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differentiable prevalent Hamiltonians
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November 24, 2010

Abstract

For perturbations of integrable Hamiltonians systems, the Nekhoro-
shev theorem shows that all solutions are stable for an exponentially
long interval of time, provided the integrable part satisfies a steepness
condition and the system is analytic. This fundamental result has been
extended in two distinct directions. The first one is due to Niederman,
who showed that under the analyticity assumption, the result holds
true for a prevalent class of integrable systems which is much wider
than the steep systems. The second one is due to Marco-Sauzin but it
is limited to quasi-convex integrable systems, for which they showed ex-
ponential stability if the system is assumed to be only Gevrey regular.
If the system is finitely differentiable, the author showed polynomial
stability, still in the quasi-convex case. The goal of this work is to
generalize all these results in a unified way, by proving exponential or
polynomial stability for Gevrey or finitely differentiable perturbations
of prevalent integrable Hamiltonian systems.

1 Introduction

1. Consider a near-integrable Hamiltonian system, that is a perturbation
of an integrable Hamiltonian system, which is of the form

{

H(θ, I) = h(I) + f(θ, I),

|h| = 1, |f | < ε << 1.

Here (θ, I) ∈ T
n ×R

n are angle-action coordinates, and f is a small pertur-
bation, of size ε, in some suitable topology defined by a norm | . |. In the
absence of perturbation, that is when ε is zero, the action variables I(t) are
integrals of motions and all solutions are quasi-periodic. Therefore it is a
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natural question, which is in fact motivated by concrete problems of stabil-
ity in celestial mechanics, to study the evolution of the action variables I(t)
after perturbation, that is for ε > 0 but arbitrarily small.

2. If the system is analytic and if h satisfies a steepness condition, which
is a quantitative transversality condition, it is a remarkable result due to
Nekhoroshev ([Nek77], [Nek79]) that the action variables are stable for an
exponentially long interval of time with respect to the inverse of the size of
the perturbation: one has

|I(t)− I0| ≤ c1ε
b, |t| ≤ exp(c2ε

−a),

for some positive constants c1, c2, a, b and provided that the size of the per-
turbation ε is smaller than a threshold ε0. This is a major result in the
theory of perturbations of Hamiltonian systems, and it gives complement to
two previous and equally important results. The first one is that “most” so-
lutions (in a measure-theoretical sense) are quasi-periodic and hence stable
for all time, in the sense that

|I(t)− I0| ≤ c
√
ε, t ∈ R,

for some positive constant c, provided that the system is sufficiently regular
(analytic, Gevrey or even Ck for k > 2n), h satisfies a mild non-degeneracy
assumption and ε is smaller than a threshold ε0. This is the content of KAM
theory, see [Kol54] for the original statement and, for instance [Rüs01],
[Sal04] and [Pop04] among the enormous literature, for various improve-
ments regarding the hypotheses of non-degeneracy and regularity. Hence
Nekhoroshev estimates give new information for solutions living on the phase
space not covered by KAM theory, and even though the latter has a small
measure, it is usually topologically large (at least for n ≥ 3). The second
important previous result is that there exist “unstable” solutions, satisfying

|I(τ)− I0| ≥ 1, τ = τ(ε) > 0.

This was discovered by Arnold in his famous paper [Arn64], and it has be-
come widely known as “Arnold diffusion”. Even though this phenomenon
has been intensively studied, very little is known. Here Nekhoroshev esti-
mates give an exponentially large lower bound on the time of instability τ(ε),
explaining (in part) why such instability properties are so hard to detect.

3. Now returning to Nekhoroshev estimates, the original proof is rather long
and complicated. It is naturally divided into two parts. The first part, which
is analytic, is the construction of general resonant normal forms, up to an
exponentially small remainder (this is where the analyticity of the system is
used), on local domains of the action space where one has a suitable control
on the so-called small divisors. Then, the second part, which is geometric,
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consists in the construction of a partition of the action space where one
can use such normal forms. This is where the steepness of the integrable
system enters, basically it rules out the existence of solutions which cannot
be controlled by these normal forms, so eventually the exponentially small
remainders easily translate into an exponentially long time of stability for
all solutions.

4. It has been noticed by the Italian school ([BGG85], [BG86]) that us-
ing preservation of energy, the geometric part of the proof can be simpli-
fied for the simplest steep Hamiltonians, namely strictly convex or strictly
quasi-convex Hamiltonians (recall that quasi-convexity means that the en-
ergy sub-levels are convex subsets). Then, much work have been devoted to
this special case. In particular, Lochak introduced in [Loc92] a new method
leading in particular to an extremely simple and elegant proof of these es-
timates under the quasi-convexity assumption. His approach only relies on
averaging along periodic frequencies, which enables him to construct special
resonant normal forms (periodic frequencies are just resonant frequencies
of codimension-one multiplicities), and the use of the most basic result in
simultaneous Diophantine approximation, namely Dirichlet’s theorem, to
cover the whole action space by domains where such special normal forms
can be used. This also brought to light the surprising phenomenon of “sta-
bilization by resonances”, which implies that the more resonant the initial
condition is, the more stable (in a finite time-scale) the solution will be. This
method had several applications, and an important one, that we shall be con-
cerned here, was the extension of these stability estimates for non-analytic
systems. Indeed, using Lochak’s strategy, it was shown in [MS02] that the
exponential estimates are also satisfied for Gevrey regular systems, and in
[Bou10b] it was proved that polynomial estimates hold true if the system is
only of finite differentiability (this is obviously the best one can expect under
such a weak regularity assumption). Let us point out that for non-analytic
systems, the construction of these normal forms, which is the only new in-
gredient one has to add since the geometric part of the proof is insensible
to the regularity of the system, is more difficult than for an analytic system
(this is especially true for Gevrey systems). Indeed, one cannot simply work
with C0-norms (on some complex strip, then by the usual Cauchy estimates
one has a control on all derivatives on smaller complex strips), so one has to
work directly with all the derivatives (and moreover keep a control on the
growth of these derivatives in the Gevrey case). In [MS02] and [Bou10b],
such normal forms were constructed but only because it was enough to con-
sider periodic frequencies, which boils down to what is classically known as
a one-phase averaging.

5. However, all these results were restricted by the quasi-convexity hypoth-
esis. A study of Nekhoroshev estimates under more general assumptions
on the integrable part has been initiated by Niederman. First, in [Nie04],
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he introduced new geometric arguments based on simultaneous Diophantine
approximation, leading to a great simplification in the geometric part of
the proof of Nekhoroshev’s result under the steepness condition. Then, in
[Nie07], he realized that this method allows in fact to obtain the result for a
much wider class of unperturbed Hamiltonians, which he called “Diophan-
tine steep”, and which are prevalent (in the sense of Hunt, Sauer and York,
recall that prevalence is a possible generalization of full Lebesgue measure
for infinite dimensional linear spaces). However, the analytic part of Nie-
derman’s proof was still based on averaging along general frequencies and
hence required the construction of general resonant normal forms (which
was taken from [Pös93]). In fact, in the non-convex case, a simple averag-
ing along a periodic frequency, which corresponds to studying the dynamics
in the neighbourhood of a resonance of codimension-one multiplicity, can-
not be enough since solutions will necessarily explore resonances associated
to different, and possibly all, multiplicities. But then in [BN10] we were
able to construct normal norms associated to any multiplicities by making
suitable composition of periodic averagings, with periodic vectors which are
independent and sufficiently close to each other. This was an extension of
Lochak’s method, in the sense that no small divisors were involved, only (a
composition of) periodic averagings and simultaneous Diophantine approx-
imation were used. This proof was not only simpler than the previous one,
but also opened the way to several applications. For instance, in [Bou10a],
it was shown how one can easily obtain more general results of stability in
the vicinity of linearly stable quasi-periodic invariant tori.

6. The aim of this paper is to extend the above results by proving stability
estimates for Hamiltonian systems with a prevalent integrable part, but
which are not necessarily analytic. In the Gevrey case, this will lead to
exponential estimates of stability for perturbation of a generic integrable
Hamiltonian, as stated below.

Theorem 1.1. For α ≥ 1, consider an arbitrary α-Gevrey integrable Hamil-
tonian h defined on an open ball in R

n. Then for almost any ξ ∈ R
n, the

integrable Hamiltonian hξ(x) = h(I)− ξ.I is exponentially stable.

This will be a direct consequence of Theorems 2.2 and Theorem 2.4
below. This result generalizes the main results of [Nie07] and [BN10] which
were restricted by the analyticity assumption (α = 1), and the main stability
result of [MS02] which was restricted by the quasi-convexity assumption (our
condition on the integrable part is much more general than quasi-convexity).
In the finitely differentiable case, we will obtain polynomial estimates of
stability for perturbation of a generic integrable Hamiltonian.

Theorem 1.2. For k > 2n+ 2, consider an arbitrary Ck integrable Hamil-
tonian h defined on an open ball in R

n. Then for almost any ξ ∈ R
n, the

integrable Hamiltonian hξ(x) = h(I)− ξ.I is polynomially stable.
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Once again, this will be a direct consequence of Theorems 2.2 and The-
orem 2.5 below, and the above result extends the main result of [Bou10b]
which was only valid for quasi-convex integrable systems.

2 Main results

In order to state our results, we now describe our setting more precisely. We
let BR = B(0, R) be the open ball of Rn, centered at the origin, of radius
R > 0 with respect to the supremum norm | . |. Our phase space will be the
domain DR = T

n ×BR.

1. Let us first explain our prevalent condition on the unperturbed Hamil-
tonian h, which comes from [BN10]. Let G(n, k) be the Grassmannian of
all vector subspaces of Rn of dimension k. We equip R

n with the Euclidean
scalar product, ‖ . ‖ stands for the Euclidean norm, and given an integer
L ∈ N∗, we define GL(n, k) as the subset of G(n, k) consisting of those sub-
spaces whose orthogonal complement can be spanned by vectors k ∈ Z

n\{0}
with |k|1 ≤ L, where | . |1 is the ℓ1-norm.

Definition 2.1. A function h ∈ C2(BR) is said to be Diophantine Morse if
there exist γ > 0 and τ ≥ 0 such that for any L ∈ N

∗, any k ∈ {1, . . . , n}
and any Λ ∈ GL(n, k), there exists (e1, . . . , ek) (resp. (f1, . . . , fn−k)), an
orthonormal basis of Λ (resp. of Λ⊥), such that the function hΛ defined on
BR by

hΛ(α, β) = h (α1e1 + · · · + αkek + β1f1 + · · · + βn−kfn−k) ,

satisfies the following: for any (α, β) ∈ BR,

‖∂αhΛ(α, β)‖ ≤ γL−τ =⇒ ‖∂ααhΛ(α, β).η‖ > γL−τ‖η‖

for any η ∈ R
n \ {0}.

In other words, for any (α, β) ∈ BR, we have the following alterna-
tive: either ‖∂αhΛ(α, β)‖ > γL−τ or ‖∂ααhΛ(α, β).η‖ > γL−τ‖η‖ for any
η ∈ R

n \ {0}. This technical definition is basically a quantitative transver-
sality condition which is stated in adapted coordinates. It is inspired on the
one hand by the steepness condition introduced by Nekhoroshev ([Nek77])
where one has to look at the projection of the gradient map ∇h onto affine
subspaces, and on the other hand by the quantitative Morse-Sard theory of
Yomdin ([Yom83], [YC04]) where critical or “nearly-critical” points of h have
to be quantitatively non degenerate. It is in fact equivalent to the condition
introduced by Niederman in [Nie07]: there the author considered the subset
GL(n, k) of G(n, k) consisting of those subspaces which can be spanned by
vectors k ∈ Z

n \ {0} with |k|1 ≤ L, but one can check that GL(n, k) is in-

cluded in GLk(n, k) (similarly, GL(n, k) is included in GLk
(n, k)). Hence we
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will stick with the terminology “Diophantine Morse” introduced in [Nie07],
and the equivalent term “Simultaneous Diophantine Morse” introduced in
[BN10] will not be used any more.

The set of Diophantine Morse functions on BR with respect to γ > 0
and τ ≥ 0 will be denoted by DM τ

γ (BR), and we will also use the notations

DM τ (BR) =
⋃

γ>0

DM τ
γ (BR), DM(BR) =

⋃

τ≥0

DM τ (BR).

We recall the following two results from [Nie07] (see also [BN10]).

Theorem 2.2. Let τ > 2(n2 + 1) and h ∈ C2n+2(BR). Then for Lebesgue
almost all ξ ∈ R

n, the function hξ(I) = h(I) − ξ.I belongs to DM τ (BR).

We already mentioned that there is a good notion of “full measure” in
an infinite dimensional vector space, which is called prevalence (see [OY05]
and [HK10] for nice surveys), and the previous theorem has the following
immediate corollary.

Corollary 2.3. For τ > 2(n2 + 1), DM τ (BR) is prevalent in C2n+2(BR).

2. Now let us introduce our regularity assumption, starting with the Gevrey
case. Given α ≥ 1 and L > 0, a real-valued function H ∈ C∞(DR) is (α,L)-
Gevrey if, using the standard multi-index notation, we have

|H|Gα,L(DR) =
∑

l∈N2n

L|l|α(l!)−α|∂lH|C0(DR) < ∞

where | . |C0(DR) is the usual supremum norm for functions on DR. The space
of such functions, with the above norm, is a Banach algebra that we denote
by Gα,L(DR), and in the sequel we shall simply write | . |α,L = | . |Gα,L(DR).
Analytic functions are a particular case of Gevrey functions, as one can check
that G1,L(DR) is exactly the space of bounded real-analytic functions on DR

which extend as bounded holomorphic functions on the complex domain

VL(DR) = {(θ, I) ∈ (Cn/Zn)× C
n | |I(θ)| < L, d(I,BR) < L},

where I(θ) is the imaginary part of θ, | . | the supremum norm on C
n and d

the associated distance on C
n.

3. Therefore we shall consider a Hamiltonian
{

H(θ, I) = h(I) + f(θ, I), (θ, I) ∈ DR,

|h|α,L = 1, |f |α,L < ε.
(∗)

Our main result in the Gevrey case is the following.
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Theorem 2.4. Let H be as in (∗), and assume that the integrable part h
belongs to DM τ

γ (B), with τ ≥ 2 and γ ≤ 1. Let us define

a = b = 3−1(2(n + 1)τ)−n.

Then there exists a constant ε0 > 0, depending on n,R,L, α, γ and τ , such
that if ε ≤ ε0, for every initial action I(0) ∈ BR/2 the following estimates

|I(t)− I(0)| < (n+ 1)2εb, |t| ≤ exp(ε−α−1a),

hold true.

For α = 1, we exactly recover the main theorem of [BN10] including the
value of the exponents, therefore the latter result is generalized to the Gevrey
classes. Moreover, quasi-convex Hamiltonians are a very particular case of
our class of Morse Diophantine Hamiltonians, hence the stability result of
[MS02] is also generalized, but not with the same exponents (we did not try
to improve our exponents). Let us now explain several consequences of our
result.

First, note that the only property used on the integrable part h to derive
these estimates is a specific steepness property, therefore the proof is also
valid assuming a Diophantine steepness condition as in [Nie07], which is
much more general than the original steepness condition of Nekhoroshev.
Indeed, the class of Diophantine Morse functions (and a fortiori the class of
Diophantine steep functions) contains fairly degenerate Hamiltonians, as for
instance linear Hamiltonians with a Diophantine frequency, which of course
are far from being steep. As a direct consequence, our main theorem also
gives an alternative proof of exponential stability in the neighbourhood of
a Gevrey Lagrangian quasi-periodic invariant torus, a fact which was only
recently proved by Mitev and Popov in [MP10] by the construction a Gevrey
Birkhoff normal form.

Then, as it was proved in [Bou10a], the method we are using is rel-
atively intrinsic and does not depend much on the choice of coordinates.
This remark is particularly useful when studying the stability in the neigh-
bourhood of an elliptic fixed point, and more generally in the neighbourhood
of a linearly stable lower-dimensional torus, under the common assumptions
of isotropicity and reducibility (which are automatic for a fixed point or a
Lagrangian torus). As in [Bou10a], one can easily prove results of exponen-
tial stability in the Gevrey case under an appropriate Diophantine condition,
therefore extending the results of exponential stability obtained in [Bou10a]
which were valid in the analytic case. This also gives an extension of the
stability result of [MP10] which is only available for a Gevrey Lagrangian
torus.

In [Bou10a], using the idea introduced by Morbidelli and Giorgilli ([MG95])
to combine Birkhoff normal forms and Nekhoroshev estimates, we also had
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results of super-exponential stability under a Diophantine condition on the
frequency and a prevalent condition on the formal series of Birkhoff in-
variants. Using the Gevrey Birkhoff normal form of [MP10], we can also
extend this super-exponential stability result to Gevrey classes, but only for
a Lagrangian torus. For a more general linearly stable torus (isotropic, re-
ducible), the existence of a Gevrey Birkhoff normal form undoubtedly holds
true but it is still missing.

As a last remark, we would like to point out that one can also extend
a fairly different result of stability, which is due to Berti, Bolle and Biasco
([BBB03]). This concerns perturbations of a priori unstable Hamiltonians
systems, which have intensely studied since instability properties in this
context are much more simple to exhibit. In the analytic case, if the size
of the perturbation is µ, it was proved in [BBB03] that the optimal time
of instability is τ(µ) ≃ µ−1 lnµ−1. The upper bound τ(µ) . µ−1 lnµ−1

follows from a specific construction of an unstable solution, while the lower
bound τ(µ) & µ−1 lnµ−1 was a consequence of a stability result, where the
analyticity of the system was only necessary to apply Nekhoroshev estimates
both in the quasi-convex and steep case on certain regions of the phase
space (but because of the presence of “hyperbolicity”, the global stability
time is far from being exponentially large). In [BP10], we introduced yet
another technique (which pertains more to dynamical systems, as opposed
to the variational arguments of [BBB03]) to construct a solution for which
τ(µ) . µ−1 lnµ−1, but only the Gevrey case. Now having at our disposal
Nekhoroshev estimates in the Gevrey case for both quasi-convex and steep
integrable systems, this implies that the lower bound τ(µ) & µ−1 lnµ−1 can
also be obtained and that the time of instability τ(µ) ≃ µ−1 lnµ−1 is also
optimal in the Gevrey case (in fact, using Theorem 2.5 below, this is also
true if the system is Ck for k large enough). This justify the optimality we
claimed in [BP10].

4. Let us now explain our result in the finitely differentiable case. Here
we assume that H is of class Ck, i.e. it is k-times differentiable and all its
derivatives up to order k extend continuously to the closure DR. In order
to have non-trivial results, we shall assume a minimal amount of regularity,
that is k ≥ n + 1 and it will convenient to introduce another parameter of
regularity k∗ ∈ N

∗ satisfying k ≥ k∗n+ 1. We denote by Ck(DR) the space
of functions of class Ck on DR, which is a Banach algebra with the norm

|H|Ck(DR) =
∑

|l|≤k

(l!)−1|∂lH|C0(DR),

where we have used the standard multi-index notation and where | . |C0(DR)

still denotes the usual supremum norm for functions on DR. Once again,
for simplicity, we shall only write | . |k = | . |Ck(DR).
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5. So now we consider a Hamiltonian of the form
{

H(θ, I) = h(I) + f(θ, I), (θ, I) ∈ DR,

|h|k = 1, |f |k < ε.
(∗∗)

Our main result in the finitely differentiable case is the following.

Theorem 2.5. Let H be as in (∗∗), assume that the integrable part h belongs
to DM τ

γ (B), with τ ≥ 2 and γ ≤ 1, and that k ≥ k∗n+1 for some k∗ ∈ N
∗.

Let us define
a = b = 3−1(2(n + 1)τ)−n.

Then there exists a constant ε0 > 0, depending on n,R, k, γ and τ , such that
if ε ≤ ε0, for every initial action I(0) ∈ BR/2 the following estimates

|I(t)− I(0)| < (n + 1)2εb, |t| ≤ ε−k∗a,

hold true.

The above theorem extends the main result of [Bou10b], which was only
valid for quasi-convex integrable Hamiltonians. Let us point out that in this
result (as in the one contained in [Bou10b]) we have decided to consider
only the case of integer values of k, but the results can also be extended
to real values (that is, to Hölder spaces) and this would have given a more
precise exponent of stability in terms of the regularity of the system, but we
decided not to pursue this further.

6. Let us now conclude with some notations that we shall use throughout
the text.

First, we have define norms for Gevrey and Ck functions, but we shall
need corresponding norms for vector-valued functions (in particular for dif-
feomorphisms). Hence given a vector-valued function F : DR → R

m, m ∈ N
∗

and F = (F1, . . . , Fm), we say that F is (α,L)-Gevrey if Fi ∈ Gα,L(DR), for
1 ≤ i ≤ m, and we will write |F |α,L =

∑m
i=1 |Fi|α,L. Similarly, F is of class

Ck if Fi ∈ Ck(DR), for 1 ≤ i ≤ m, and we will write |F |k =
∑m

i=1 |Fi|k.
Then, to avoid cumbersome expressions, we will replace constants de-

pending only on n,R,L, α, γ and τ (resp. on n,R, k, γ and τ) in the Gevrey
case (resp. in the Ck case) with a dot. More precisely, an assertion of the
form “there exists a constant c ≥ 1 depending on the above parameters such
that u < cv” will be simply replaced with “u<· v”, when the context is clear.

3 Analytical part

In this part, we shall describe and prove some normal forms that we will
need for the proofs of Theorem 2.4 and Theorem 2.5. More precisely, Gevrey
Hamiltonians will be considered in section 3.1 and finitely differentiable
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Hamiltonians in section 3.2, and eventually in section 3.3 we will explain
the dynamical consequences of these normal forms.

But first we need to recall the following basic definition, which will be
crucial to us.

Definition 3.1. A vector ω ∈ R
n \ {0} is said to be periodic if there exists

a real number t > 0 such that tω ∈ Z
n. In this case, the number

T = inf{t > 0 | tω ∈ Z
n}

is called the period of ω.

The easiest example is given by a vector with rational components, the
period of which is just the least common multiple of the denominators of
its components. Geometrically, if ω is T -periodic, an invariant torus with a
linear flow with vector ω is filled with T -periodic orbits.

3.1 The Gevrey case

As in [MS02], we shall start with perturbations of linear integrable Hamilto-
nians, for which we will obtain a global normal form (Lemma 3.3 below), and
then the latter will be used to obtain local normal forms for perturbations
of general Hamiltonians (Proposition 3.4 below).

1. Let ω1 ∈ R
n \ {0} be a T1-periodic vector, and let l1(I) = ω1.I be the

linear integrable Hamiltonian with frequency ω1. In the following, we shall
consider a “large” positive integer m ∈ N

∗ and a “small” parameter µ1 > 0,
which will eventually depend on ε. We shall also use a real number ρ1 > 0
independent of ε, to be fixed below. The following result is due to Marco
and Sauzin ([MS02]).

Lemma 3.2 (Marco-Sauzin). Consider the Hamiltonian H = l1+ f defined
on D3ρ1 , with f ∈ Gα,L(D3ρ1) and |f |α,L < µ1. Assume that

T1µ1 ·< 1, mT1µ1 ·< 1. (1)

Then there exist L1 = CL, for some constant 0 < C < 1, and an (α,L1)-
Gevrey symplectic transformation

Φ1 : D2ρ1 → D3ρ1

with |Φ1 − Id|α,L1
<·T1µ1 such that

H1 = H ◦ Φ1 = l1 + g1 + f1

with {g1, l1} = 0 and the estimates

|g1|α,L1
<·µ1, |f1|α,L1

<· e−m1/α
µ1,

hold true.
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One can choose the constant C = 16−1(2n)
1−α
α . The statement above

is exactly Proposition 3.2 in [MS02], where the authors state their result
for mT1µ1 ·=1, but it also holds trivially for smaller m, that is mT1µ1 ·< 1.
The use of this artificial parameter m ∈ N

∗ will make subsequent arguments
easier.

It is perhaps useful to understand this lemma in the very special case
where ω1 = e1 is the first vector of the canonical basis of Rn: the equality
{g1, l1} = 0 simply means that g1 is independent of the first angle θ1, and
therefore the evolution of the first action component I1 is only governed by
the remainder f1.

2. Now we are going to make suitable “compositions” of the above lemma,
but first we shall explain heuristically what we are planning to do formally
in the sequel.

So we consider another periodic vector ω2 ∈ R
n \ {0}, with period T2 >

0, which is independent of ω1, and we let l2(I) = ω2.I. If the suitable
hypotheses are met, by Lemma 3.2 we can transform H = l2 + f , where the
size of f is of order µ2, into

H2 = H ◦Φ2 = l2 + g2 + f2, {g2, l2} = 0,

with g2 of order µ2 and f2 of order e−mµ2. Now if ω2 is close enough to ω1,
that is |ω2 − ω1| < µ1, and if µ2 < µ1, we can write

H2 = (l2 + l1 − l1) + g2 + f2 = l1 + (l2 − l1 + g2) + f2 = l1 + f̃ + f2,

where f̃ = l2 − l1 + g2 satisfies {f̃ , l2} and its size is of order µ1. For a
moment, let us forget about f2, which is already exponentially small with
respect to m, and consider l1+ f̃ as a perturbation of l1. Under the suitable
assumptions, we can apply once again Lemma 3.2 and find a transformation
Φ1 that sends l1 + f̃ into l1 + g1 + f1, where f1 is exponentially small with
respect to m and {g1, l1} = 0.

Now the key point is the following: as f̃ satisfies {f̃ , l2} = 0, g1 and f1

also satisfy {g1, l2} = {f1, l2} = 0, hence {g1, l1} = {g1, l2} = 0. Indeed,
it is enough to show that, denoting

(

Φl1
s

)

s∈R
the Hamiltonian flow of l1, if

{f̃ , l2} = 0 then

[f̃ ]1 =
1

T1

∫ T1

0
f̃ ◦Φl1

s ds

and

χ1 =
1

T1

∫ T1

0
(f̃ − [f̃ ]1) ◦Φl1

s sds

also satisfy {[f̃ ]1, l2} = 0 and {χ1, l2} = 0. This can be easily proved
by direct computations, but this is a general fact in normal form theory
(sometimes known as a “normal form with symmetry”) and a nicer way to
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see this goes as follows. Since {l1, l2} = 0, the linear operators Ll1 = {., l1}
and Ll2 = {., l2} commutes, so that the kernel of Ll2 is invariant by Ll1 , and
as Ll1 is semi-simple, the kernel of Ll2 is also invariant under the projection
onto the kernel of Ll1 which is given by the map [ . ]1. This explains why
{[f̃ ]1, l2} = 0. Now f̃ − [f̃ ]1 is in the kernel of Ll2 , and its unique pre-image
by Ll1 is given by χ1, hence {χ1, l2} = 0. Put it differently, if a Hamiltonian
(above l1 + f̃) has an integral (in our case, l2), then the integral is invariant
under the normalizing transformation (in our case, l2 ◦ Φ1 = l2) and l2
remains an integral of the normalized Hamiltonian (that is {l1+g1+f1, l2}).

To conclude, taking into account f2, the map Φ1 sends f2 to f2◦Φ1 which
remains exponentially small with respect to m, and so is f2 = f1 + f2 ◦Φ1.
Therefore

H2 ◦ Φ1 = l1 + g1 + f2, {g1, l1} = {g1, l2} = 0,

then setting g2 = l1 − l2 + g1, we can write again

H2 ◦ Φ1 = l2 + g2 + f2, {g2, l1} = {g2, l2} = 0.

Finally, we have found Φ2 = Φ2 ◦ Φ1 such that

H2 = H ◦ Φ2 = H2 ◦ Φ1 = H ◦Φ2 ◦Φ1 = l2 + g2 + f2

with {g2, l1} = {g2, l2} = 0 and f2 exponentially small.

3. Now let us make our previous discussion rigorous.
For i ∈ {1, . . . , n}, let ωi ∈ R

n \ {0} be independent Ti-periodic vectors,
and we denote by li the linear integrable Hamiltonian of frequency ωi. We
consider a positive integer m ∈ N

∗ and a sequence of small parameters
µi > 0, for i ∈ {1, . . . , n}. As before, m ∈ N

∗ and µi > 0, for i ∈ {1, . . . , n},
will eventually depend on ε. Now to fix the ideas, we define the increasing
sequence

ρi = 2i, i ∈ {1, . . . , n}.
We shall need some assumptions on these parameters, so we define the

condition (Ai) for i ∈ {1, . . . , n} by

T1µ1 ·< 1, mT1µ1 ·< 1 (A1)

and for i ∈ {2, . . . , n},

Tiµi ·< 1, mTiµi ·< 1, |ωi − ωi−1|<·µi−1, µi ·<µi−1. (Ai)

Recalling the constant C > 0 that appeared in Lemma 3.2, we shall also
define the decreasing sequence Li = CiL, for i ∈ {0, . . . , n}. In the above
lemma, we shall use Lemma A.1 of appendix A.
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Lemma 3.3. Let j ∈ {1, . . . , n}, and consider the Hamiltonian H = lj + f
defined on D3ρj , with f ∈ Gα,L(D3ρj ) and |f |α,L<·µj. Assume that (Ai) is
satisfied for i ∈ {1, . . . , j}. Then there exists a symplectic transformation

Φj = Φj ◦ · · · ◦ Φ1 : D2ρ1 → D3ρj

where Φi : D2ρi → D3ρi is (α,Lj−i+1)-Gevrey and |Φi − Id|α,Lj−i+1
<·Tiµi

for i ∈ {1, . . . , j}, such that

Hj = H ◦ Φj = lj + gj + fj ∈ Gα,Lj (D2ρ1)

with {gj , li} = 0, for i ∈ {1, . . . , j}, and the estimates

|gj |α,Lj <·µ1, |fj|α,Lj <· e−m1/α
µ1,

hold true.

Proof. The proof goes by induction. For j = 1, this is nothing but Lemma 3.2
with g1 = g1 and f1 = f1. Now assume that the result holds true for some
j−1 ∈ {1, . . . , n−1}, and let us show that it remains true for j ∈ {2, . . . , n}.

By assumption, (Aj) is satisfied, in particular

Tjµj ·< 1, mTjµj ·< 1

hence condition (1) of Lemma 3.2 holds true. Therefore, there exists an
(α,L1)-Gevrey symplectic transformation

Φj : D2ρj → D3ρj

with |Φj − Id|α,L1
<·Tjµj such that

Hj = H ◦Φj = lj + gj + f j

with {gj , lj} = 0 and the estimates

|gj |α,L1
<·µj, |f j|α,L1

<· e−m1/α
µj,

hold true.
Now let us introduce f̃ = lj − lj−1 + gj . Obviously, we have {f̃ , lj} = 0.

Moreover, by assumption (Aj) we have |ωj −ωj−1|<·µj−1 and µj ·<µj−1 so
that

|f̃ |α,L1
≤ |lj − lj−1|α,L1

+ |gj |α,L1

<· |ωj − ωj−1|+ µj

<· µj−1.

Then we can write
Hj = lj−1 + f̃ + f j.

13



Furthermore, as D3ρj−1
⊆ D2ρj , the Hamiltonian lj−1 + f̃ is well-defined on

D3ρj−1
, we have f̃ ∈ Gα,L1(D3ρj−1

) with |f̃ |α,L1
<·µj−1.

Now recall that (Ai) holds true for i ∈ {1, . . . , j − 1}, hence we can
eventually apply our hypothesis of induction to the Hamiltonian lj−1 + f̃ :
there exists a symplectic transformation

Φj−1 = Φj−1 ◦ · · · ◦ Φ1 : D2ρ1 → D3ρj−1

where Φi : D2ρi → D3ρi is (α,Lj−i+1)-Gevrey and |Φi − Id|α,Lj−i+1
<·Tiµi

for i ∈ {1, . . . , j − 1}, such that

(lj−1 + f̃) ◦ Φj−1 = lj−1 + gj−1 + fj−1 ∈ Gα,Lj−1(D2ρ1)

with {gj−1, li} = 0, for i ∈ {1, . . . , j − 1}, and the estimates

|gj−1|α,Lj−1
<·µ1, |fj−1|α,Lj−1

<· e−m1/α
µ1,

hold true. Moreover, as {f̃ , lj} = 0, we also have {gj−1, lj} = 0 and therefore
{gj−1, li} = 0, for i ∈ {1, . . . , j}.

Then we set Φj = Φj ◦ Φj−1 so that

Φj = Φj ◦ · · · ◦ Φ1 : D2ρ1 → D3ρj .

Now

Hj = H ◦Φj

= Hj ◦ Φj−1

= (lj−1 + f̃) ◦Φj−1 + f j ◦Φj−1

= lj−1 + gj−1 + fj−1 + f j ◦Φj−1.

We will prove below that f j ◦ Φj−1 ∈ Gα,Lj (D2ρ1), and since we know that
the function lj−1 + gj−1 + fj−1 ∈ Gα,Lj−1(D2ρ1), this will easily implies
that Hj ∈ Gα,Lj (D2ρ1). Now let us define gj = lj−1 − lj + gj−1 and fj =
fj−1 + f j ◦ Φj−1 so that we can eventually write

Hj = lj + gj + fj.

Since {gj−1, li} = 0 then obviously {gj , li} = 0, for i ∈ {1, . . . , j}. Therefore
it remains to prove the estimates. First, we have

|gj |α,Lj ≤ |lj−1 − lj |α,Lj + |gj−1|α,Lj

≤ |lj−1 − lj |α,Lj + |gj−1|α,Lj−1

<· |ωj−1 − ωj|+ µ1

<· µj−1 + µ1

<· µ1.
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Then, we know that |fj−1|α,Lj−1
<· e−m1/α

µ1, so we only need to estimate
|f j ◦ Φj−1|α,Lj . For that, recall that

Φj−1 = Φj−1 ◦ · · · ◦ Φ1

and for i ∈ {1, . . . , j − 1}, we have the estimates

|Φi − Id|α,Lj−i+1
<·Tiµi<· 1.

Therefore a repeated use of lemma A.1 yields

|f j ◦Φj−1|α,Lj = |f j ◦ Φj−1 ◦ · · · ◦ Φ1|α,Lj

≤ |f j ◦ Φj−1 ◦ · · · ◦ Φ2|α,Lj−1

≤ |f j ◦ Φj−1 ◦ · · · ◦ Φ3|α,Lj−2

. . .

≤ |f j|α,L1

<· e−mµj.

Hence

|fj|α,Lj ≤ |fj−1|α,Lj + |f j ◦Φj−1|α,Lj

≤ |fj−1|α,Lj−1
+ |f j ◦ Φj−1|α,Lj

<· e−m1/α
(µ1 + µj)

<· e−m1/α
µ1,

which is the required estimate.

Here also, it is perhaps useful to understand this lemma in the special
case where (ω1, . . . , ωn) is the canonical basis of R

n: the equality {gj , li} = 0
for i ∈ {1, . . . , j} means that gj is independent of the first j angles θ1, . . . , θj,
and therefore the evolution of the first j action components I1, . . . , Ij is only
governed by the remainder f j. In any cases, since we are assuming that
(ω1, . . . , ωn) are linearly independent, then for j = n, gn is integrable and
the action variables can only evolve according to fn.

4. Now we shall come back to our original setting (∗), that is
{

H(θ, I) = h(I) + f(θ, I), (θ, I) ∈ DR,

|h|α,L = 1, |f |α,L < ε.

For i ∈ {1, . . . , n}, we still consider a sequence of Ti-periodic vectors ωi, a
sequence of small parameters µi and an integer m ∈ N

∗.
Let us fix i ∈ {1, . . . , n}. If we were able to find a Ti-periodic action

Ii ∈ BR linked to ωi, that is satisfying ∇h(Ii) = ωi, then on a small ball
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of radius µi around Ii, we could perform some standard scalings to reduce
the study of perturbations of h to the study of perturbations of the linear
Hamiltonian li(I) = ωi.I, and so we could use the results of the previous
section. However, in the sequel we will construct ωi, but since we are not
assuming that the gradient map of h is invertible, we cannot construct a
corresponding action. In fact, this is not a serious problem, but this is
just meant to explain why we need to use some slightly twisted arguments
below. In [BN10], we used the idea, coming from [Nie07], to define domains
directly in the space of frequencies, however this lead to a rather cumbersome
definition of domains. Here we shall use a simpler approach that will enable
us to work in the space of actions.

For i ∈ {1, . . . , n}, we consider a sequence of actions Ii which is µi-linked
to the sequence of independent periodic vectors ωi, in the sense that

|∇h(Ii)− ωi| < µi.

By the construction of our periodic vectors, such actions will indeed exist.
Taking into account this sequence of actions (I1, . . . , In) and the size of

the perturbation ε, we define some new assumptions (Bi), for i ∈ {1, . . . , n},
by

{

T1µ1 ·< 1, mT1µ1 ·< 1,

µ1 ·< 1, ε < µ2
1, |∇h(I1)− ω1| < µ1

(B1)

and for i ∈ {2, . . . , n},
{

Tiµi ·< 1, mTiµi ·< 1, |ωi − ωi−1|<·µi−1, µi ·<µi−1,

µi ·< 1, ε < µ2
i , |∇h(Ii)− ωi| < µi.

(Bi)

In the proposition below, we shall denote by ΠI : DR → BR the pro-
jection onto the action space, and we shall make use of Lemma A.2 in
appendix A.

Proposition 3.4. Suppose H is as in (∗), and assume that (Bi) is satisfied
for i ∈ {1, . . . , j}. Then there exists a C∞ symplectic transformation

Ψj : T
n ×B(Ij , 2ρ1µj) → T

n ×B(Ij, 3ρjµj)

with |ΠIΨj − IdI |C0(B(Ij ,2ρ1µj)) ·<µj such that

H ◦Ψj = h+ gj + fj,

with {gj , li} = 0 for i ∈ {1, . . . , j} and the estimate

|∂θfj|C0(Tn×B(Ij ,2ρ1µj)) < e−m1/α
µj

holds true.
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Note that the proof gives in fact slightly better estimates, and also an
estimate on the size of the function gj , but this will not be needed in the
following. The case j = 1 is due to Marco and Sauzin ([MS02]), and together
with an estimate on gj this case is sufficient to prove effective stability for
quasi-convex unperturbed systems. But here we shall need this result for
any j ∈ {1, . . . , n}: indeed, since we are assuming the periodic vectors to be
independent, the above proposition will give us information on resonances
of any multiplicities (the case j ∈ {1, . . . , n} corresponds to a resonance of
multiplicity n− j).

Proof. To analyze our Hamiltonian H in a neighbourhood of size µj around
Ij, we translate and rescale the action variables using the conformally sym-
plectic map

σj : (θ, Ĩ) 7−→ (θ, I) = (θ, Ij + µj Ĩ)

which sends the domain D3ρj = T
n × B3ρj onto T

n × B(Ij, 3ρjµj). By the
condition µj <· 1 in (Bj), we can assume that the latter domain is included
in DR. Let

H̃ = µ−1
j (H ◦ σj)

be the rescaled Hamiltonian, so H̃ is defined on D3ρj and reads

H̃(θ, Ĩ) = µ−1
j H(θ, Ij + µj Ĩ) = µ−1

j h(Ij + µj Ĩ) + µ−1
j f(θ, Ij + µj Ĩ)

for (θ, Ĩ) ∈ D3ρj . Now using Taylor’s formula we can expand h around Ij
and, assuming with no loss of generality that h(Ij) = 0, we obtain

h(Ij + µj Ĩ) = µj∇h(Ij).Ĩ + µ2
j

∫ 1

0
(1− t)∇2h(Ij + tµj Ĩ)Ĩ .Ĩdt

= µjωj.Ĩ + µj(∇h(Ij)− ωj).Ĩ

+ µ2
j

∫ 1

0
(1− t)∇2h(Ij + tµj Ĩ)Ĩ .Ĩdt

= µjωj.Ĩ + µjh̃(Ĩ)

where we have defined

h̃(Ĩ) = (∇h(Ij)− ωj).Ĩ + µj

∫ 1

0
(1− t)∇2h(Ij + tµj Ĩ)Ĩ .Ĩdt.

Therefore we can write
H̃ = lj + f̃

with
f̃ = h̃+ µ−1

j (f ◦ σj).
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Let us estimate the norm of f̃ . Setting L̃ = L/2, by using Lemma A.2 (with
p = 2) we can bound the (α, L̃)-norm of ∇2h in terms of the (α,L)-norm of
h. Now recalling that |h|α,L = 1, we obtain

|∇2h|α,L̃ <· 1,

and as |∇h(Ij)− ωj| < µj (this is part of assumption (Bj)), we have

|h̃|α,L̃<·µj.

Then, by (Bj) again, ε < µ2
j hence

|µ−1
j (f ◦ σj)|α,L ≤ µ−1

j ε < µj.

and therefore
|f̃ |α,L̃ ≤ |h̃|α,L̃ + |µ−1

j (f ◦ σj)|α,L <·µj.

As (Bi) implies (Ai) for i ∈ {1, . . . , j}, we can eventually apply Lemma 3.3
to the Hamiltonian H̃ = lj+ f̃ (replacing L by L̃ and Lj by L̃j): there exists
a symplectic transformation

Φ̃j = Φ̃j ◦ · · · ◦ Φ̃1 : D2ρ1 → D3ρj

where Φ̃i : D2ρi → D3ρi is (α, L̃j−i+1)-Gevrey and |Φ̃i − Id|α,L̃j−i+1
<·Tiµi

for i ∈ {1, . . . , j}, such that

H̃j = H̃ ◦ Φ̃j = lj + g̃j + f̃j ∈ Gα,L̃j (D2ρ1)

with {g̃j , li} = 0, for i ∈ {1, . . . , j}, and the estimates

|g̃j |α,L̃j
<·µ1, |f̃j|α,L̃j

<· e−m1/α
µ1,

hold true. Moreover, if we introduce

s̃j = g̃j − h̃,

we still have {s̃j, lj} = 0, for i ∈ {1, . . . , j}, and so the transformed Hamil-
tonian can also be written as

H̃j = H̃ ◦ Φ̃j = lj + h̃+ s̃j + f̃j.

Now scaling back to our original coordinates, we define Ψj = σj ◦ Φ̃j ◦ σ−1
j ,

therefore
Ψj : T

n ×B(Ij , 2ρ1µj) −→ T
n ×B(Ij , 3ρjµj)

and

H ◦Ψj = µjH̃ ◦ Φ̃j ◦ σ−1
j

= µj(lj + h̃+ s̃j + f̃j) ◦ σ−1
j

= µj(lj + h̃) ◦ σ−1
j + µj s̃j ◦ σ−1

j + µj f̃j ◦ σ−1
j .
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Observe that µj(lj + h̃) ◦ σ−1
j = h, so we may set

gj = µj s̃j ◦ σ−1
j , fj = µj f̃j ◦ σ−1

j ,

and write
H ◦Ψj = h+ gj + fj.

It is clear that {gj , li} = 0, for i ∈ {1, . . . , j}, and as ∂θfj = µj∂θ f̃j, then

|∂θfj|C0(Tn×B(Ij ,2ρ1µj)) <· e−m1/α
µjµ1 < e−m1/α

µj.

Finally, since
Φ̃j = Φ̃j ◦ · · · ◦ Φ̃1 : D2ρ1 → D3ρj

with |Φ̃i − Id|α,L̃j−i+1
<·Tiµi for i ∈ {1, . . . , j}, then

|ΠIΦ̃j − IdI |C0(D2ρ1 )
<· max

i=1,...,j
{Tiµi}

hence
|ΠIΨj − IdI |C0(Tn×B(Ij ,2ρ1µj)) <·µj max

i=1,...,n
{Tiµi} ·<µj ,

where the last estimate follows from the fact that Tiµi<· 1 for i ∈ {1, . . . , j}
with a suitable implicit constant. This ends the proof.

3.2 The Ck-case

Now let us explain how one can obtain similar normal forms for finitely
differentiable Hamiltonians, with of course only a polynomial bound on the
remainder. Here also, as in [Bou10b], we shall first construct a global normal
form for perturbations of linear integrable Hamiltonians (Lemma 3.6) and
then recover local normal forms for perturbations of general Hamiltonians
(Proposition 3.7).

5. We use the same notations as in the previous section, that is ω1 ∈ R
n\{0}

is a T1-periodic vector, l1(I) = ω1.I and we have parameters m ∈ N
∗ and

µ1 > 0, while ρ1 is already fixed. Given k∗ ∈ N
∗, recall that we are assuming

k ≥ k∗n+ 1. The following result is due to the author ([Bou10b]).

Lemma 3.5. Consider the Hamiltonian H = l1 + f defined on D3ρ1 , with
f ∈ Ck(D3ρ1) and |f |k < µ1. Assume that

T1µ1 ·< 1, mT1µ1 ·< 1.

Then there exists a Ck−k∗ symplectic transformation

Φ1 : D2ρ1 → D3ρ1
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with |Φ1 − Id|k−k∗ <·T1µ1 such that

H1 = H ◦ Φ1 = l1 + g1 + f1

with {g1, l1} = 0 and the estimates

|g1|k−k∗ <·µ1, |f1|k−k∗ <·m−k∗µ1,

hold true.

The statement above is exactly Proposition 3.2 in [Bou10b], where it is
stated for mT1µ1 ·=1 and k∗ = k− 2, but of course it also holds for smaller
m, that is mT1µ1 ·< 1, and for any integer k∗ ∈ N

∗ smaller than k.

6. Now as in the previous section, performing suitable “compositions” of
the above lemma, this readily gives us the following statement.

Lemma 3.6. Let j ∈ {1, . . . , n}, and consider the Hamiltonian H = lj + f
defined on D3ρj , with f ∈ Ck(D3ρj ) and |f |k <·µj. Assume that (Ai) is
satisfied for i ∈ {1, . . . , j}. Then there exists a symplectic transformation

Φj = Φj ◦ · · · ◦ Φ1 : D2ρ1 → D3ρj

where Φi : D2ρi → D3ρi is C
k−k∗i and |Φi−Id|k−k∗i <·Tiµi for i ∈ {1, . . . , j},

such that
Hj = H ◦Φj = lj + gj + fj ∈ Ck−k∗i(D2ρ1)

with {gj , li} = 0, for i ∈ {1, . . . , j}, and the estimates

|gj |k−k∗j <·µ1, |fj|k−k∗j <·m−k∗µ1,

hold true.

The proof is completely identical to the proof of Lemma 3.6 (using
Lemma A.3 instead of Lemma A.1), hence we do not repeat the details.

7. Finally we come back to the original setting, that is
{

H(θ, I) = h(I) + f(θ, I), (θ, I) ∈ DR,

|h|k = 1, |f |k < ε,

for which we have the following proposition.

Proposition 3.7. Suppose H is as in (∗∗), and assume that (Bi) is satisfied
for i ∈ {1, . . . , j}. Then there exists a Ck−k∗j symplectic transformation

Ψj : T
n ×B(Ij , 2ρ1µj) → T

n ×B(Ij, 3ρjµj)

with |ΠIΨj − IdI |C0(B(Ij ,2ρ1µj)) ·<µj such that

H ◦Ψj = h+ gj + fj,

with {gj , li} = 0 for i ∈ {1, . . . , j} and the estimate

|∂θfj|C0(Tn×B(Ij ,2ρ1µj)) < m−k∗µj

holds true.
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Once again, the proof is completely analogous to the proof of Proposi-
tion 3.4 (using Lemma A.4 instead of Lemma A.2), hence there is no need
to give further details.

Let us notice that our last estimate gives in fact

|fj|k−k∗j < m−k∗µj ,

but since k − k∗j ≥ 1 for any j ∈ {1, . . . , n}, this yields in particular the
estimate stated in the above proposition.

Here the case j = 1 is due to author ([Bou10b]) and is enough to prove
effective stability for quasi-convex unperturbed systems, but as we already
explained, we shall need this result for any j ∈ {1, . . . , n}.

3.3 Dynamical consequences

Let us now examine the dynamical consequences of our normal forms. As
usual, it will be used to control the directions, if any, in which the action
variables in these new coordinates can actually drift. Below we shall state
a result in the coordinates given by our normal forms, and we shall come
back to our original coordinates at the beginning of the next section.

In order to treat the Gevrey case and the Ck case in a unified way, we
introduce yet another parameter τm > 0 which will eventually gives us the
time of stability. For α-Gevrey Hamiltonians, we set

τm = em
1/α

,

and for Ck-Hamiltonians, with k ≥ k∗n+ 1 for some k∗ ∈ N
∗, this will be

τm = mk∗ .

Under the assumptions of Proposition 3.4 or Proposition 3.7, consider the
Hamiltonian

Hj = H ◦Ψj = h+ gj + fj

defined on the domain T
n × B(Ij, 4µj) (from now on we shall use the fact

that we have defined ρ1 = 2). Let Mj be the Z-module

Mj = {k ∈ Z
n | k.ωi = 0, i ∈ {1, . . . , j}}.

Since the periodic vectors are independent, its rank is n − j, and it is also
the dimension of the vector space Λj = Mj ⊗ R spanned by Mj .

We shall need the following lemma, which is completely obvious using
the definition of the Poisson bracket.

Lemma 3.8. The equality {gj , li} = 0, for all i ∈ {1, . . . , j}, is equivalent
to ∂θgj(θ, I) ∈ Λj, for (θ, I) ∈ T

n ×B(Ij , 4µj).

21



Now consider a solution (θj(t), Ij(t)) of the Hamiltonian Hj starting at
Ij(tj) ∈ B(Ij, 4µj) for some tj ∈ R, and define the time of escape of this
solution as the smallest time t̃j ∈]tj,+∞] for which Ij(t̃j) /∈ B(Ij, 4µj).

The only information we shall use from our normal forms is contained in
the next proposition, where we shall denote by Πj the projection onto the
linear subspace Λj .

Proposition 3.9. Let Hj = h + gj + fj be a Hamiltonian defined on the
domain T

n × B(Ij, 4µj), with {gj , li} = 0 for i ∈ {1, . . . , j}, and such that
the estimate

|∂θfj|C0(Tn×B(Ij ,4µj)) < τ−1
m µj

hold true. Then, with the previous notations, we have

|Ij(t)− Ij(tj)−Πj(I
j(t)− Ij(tj))| < µj, t ∈ [tj , τm] ∩ [tj , t̃j[.

In particular,
|In(t)− In(tn)| < µn, t ∈ [tn, τm].

Proof. Let Π⊥
j be the projection onto the orthogonal complement of Λj , so

that Πj +Π⊥
j is the identity and therefore

|Ij(t)− Ij(tj)−Πj(I
j(t)− Ij(tj))| = |Π⊥

j (I
j(t)− Ij(tj))|.

Now, as long as t < t̃j, the equations of motion for Hj = h+ gj + fj and the
mean value theorem give

|Ij(t)− Ij(tj)| ≤ |t− tj ||∂θ(gj + fj)|C0(Tn×B(Ij ,4µj)).

But {gj , li} = 0 for i ∈ {1, . . . , j}, so by Lemma 3.8 we have ∂θgj(θ, I) ∈ Λj

for any (θ, I) ∈ T
n ×B(Ij, 4µj), hence if we first project the equations onto

the orthogonal complement of Λj we have

|Π⊥
j (I

j(t)− Ij(tj))| ≤ |t− tj||∂θfj|C0(Tn×B(Ij ,4µj)).

Now since |t − tj| ≤ τm and |∂θfj|C0(Tn×B(Ij ,2ρ1µj)) < τ−1
m µj, the previous

estimate gives

|Π⊥
j (I

j(t)− Ij(tj))| < µj, t ∈ [tj , τm[∩[tj, t̃j [,

and therefore

|Ij(t)− Ij(tj)−Πj(I
j(t)− Ij(tj))| < µj, t ∈ [tj, τm[∩[tj, t̃j [.

Finally, for j = n, note that gn is integrable (since Λn) and Πn is identi-
cally zero, so that the mean value theorem immediately gives t̃n > τm and
the estimate

|In(t)− In(tn)| < µn, t ∈ [tn, τm],

follows easily. This concludes the proof.
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The interpretation of the above proposition is the following: if λj is the
affine subspace passing through Ij(tj) with direction space Λj , then as long
as Ij(t) remains in the domain of definition, it is µj-close to λj during an
interval of time of length τm. This means that for that interval of time, there
is almost no variation of the action components in the direction transversal
to λj , so that any potential drift has to occur along that space.

If we were assuming that the energy sub-levels of the integrable Hamil-
tonian are convex, then some direct arguments using the preservation of
energy would give us a complete stability result for such solutions. But in
our more general situation, we will have to use indirect and more compli-
cated geometric arguments.

4 Geometric part

In this section, we shall describe some geometric arguments, first introduced
by Niederman ([Nie04], see also [BN10] for a somehow clearer exposition),
that will lead to the proof of both Theorem 2.4 and Theorem 2.5. Without
loss of generality, we will consider only solutions (θ(t), I(t)) starting at time
t0 = 0 and evolving in positive time t > 0. In section 4.1, we will introduce
a class of solutions, which we call “restrained”, and for which the stability
of the action variables is easily proved. Then, in section 4.2, we introduce
the notion of “drifting” solutions, which by definition do not satisfy the
stability properties implied by restrained solutions. We will then show that
drifting solutions can in fact be restrained provided some assumptions are
required, hence leading to the non-existence of such drifting solutions. This
will eventually give us a proof of Theorem 2.4 and Theorem 2.5 in section 4.3.

As these geometric arguments are not affected at all by the regularity
of the system, they will be similar for Gevrey or Ck Hamiltonians. Of
course, they are also the same for analytic Hamiltonians which were studied
in [BN10], therefore we shall merely state and explain the relevant results,
for which detailed proofs are available in [BN10].

4.1 Restrained solutions

1. In order to define our restrained solutions, we shall need some notations.
Recall from Proposition 3.4 that if the suitable assumptions are met, we can
define transformations

Ψj : T
n ×B(Ij , 4µj) → T

n ×B(Ij , 3ρjµj)

with |ΠIΨj − IdI |C0(B(Ij ,4µj)) ·<µj, for j ∈ {1, . . . , n}. In particular, we can
easily assume that the the image of Ψj contains the domain T

n×B(Ij, 2µj).
From now on, we shall write

Bj = B(Ij , 2µj), j ∈ {1, . . . , n},
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and for completeness we set B0 = BR.
Now consider a solution (θ(t), I(t)) ∈ T

n × B0 of our Hamiltonian H,
starting at time t0 = 0. If at some time t1 ≥ 0 we can find a periodic vector
ω1 ∈ R

n \ {0} such that

|∇h(I(t1))− ω1| < µ1,

then setting I1 = I(t1), (θ(t1), I(t1)) ∈ T
n × B1. Therefore, if assumption

(B1) is satisfied, we can define a normalized solution (θ1(t), I1(t)), for t ≥ t1,
by

Ψ1(θ
1(t), I1(t)) = (θ(t), I(t)),

as long as I(t) ∈ B1. Now we can start again, but this time with the solution
(θ1(t), I1(t)) ∈ T

n × B1 of the Hamiltonian H1 = H ◦ Ψ1 starting at time
t1: if at some time t2 ≥ t1 we can find a periodic vector ω2 ∈ R

n \ {0},
independent of ω1, such that

|∇h(I1(t2))− ω2| < µ2,

then setting I2 = I2(t1), (θ
1(t2), I

1(t2)) ∈ T
n×B2, and provided (B2) holds,

we can define yet another normalized solution (θ2(t), I2(t)), for t ≥ t2, by

Ψ2(θ
2(t), I2(t)) = (θ1(t), I1(t)),

as long as I1(t) ∈ B2.
Inductively, setting (θ0(t), I0(t)) = (θ(t), I(t)), for j ∈ {1, . . . , n} we can

define the averaged solution (θj(t), Ij(t)), for t ≥ tj, by

Ψj(θ
j(t), Ij(t)) = (θj−1(t), Ij−1(t)),

as long as Ij−1(t) ∈ Bj, provided we have found independent periodic vectors
ω1, . . . , ωj such that

|∇h(Ij)− ωj| < µj,

with Ij = Ij−1(tj) and assuming (Bj) is satisfied.
Moreover, using our estimate on Ψj we have

|Ij(t)− Ij−1(t)| ·<µj, j ∈ {1, . . . , n},

during that time interval.

2. We can eventually write our definition.

Definition 4.1. Given µ0 > 0 and m ∈ N
∗, a solution (θ(t), I(t)) of the

Hamiltonian (∗) or (∗∗), starting at time t0 = 0, is said to be restrained (by
µ0, up to time τm) if we can find sequences of:

(1) radii (µ1, . . . , µn), with 0 < µn < · · · < µ1 < µ0;
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(2) independent periodic vectors (ω1, . . . , ωn), with periods (T1, . . . , Tn);

(3) times (t1, . . . , tn), with 0 = t0 ≤ t1 ≤ · · · ≤ tn ≤ tn+1 = τm,

satisfying, for j ∈ {0, . . . , n − 1}, conditions (Bj+1) and the following con-
ditions (Cj) defined by

{

|Ij(t)− Ij(tj)| < µj, t ∈ [tj, tj+1],

|∇h(Ij(tj+1))− ωj+1| < µj+1.
(Cj)

Let us notice that for j ∈ {0, . . . , n − 2}, setting Ij+1 = Ij(tj+1) the
second condition of (Cj) gives part of condition (Bj+1), and also it ensures
that the first condition of (Cj+1) is indeed well-defined. Also, our assump-
tions imply the inclusion of domains Bj+1 ⊆ Bj for j ∈ {1, . . . , n−1} (which
was the assumption made in [BN10]): indeed, one can choose an implicit
constant in (Bj+1) so that 2µj+1 ≤ µj, so if I ∈ Bj+1, then

|I − Ij| ≤ |I − Ij+1|+ |Ij+1 − Ij|
≤ |I − Ij+1|+ |Ij(tj+1)− Ij−1(tj)|
≤ 2µj+1 + µj ≤ 2µj .

3. The terminology “restrained” was introduced in [BN10] because for such
solutions, the actions I(t) (or some properly normalized actions Ij(t)) are
forced to pass close to a resonance at the time t = tj , the multiplicity of
which decreases as j increases (since the periodic vectors are assumed to
be independent), and moreover the variation of these (normalized) actions
is controlled on each time interval [tj , tj+1]. Hence after the time tn, the
actions are in a domain free of resonances and are easily confined in view of
the last part of Proposition 3.9. This is the content of the above proposition.

Proposition 4.2. Consider a restrained solution (θ(t), I(t)), with an initial
action I(0) ∈ BR/2. If µ0 ·< 1, then the estimates

|I(t)− I(0)| < (n+ 1)2µ0, 0 ≤ t ≤ τm,

hold true.

This is exactly Proposition 3.7 in [BN10], to which we refer for the easy
proof.

4.2 Drifting solutions

Restrained solutions are stable for an exponentially long interval of time
with respect to m, and now we will show that this is in fact true for all
solutions.

4. The following definition will be useful in the sequel.
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Definition 4.3. Given µ0 > 0 and m ∈ N
∗, a solution (θ(t), I(t)) of the

Hamiltonian (∗) or (∗∗), starting at time t0 = 0, is said to be drifting (to
µ0, before time τm) if there exists a time t∗ satisfying

|I(t∗)− I(0)| = (n+ 1)2µ0, 0 < t∗ ≤ τm.

Of course, this definition makes sense only if (n+ 1)2µ0 < R/2. In view
of Proposition 4.2, drifting solutions cannot be restrained. However, we will
prove below that if such a drifting solution exists, it has to be restrained
under some assumptions on µ0, m and ε, which will eventually prove that
drifting solutions do not exist so that all solutions are indeed exponentially
stable.

More precisely, assuming the existence of a drifting solution, we will
construct a sequence of radii (µ1, . . . , µn), an increasing sequence of times
(t1, . . . , tn) and a sequence of linearly independent vectors (ω1, . . . , ωn), with
periods (T1, . . . , Tn) satisfying, for j ∈ {0, . . . , n − 1}, assumptions (Bj+1)
and (Cj). All sequences will be built inductively, and we first describe two
lemmas that we shall need.

5. For j ∈ {1, . . . , n}, recall that Λj is the vector space spanned by

Mj = {k ∈ Z
n | k.ωi = 0, i ∈ {1, . . . , j}},

and that Πj (resp. Π⊥
j ) is the projection onto Λj (resp. Λ⊥

j ). Let us define
the integer

Lj = sup
i∈{1,...,j}

{|Tiωi|} ∈ N
∗, j ∈ {1, . . . , n− 1}.

For completeness, we set Λ0 = R
n, L0 = 1 and in this case Π0 is nothing

but the identity.
The first lemma will allow us to construct the sequence of times, and

for that we will rely on the fact that our integrable part h belongs to
DM τ

γ (B), so that it satisfies the following steepness property (see Lemma
3.9 in [BN10]).

Lemma 4.4. For j ∈ {0, . . . , n − 1}, let λj be any affine subspace with
direction Λj, and take cj < 1. Then for any continuous curve Γj : [tj , t

∗
j ] →

λj ∩BR with length

|Γj(t
∗
j )− Γj(tj)| = cj ·<γL−τ

j ,

there exists a time tj+1 ∈ [tj, t
∗
j ] such that

{

|Γj(t)− Γj(tj)| < cj , t ∈ [tj , tj+1],

|Πj(∇h(Γj(tj+1)))| ·>c2j .
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Now to construct the sequence of periodic vectors, we shall use the fol-
lowing lemma, which is a straightforward application of Dirichlet’s theorem
on simultaneous Diophantine approximation (see Lemma 3.10 in [BN10]).

Lemma 4.5. Given any vector v ∈ R
n and any real number Q > 0, there

exists a T -periodic vector ω satisfying

|v − ω| ≤ T−1Q− 1

n−1 , |v|−1 ≤ T ≤ Q|v|−1.

6. Now we have the necessary tools to show that drifting solutions cannot
exist, provided suitable assumptions on the parameters are demanded. This
will be done inductively, and for technical reasons we separate the first step
(Proposition 4.6) from the general inductive step (Proposition 4.7).

Proposition 4.6. Let (θ(t), I(t)) be a drifting solution. If µ0 ·<γ, then
there exist a time t1, a T1-periodic vector ω1 and µ1=·T−1

1 εa1 for some
positive constant a1, satisfying

(a) |I(t)− I(0)| < µ0, t ∈ [0, t1];

(b) |∇h(I(t1))− ω1| < µ1.

Moreover, we have the estimate

1<·T1 <· ε−a1(n−1)r−2
0 , 1 ≤ L1<· ε−a1(n−1)µ−2

0 .

The proof is completely analogous to the proof of Proposition 3.11 in
[BN10]: it uses the fact that our solution is drifting, Lemma 4.4 applied to
the curve Γ0(t) = I(t) with c0 = µ0, and Lemma 4.5.

Proposition 4.7. Let (θ(t), I(t)) be a drifting solution, j ∈ {1, . . . , n −
1} and assume that there exist sequences (t1, . . . , tj), (ω1, . . . , ωj) linearly
independent and (µ1, . . . , µj), satisfying assumptions (Bi) and (Ci−1), for
i ∈ {1, . . . , j}. Assume also that

(i)
(

TjµjL
−1
j

)τ
·<µj;

(ii)
(

TjµjL
−1
j

)τ
·<γL−τ

j ;

(iii) µ1 ·<µ2
0.

Then there exist a time tj+1, a Tj+1-periodic vector ωj+1 and µj+1=·T−1
j+1ε

aj+1

for some positive constant aj+1, satisfying

(a) |Ij(t)− Ij(tj)| < µj, t ∈ [tj , tj+1];

(b) |∇h(Ij(tj+1))− ωj+1| < µj+1;
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(c) |ωj+1 − ωj|<·µj .

Moreover, we have the estimates

1<·Tj+1<· ε−aj+1(n−1)µ−2
0 , 1 ≤ Lj+1<· max

i∈{1,...,j+1}
{ε−ai(n−1)}µ−2

0 ,

and if

(iv) µj+1 ·<
(

TjµjL
−1
j

)2τ
,

then ωj+1 is linearly independent of (ω1, . . . , ωj).

Once again, the proof is completely similar to the proof of Proposition
3.12 in [BN10]. As before, it uses the fact that our solution is drifting,
Lemma 4.4 applied to the curve Γj(t) = Ij(tj) + Πj(I

j(t) − Ij(tj)) with

cj =
(

TjµjL
−1
j

)τ
, Lemma 4.5 and Proposition 3.9.

4.3 Proof of Theorem 2.4 and Theorem 2.5

We can finally prove our theorems, and once again we refer to the proof of
Theorem 2.4 in [BN10] for some more details.

Proof of Theorem 2.4 and Theorem 2.5. As a consequence of Propositions 4.2,
4.6 and a repeated use of Proposition 4.7, we know that

|I(t)− I(0)| < (n+ 1)2µ0, 0 ≤ t ≤ τm

provided that the parameters µ0, m and ε satisfy the following eleven con-
ditions:

(i) µj+1 ·<
(

TjµjL
−1
j

)2τ
, j ∈ {1, . . . , n− 1};

(ii)
(

TjµjL
−1
j

)τ
·<µj , for j ∈ {1, . . . , n− 1};

(iii) mTjµj ·< 1, for j ∈ {1, . . . , n};

(iv) µ1 ·<µ2
0;

(v) ε < µ2
j , for j ∈ {1, . . . , n};

(vi)
(

TjµjL
−1
j

)τ
·<γL−τ

j , for j ∈ {1, . . . , n − 1};

(vii) Tjµj ·< 1, for j ∈ {1, . . . , n};

(viii) µj ·< 1, for j ∈ {1, . . . , n};

(ix) µj ·<µj−1, for j ∈ {2, . . . , n};
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(x) µ0 ·<γ;

(xi) µ0 ·< 1;

where µj =·T−1
j εaj , with aj to be chosen for j ∈ {1, . . . , n}, and

1<·Tj <· ε−aj(n−1)µ−2
0 , 1 ≤ Lj <· max

i∈{1,...,j}
{ε−ai(n−1)}µ−2

0 .

So let us choose m ·= ε−a and r0 = εb, for two positive constants a and b.
One can check (this is done in details in [BN10]) that all these conditions
hold true if we choose

aj = (2τ(n+ 1))−n−1+j , j ∈ {1, . . . , n}

and
a = b = 3−1(2τ(n + 1))−n,

provided ε ≤ ε0, with a sufficiently small ε0 depending on n,R, α,L,E,M, γ
and τ (resp. on n,R, k,M, γ and τ) in the Gevrey case (resp. in the Ck

case). Now recalling that for α-Gevrey Hamiltonians,

τm = em
1/α

,

and for Ck-Hamiltonians, with k ≥ k∗n+ 1 for k∗ ∈ N
∗,

τm = mk∗ ,

this completes the proof of both theorems.

A Technical estimates

In this short appendix, we give some technical estimates concerning Gevrey
and finitely differentiable functions that we used in section 3.

1. First in the proof of Lemma 3.3, we used the following estimate con-
cerning the composition of Gevrey functions.

Lemma A.1. Let 0 < ρ′ < ρ and L′ = CL. Suppose that g ∈ Gα,L(Dρ)
and that Φ : Dρ′ → Dρ is (α,L′)-Gevrey. If

|Φ − Id|α,L′ <· 1,

then f ◦Φ ∈ Gα,L′

(Dρ′) and

|f ◦ Φ|α,L′ ≤ |f |α,L.
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This lemma is contained in the statement of Corollary A.1, Appendix
A.2, in [MS02], to which we refer for a proof and a possible choice of implicit
constant.

In fact, we could have used a more elaborated statement concerning
compositions of Gevrey vector-valued functions (as in Proposition A.1 in
[MS02]), which would have implied that the diffeomorphisms Φj constructed
in Lemma 3.3 are in fact (α,Lj)-Gevrey, with an estimate on their distance
to the identity. However, such a statement is not very elegant to state and
it is not needed here.

2. Then, in the proof of Proposition 3.4, we used the following lemma
which enabled us to bound the Gevrey norm of the derivatives of a function
in terms of the Gevrey norm of the function.

Lemma A.2. Let ρ > 0 and g ∈ Gα,L(Dρ). For p ∈ N, we have

∑

l∈N2n, |l|=p

|∂lg|α,L/2 <· |g|α,L.

For an easy proof and a possible implicit constant, we refer to Lemma
A.1, Appendix A.1 in [MS02].

3. Finally, we shall also need corresponding estimates for the Ck norms,
which are well-known and much more easy to prove.

The above lemma is the analogue of Lemma A.1, and it is needed in the
proof of Lemma 3.6.

Lemma A.3. Let 0 < ρ′ < ρ, suppose that g ∈ Ck(Dρ) and that Φ : Dρ′ →
Dρ is of class Ck. If

|Φ− Id|k <· 1,
then f ◦Φ ∈ Ck(Dρ′) and

|f ◦Φ|k ≤ |f |k.

Finally, here’s an easy analogue of Lemma A.2 which is useful in the
proof of Proposition 3.7.

Lemma A.4. Let ρ > 0 and g ∈ Ck(Dρ). For 0 ≤ p ≤ k, we have

∑

l∈N2n, |l|=p

|∂lg|k−p<· |g|k.
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