the nanomolar range [100]. However, none of 

these compounds have been tested in vitro or in vivo at this time. Merck Serono is currently testing a 

MMP-12 inhibitor for the treatment of multiple sclerosis. The last press release available (16th January 

2007) reveals the beginning of phase I clinical testing. The case of a natural MMP-12 inhibitor is 

described by Ando and collegues [101]. Ageladine A is a natural pyrrol-2-aminoimidazole alkaloid 

reported to inhibit various subtypes of MMPs and, among them, MMP-12. This compound, which can 
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be chemically synthesized, showed a MMP-12 inhibition at an IC50 of 3.66 µM in test tube [101] but 

evidences of activity in cell culture or in vivo are still lacking. 

5 SILENCING MMPS BY RNA INTERFERENCE 

5.1 WHY TO CHOOSE SIRNA SILENCING OF MMP-12? 

As reviewed above, the pharmacological use of MMPs inhibitors has been largely hampered 

by their lack of specificity. Moreover, molecules that were tested in clinical trials have failed to prove 

any beneficial effect while they were associated with a severe side effect consisting in a 

musculoskeletal syndrome mainly manifesting as pain and immobility of most joints [102]. This may be 

due to unspecific inhibition of the other MMPs but also of members of other families of 

metalloproteinases such as ADAM or ADAMTS, enzymes that are also deeply involved in cytokines 

network regulation and in extracellular matrix turn-over. Off-target metal chelation related to other type 

of stuctural macromolecules and enzymes would be an alternative or complementary hypothesis. As 

an additional problem linked to the lack of specificity of inhibitors, different related MMPs can display 

opposite effects. As an exemple, MMP-9 and MMP-12 have been found to actively participate in the 

pathological remodeling process during asthma [29, 103] while MMP-8 seems to play an opposite role 

since its deficiency promotes allergen-induced airway inflammation [104]. 

RNA interference is the most specific and versatile inhibitory machinery described so far. It 

includes endogenous non-coding miRNA as described above and 21 to 23 nucleotides double 

stranded RNA (siRNA). The siRNA can be naturally produced inside the cells from cleavage of long 

double stranded RNA by an endogenous specific enzyme (DICER). The double stranded nature of 

siRNA makes it relatively resistant to ribonucleases. They can be also chemically synthesized and 

delivered into the cell by transfection. Whatever the way they are generated, siRNA are recognized by 

a specific multi-enzyme complex (RISC), that uses the antisense strand as a guide to recognize a 

specific target mRNA. If the guiding strand and the targeted sequence are fully anti-complementary, 

cleavage and degradation of the mRNA usually occur while the presence of mismatch at defined 

positions can lead to inhibition of translation rather than degradation (for extensive reviews see [105-

108]). 

There are many marked advantages over other approaches of using siRNA to regulate protein 

expression or function. 

1. Identification of active compounds from chemical libraries or natural extracts requires high-

throughput screening, without any guarantee of success. Similarly, development of antibodies that 

specifically interfere with the function of their target protein (for exemple, the catalytic activity in the 

case of MMPs) is still a risky project, even when using the more convenient phage-display technology. 

By contrast, since the determination of the genome sequence of human and many organisms, design 

of siRNA against any target sequence is now both easy and fast (see below). 
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2. Due to high specificity of base pairing, siRNA make possible to specifically alter the 

expression of any protein, even those, such as MMPs, that are members of a highly conserved family. 

Even more specific use concerns the repression of individual splice variants from a single gene or 

discrimination between normal and mutated gene product. 

3. siRNA are not immunogenic and do not trigger an immune response if their sequence is no 

longer than 23 nucleotides. Longer sequences can influence cell viability and induce a potent 

interferon response by a strong up-regulation of the dsRNA receptor, the toll-like receptor 3 [109]. 

However, as shorter siRNA sequences are most usually used, naked siRNA have the advantage to 

not elicit immunogenic response compared to protein-related drugs [110]. 

4. Multiple RNA interference therapies are tested to silence viruses and among them some 

siRNA-based strategies are currently under clinical trial [111]. Even if not all viral targets are equally 

suitably or effectively inhibited by siRNA, this strategy could be more potent as vaccine or antiviral 

drugs by targeting viral RNA genome or those transcripts that encode essential viral factors and that 

are conserved among virus strains. 

5. The most important advantage of siRNA is their ability to inhibit targets that can not be 

inhibited by conventional chemical synthesized drug or those for which getting selectivity at the protein 

level is laborious. With siRNA, it theoretically becomes possible to inhibit anything in the proteome by 

specifically targeting a mRNA sequence. Manipulation of gene expression at mRNA level is more 

efficient than at protein level because multiple copies of a protein (about 5000) are produced by each 

mRNA [112]. The siRNA approach is based on preventing a protein production instead of suppressing 

its activity and, therefore, affords the opportunity to provide greater efficacy in disease control and 

intervention.  

5.2 HOW TO CHOOSE SIRNA? 

The most important features needed to develop high efficient siRNA are potency, specificity 

and stability. siRNA selection starts with a bioinformatic design based on a combination of general 

rules [113], Tom Tuschl's rules and rational design [114]. These algorithms predict the siRNA potency, 

even if, at that time, this technique is perfectible and always necessitates an experimental validation 

[115]. Even though siRNA can mediate mRNA silencing in a highly specific way, attention must be 

paid to a potential interference with mRNA sharing partial homology with the target, called off-target 

genes or to the development of an immunostimulatory effect correlated to interferon response 

induction. Detailed proteomic analysis is required to identify off-target genes. Off-target and unwanted 

effects can be minimized by various strategies such as paying attention to nucleotide position in “seed 

region”, including chemical modifications and delivery methods (reviewed by [105]).  

5.3 HOW TO DELIVER SIRNA IN THE LUNG? 

Transfection reagents used for in vitro transfection do not work in vivo and relatively inefficient 

natural siRNA uptake by cell compromises use of this therapeutic. Three directions can be taken to 
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improve in vivo siRNA efficiency: siRNA stabilization, siRNA specific targeting and siRNA viral 

delivery. 

1. Stabilization can be a challenge to take up as naked siRNA are theorically not protected 

against nuclease digestion. Nevertheless, stabilization does not appear to be necessary in most 

cases, as rapid excretion seems to occur prior to degradation [116] and double strand RNA are much 

more resistant to nucleases than single strand RNA. These considerations are supported by long-

lasting effect (for weeks) that has been observed in non-dividing cells in vitro and in vivo [117]. 

However, if resistance improvement is needed, stabilization can be readily achieved by modifying 

chemically nucleotides or sugar, or by using protective delivery methods.  

Chemical modifications might improve siRNA properties. Thermal stability is increased by 

introducing a 2’-fluoro, a 2’-O-methyl or a 2′-O-methoxyethyl (2’-MOE) on the position 2 of the ribose 

or by using Locked Nucleic Acid (LNA). Stability regarding nuclease digestion is enhanced by placing 

these chemically modified bases at the 5’ or 3’ end of the RNA sequence [118, 119]. siRNA can be 

complexed with nanoparticles, peptidic or lipidic complexes to promote pharmacokinetics and 

protection of the siRNA by restricting its access to nucleases. The most common formulations use 

liposome, lipoplex, polyethylenimine, chitosan nanoparticules, cationic peptides and polymers... Many 

reviews develop recent sides in these formulations [105, 120, 121]. 

2. Another strategy for improving the function of siRNA in vivo is to conjugate the siRNA to 

small molecules. Most common non-siRNA parts of the hybrid molecule obtained are polyethylene 

glycol, transferrin, folate, cholesterol, aptamers, antibodies or sugar that might allow cell type-specific 

binding and/or induce internalization of the siRNA via receptor mediated-endocytosis [118, 122, 123]. 

In pulmonary diseases involving MMP-12, targeting endothelial cells can be easily obtained. 

Nanoparticules coupled to antibodies against endothelial cell adhesion molecules ICAM-1 and 

PECAM-1 have been shown to be internalized [124, 125]. This observation could be applied to 

antibodies or aptamers - siRNA conjugates. Targeting macrophages, that are the principal source of 

MMP-12 production, can be assessed by exploiting the mannose-binding receptor that mediates the 

non-opsonic phagocytic uptake by macrophages [126] and the endocytosis of soluble glycoconjugates 

leading to enhanced uptake of ligands [127]. However, other classes of phagocytic-inducing receptors 

also expressed on macrophage surface can be investigated. Among them are complement receptors 

(CR3, CR4), lymphocyte function-associated antigen-1 (LFA-1) and Fc fragment of IgG, low affinity II, 

receptor (FCGR2) [128]. FCGR2B can be of particular interest as it has been demonstrated to be up-

regulated in immune cells in acute and chronic mouse asthma models [27, 129-131]. 

3. Viral vectors, such as adenovirus, lentivirus, retrovirus, Sendai virus or adeno-associated 

virus, carrying encapsulated siRNA or short hairpin RNA (shRNA) DNA template inserts [110, 132, 

133] can be used to induce RNA interference in cells. Viruses envelopes also contribute to protect 

siRNA against nucleases and provide a carrier stability. After binding to the target cell surface, virus 

are capable of delivering encapsulated siRNA intracellularly.  

Compared to siRNA, shRNA offers advantages in silencing longevity by an efficient 

transduction of target cell. RNA interference is then initiated by direct expression of the insert as a 
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single-stranded RNA molecule (shRNA). The transcript is then recognized, processed by the RNA 

interference machinery and converted into the corresponding siRNA. The duration of siRNA silencing 

that depends on the rate of cell division would be improved. The next challenge that must be resolved 

is to overcome the lack of selectivity for the target cell type. The natural tropism of viruses for some 

cell types may be exploited [123].  

In gene therapy, 24.9% of the clinical trials have used adenovirus, 1.2% lentivirus, 21.7% 

retrovirus and 4.1% adeno-associated virus (2008 data from [134]). However, induction of innate 

immune responses by viral proteins is still a limitation to the utilization of viral vectors. Adeno-

associated virus, a single-stranded DNA parvovirus, is emerging as one of the leading gene therapy 

vectors owing to its non-pathogenicity and low immunogenicity, stability and the potential to integrate 

site-specifically without known side-effects [135]. On the other hand, an engineering of artificial viruses 

to reduce cytotoxicity is still in progress [136].  

Local RNA interference (si or shRNA) delivery is preferred to systemic delivery, even if 

intravenous injection of nanoparticles has been shown to mostly target lung but also spleen and liver 

[137]. By local pulmonary administration, the retention of particles in the lung, that is dependent on 

their size and their density, can induce a prolonged drug release [138]. Proper methods for 

nanoparticles lung delivery are used towards instillation, nebulization and spraying by using dry 

powder formulations or suspensions (reviewed by [139]) and can be applied to therapeutics by RNA 

interference.  

Regarding pulmonary administration, first conclusive RNA interference tests were made in 

primates to deliver, by intranasal mode, a SARS virus specific siRNA, resulting in reduced fever, 

decreased viral load, and reduced alveoli damage [140]. Lentivirus-delivered siRNA has also been 

used as an approach to inhibit the expression of IL-5 [141] or GATA-3 [142] in ovalbumin-induced 

murine models of asthma. 

Since, some clinical trials are currently going on with siRNA focusing on HIV, C hepatitis, 

cancer, Alzheimer’s disease, age-macular degeneration, diabetic macular edema and respiratory 

syncitial virus treatment [134]. This last trial has been initiated in 2006 by Alnylam (phase 1) for testing 

by inhalation nebulized siRNA formulation [143].  

5.4 MMP-12 SILENCING 

We examined the silencing effect of siRNA targeting MMP-12 (siMMP12) in mouse fibroblasts 

(L929) transduced by a lentiviral construction to stably express MMP-12 fused to V5 epitope (not 

published results).  

siRNA used in this study was made of two complementary nucleotide strands containing 19 

RNA bases followed by two DNA bases (T). The following oligonucleotide sequences were used: 5′- 

UCACUUACAGGAUCUAUAA-3′ and 5′- UUAUAGAUCCUGUAAGUGATT -3′ (synthesized by Eurogentec, 

Belgium) and annealed . Calcium phosphate-mediated transfection [144] was performed to achieve a 

final concentration of 1, 20 and 50 nM (siMMP12) or of 20 nM of siRNA control (siControl), a 
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randomised sequence with no mRNA target (Negative control from Eurogentec). Cells were collected 

48 hours later to be subjected to mRNA and protein analysis of MMP-12 (Fig. 7).  

This specific siMMP12 was found to efficiently silence the target MMP-12 mRNA and protein. 

The control random-sequence siControl caused a slight increase in MMP12 mRNA expression versus 

untreated cells, probably due to phosphate calcium transfection; MMP-12 was not modulated by 

siControl at the P-value cut-off of 0.01. Significant inhibition occured from 1 nM with an inhibition by 

about 45% rising to a maximum of 90% with the doses of 20 and 50 nM. These effects are strongly 

correlated to protein concentrations in the cells. Upper doses are not recommanded as non-specific 

effects on genes regulation has already been described as dependent upon siRNA concentrations 

[145]. High doses of siRNA administration affect multiple signaling and transcription pathways in 

addition to a marked influence on protein kinase response and activation of toll-like receptors [146-

148]. This is a further reason to choose siRNA demonstrating high inhibitory potency at low 

concentration. 

This experiment demonstrates that, in vitro, very low concentrations of siMMP12 can produce 

significant effects on MMP-12 gene expression. The sequence of this siMMP12 is not homologous to 

other MMPs sequence and specifically targets, in this point of view, MMP-12 mRNA and, accordingly, 

inhibits its protein production. Correlated with the fact that siRNA could be stabilized, coupled to 

macrophage targeting molecules and locally administrated to the lungs with specific delivery methods 

as described upper, this siRNA can be an interesting candidate to treat lung fibrosis diseases. 

Even if our siMMP12 is sequence specific, what about the other MMPs? In the same 

experiment, the potential effect of the siMMP12 was evaluated on MMPs naturally expressed by this 

cell line. An equivalent basal expression of MMP-2 and MMP-14 mRNA was detected, similar to those 

of MMP-12. MMP-14 mRNA expression was not influenced by the siMMP12 treatment while MMP-2 

expression was dose-dependently reduced. However, this decrease must not be attributed to a direct 

effect of siMMP12 on MMP-2 mRNA. MMP-12 has the capacity to activate pro-MMP-2, as described 

before, and MMP-2 is also involved in fibrosis [149] and particularly in pulmonary fibrosis even if its 

role remains unclear [31] but nothing is currently known about the influence of MMP-12 on MMP-2 

transcription.  

6 CONCLUSION 

Lung disorders represent a good model for RNA interference therapy development because 

local administration of siRNA may be easier to achieve than systemic administration. Pulmonary 

fibrosis, that is characterized by an increase in the expression of extracellular matrix enzyme and 

protein mRNA and protein such as MMP-12, is not yet successfully treated. Inhibition or degradation 

of the corresponding mRNA should be a solution to reduce the development of the associated 

diseases. However, optimizing siRNA in vivo delivery is still a challenge to take up but this effort is 

worthdoing be produced to accelerate the evolution in this novel drug therapy. 
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Figure 1. Immunohistochemistry of α-smooth muscle actin and collagen type III in lung 
sections. 

Wild type and MMP-12 (-/-) knock-out mice were subjected to exposition to ovalbumine for 10 

weeks. Stained areas of α-smooth muscle actin (A and B) and collagen type III (C and D) are more 

important in lung of wild type mice (A and C) than in lung of MMP-12 (-/-) knock-out mice (B and D). 

Figure 2. Domains structure of MMP-12.  

MMP-12 protein is divided into three domains: the propeptide domain following a short 

signaling peptide (SP) includes a highly conserved cysteine residue where the thiol (SH) interacts with 

the zinc ion in the proenzyme form, the catalytic domain that contains the zinc-binding HExxHxxGxxH 

sequence motif which coordinates the zinc ion and the haemopexin-like domain attached to the 

catalytic domain by a disordered hinge region. 

Figure 3. Zinc-binding sequence motif conserved in all known mammalian MMP-12 orthologs. 

Figure 4. Plasmin and thrombin post-translational regulatory pathway of MMP-12. 

Figure 5. Promoter region of human MMP-12 gene and transcriptional control of MMP-12 
expression. 

PDGF-BB and IL-1β are known to induce MMP-12 transcription through AP-1 while GM-CSF uses 

both AP-1 and STAT-5. TGF-β negatively regulates MMP-12 transcription through an AP-1 site. Many 

other factors have been observed to induce MMP-12 transcription but the exact mechanism of action 

is still unknown. 

Figure 6. Immunolocalization of V5 tagged MMP-12 proteins in transduced L929 cells. 

L929 cells (murine fibroblasts) stably tranduced with V5 tagged MMP-12 construct were 

subjected to immunofluorescence assay using a primary mouse anti-V5 antibody (Invitrogen, R960-

25) and anti-mouse FITC-conjugated antibody (Dako, F026102). The slides were analyzed under a 

TCS SP2 Leica confocal microscope. Non-transduced L929 cells were used as controls (not shown). 

Confocal microscopy shows that the MMP-12 protein is localized in the cytoplasm (green 

fluorescence) with a particular intensity in a cluster next to the nuclei. The nuclei are counterstained 

with a blue dye (TO-PRO®-3 iodide (642/661), Molecular Probes).  

Figure 7. Effect of specific siRNA on MMP-12 mRNA expression and protein production in 
transduced murine fibroblast. 

Briefly, murine fibroblasts L929 were transduced by a lentiviral construction to stably express 

MMP-12 fused to V5 epitope. Mouse lung MMP-12 mRNA was amplified and reverse transcribed 

using Easy-A® One-Tube RT-PCR System and then cloned into the pLenti6/V5 Directional Topo 

Cloning Kit. This vector was co-transfected with psAX2 (Addgene plasmid n°Plasmid 12260) and 

pVSV-G [150] plasmids into 293FT cells to produce lentivectors as previously described [151] and 

transduced L929 cell lines. 
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A. MMP-12 mRNA expression in arbitrary units. L929-MMP12-V5 were treated with 1, 20 and 50 

nM siRNA targeting MMP-12 (siMMP12) or 20 nM siRNA Control (siC) which lacks significant 

sequence homology to the genome and compared to non-treated cells (NT). MMP-12 mRNA 

quantification was performed after 48 h post-transfection by Real Time PCR on an ABI 7700 

instrument and data were analyzed using Sequence Detector software (Applied Biosystems). 

Results were normalized using 28s mRNA as previously described and p-values were 

calculated using the Graphpad Quickcalcs software (t test, www.graphpad.com) [27]. Each 

value is the mean ± SD of two independent experiments analysed in duplicate each. *P < 

0.001 versus non-treated cells (NT). 

B. Protein expression of MMP-12 (54 kDa) and GAPDH (32 kDa) in non-treated cells (NT) or in 

1, 20 and 50 nM siRNA targeting MMP-12 (siMMP12) or in 20 nM siRNA Control (siC) treated 

cells was measured by the Western blot analysis. 
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