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Abstract

We consider the linear growth and fragmentation equation

∂

∂t
u(x, t) +

∂

∂x

(
τ(x)u

)
+ β(x)u = 2

∫
∞

x

β(y)κ(x, y)u(y, t) dy,

with general coefficients τ, β and κ. Under suitable conditions (see [17]), the first eigenvalue rep-
resents the asymptotic growth rate of solutions, also called the fitness or Malthus coefficient in
population dynamics. This value is of crucial importance in understanding the long-time behavior
of the population. We investigate the dependence of the dominant eigenvalue and the corresponding
eigenvector on the transport and fragmentation coefficients. We show how it behaves asymptoti-
cally depending on whether transport dominates fragmentation or vice versa. For this purpose we
perform a suitable blow-up analysis of the eigenvalue problem in the limit of a small/large growth
coefficient (resp. fragmentation coefficient). We exhibit a possible non-monotonic dependence on
the parameters, in contrast to what would have been conjectured on the basis of some simple cases.
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Introduction

The growth and division of a population of individuals structured by a quantity conserved in the
division process may be described by the following growth and fragmentation equation:







∂

∂t
u(t, x) +

∂

∂x

(
τ(x)u(t, x)

)
+ β(x)u(t, x) = 2

∫ ∞

x

β(y)κ(x, y)u(t, y) dy, t > 0, x > 0,

u(0, x) = u0(x),

u(t, 0) = 0.

(1)

This equation is used in many different areas to model a wide range of phenomena. The quantity u(t, x)
may represent a density of dust [19], polymers [9, 10], bacteria or cells [5, 6]. The structuring variable
x may be the size ([35] and references), the label [2, 3], a protein content [14, 30], a proliferating
parasite content [4]; etc. In the literature, it is referred to as the “size-structured equation”, “growth-
fragmentation equation”, “cell division equation”, “fragmentation-drift equation” or Sinko-Streifer
model.

The growth speed τ = dx
dt

represents the natural growth of the variable x, for instance by nutrient
uptake or by polymerization, and the rate β is called the fragmentation or division rate. Notice that
if τ is such that 1

τ
is non integrable at x = 0, then the boundary condition u(t, 0) = 0 is useless.

The so-called fragmentation kernel κ(x, y) represents the proportion of individuals of size x ≤ y born
from a given dividing individual of size y; more rigorously we should write κ(dx, y), with κ(dx, y) a
probability measure with respect to x. For the sake of simplicity however, we retain the notation
κ(x, y)dx. The factor “2” in front of the integral term highlights the fact that we consider here binary
fragmentation, namely that the fragmentation process breaks a single individual into two smaller ones.
This physical interpretation leads us to impose the following relations

∫

κ(x, y)dx = 1,

∫

xκ(x, y)dx =
y

2
, (2)

so that κ(x, y)dx is a probability measure and the total mass is conserved through the fragmentation
process. The method we use in this paper can be extended to more general cases where the mean
number of fragments is n0 > 1 (see [17]). The well-posedness of this problem as well as the existence
of eigenelements has been proved in [1, 17]. Here we focus on the first eigenvalue λ associated to the
eigenvector U defined by







∂

∂x
(τ(x)U(x)) + (β(x) + λ)U(x) = 2

∫ ∞

x

β(y)κ(x, y)U(y)dy, x > 0,

τU(x = 0) = 0, U(x) > 0 for x > 0,
∫∞

0 U(x)dx = 1.

(3)

The first eigenvalue λ is the asymptotic exponential growth rate of a solution to Problem (1) (see
[33, 34]). It is often called the Malthus parameter or the fitness of the population. Hence it is of
great interest to know how it depends on the coefficients: for given parameters, is it favorable or
unfavorable to increase fragmentation ? Is it more efficient to modify the transport rate τ or to
modify the fragmentation rate β ? Such concerns may have a deep impact on therapeutic strategy
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(see [5, 6, 11, 14]) or on the design of experimental protocols such as PMCA 1 (see [29] and references
therein). Moreover, when modeling polymerization processes, Equation (1) is coupled with the density
of monomers V (t), which appears as a multiplier for the polymerization rate (i.e., τ(x) is replaced by
V (t)τ(x), and V (t) is governed by one or more ODE - see for instance [10, 25, 29]). The asymptotic
study of such polymerization processes thus closely depends on such a dependence (see [9, 10], where
asymptotic results are obtained under the assumption of a monotonic dependence of λ with respect
to the polymerization rate τ).
Based on simple previously studied cases (see [21, 25, 38]), it might be assumed intuitively that the

fitness always increases when polymerization or fragmentation increases. Nevertheless, a closer look
reveals that this is not the case.
To study the dependence of the eigenproblem on its parameters, we fix coefficients τ and β, and study

how the problem is modified under the action of a multiplier of either the growth or the fragmentation
rate. We thus consider the two following problems: first,







α
∂

∂x
(τ(x)Uα(x)) + (β(x) + λα)Uα(x) = 2

∫ ∞

x

β(y)κ(x, y)Uα(y)dy, x > 0,

τUα(x = 0) = 0, Uα(x) > 0 for x > 0,
∫∞

0 Uα(x)dx = 1,

(4)

where α > 0 measures the strength of the polymerization (transport) term, as in the prion problem
(see [25]), and second







∂

∂x
(τ(x)Va(x)) + (aβ(x) + Λa)Va(x) = 2a

∫ ∞

x

β(y)κ(x, y)Va(y)dy, x > 0,

τVa(x = 0) = 0, Va(x) > 0 for x > 0,
∫∞

0 Va(x)dx = 1,

(5)

where a > 0 modulates the fragmentation intensity, as for PMCA or therapeutics applied to the cell
division cycle (see the discussion in Section 3).

To make things clearer, we give some insight into the dependence of Λa and λα on their respective
multipliers a and α. First of all, one might suspect that if a vanishes or if α tends to infinity, since
transport dominates, the respective eigenvectors Uα and Va tend to dilute, and on the other hand
if a tends to infinity or if α vanishes, since fragmentation dominates, they tend to a Dirac mass at
zero (see Figure 1 for an illustration). But what happens to the eigenvalues λα and Λa ? Integrating
Equation (5), we obtain the relation

Λa = a

∫ ∞

0
β(x)Va(x) dx

which gives the impression that Λa is an increasing function of a, which is true if β(x) ≡ β is a
constant since in this case we obtain Λa = βa. However, when β is not a constant, the dependence
of the distribution Va(x) on a comes into account and we cannot conclude so easily. A better idea is
given by integration of Equation (5) against the weight x. Together with Assumption (2), this implies

Λa

∫

xVa(x) dx =

∫

τ(x)Va(x) dx

1
PMCA, Protein Misfolded Cyclic Amplification, is a protocol designed to amplify the quantity of prion protein

aggregates due to periodic sonication pulses. In this application, u represents the density of protein aggregates and x

their size; the division rate β is modulated by ultrasound waves. See Section 3.3 for more details.
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Figure 1: Eigenvectors Uα(x) for different values of α when β(x) ≡ 1, κ(x, y) = 1
y
1l0≤x≤y and τ(x) = x.

In this case there is an explicit expression Uα(x) = 2
√
α
(√

αx+ αx2

2

)

exp
(√

αx+ αx2

2

)

. We can see

that if α vanishes, Uα tends to a Dirac mass, whereas it dilutes when α→ +∞.

and consequently

inf
x>0

τ(x)

x
≤ Λa ≤ sup

x>0

τ(x)

x
.

This last relation highlights the link between the first eigenvalue Λa and the growth rate τ(x), or more

precisely τ(x)
x
. For instance, if τ(x)

x
is bounded, then Λa is also bounded, independently of a. Notice

that in the constant case β(x) ≡ β, there cannot exist a solution to the eigenvalue problem (3) for
τ(x)
x

bounded since we have Λa = βa which contradicts the boundedness of τ(x)
x
. In fact we check that,

for β constant, the existence condition (28) in Section 1.2 imposes that 1
τ
is integrable at x = 0 and

so τ(x)
x

cannot be bounded.

Similarly, concerning Equation (4), an integration against the weight x reads

λα = α

∫
τUαdx

∫
xUαdx

,

which could lead to the (false) idea that λα increases with α, which is in fact true in the limiting case
τ(x) = x. A simple integration gives more insight: this leads to

λα =

∫

β(x)Uα(x) dx, inf
x>0

β(x) ≤ λα ≤ sup
x>0

β(x).

This relation connects λα to the fragmentation rate β when the parameter α is in front of the transport
term. Moreover, we have seen that when the growth parameter α tends to zero, for instance, the
distribution Uα(x) is expected to concentrate into a Dirac mass in x = 0, so the identity λα =
∫
β(x)Uα(x) dx indicates that λα should tend to β(0). Similarly, when α tends to infinity, λα should

behave as β(+∞).
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These ideas on the link between τ(x)
x

and Λa on the one hand, β and λα on the other hand, are
expressed in a rigorous way below. The main assumption is that the coefficients τ(x) and β(x) have
power-like behaviors in the neighborhood of L = 0 or L = +∞, namely that

∃ ν, γ ∈ R such that τ(x) ∼
x→L

τxν , β(x) ∼
x→L

βxγ . (6)

Theorem 1. Under Assumption (6), Assumptions (2), (14)-(15) on κ, and Assumptions (24)-(29)
stated in [17] to ensure the existence and uniqueness of solutions to the eigenproblems (4) and (5), we
have, for L = 0 or L = +∞,

lim
α→L

λα = lim
x→L

β(x) and lim
a→L

Λa = lim
x→ 1

L

τ(x)

x
.

This is an immediate consequence of our main result, stated in Theorem 2 of Section 1.3. As expected
from the previous relations, for Problem (4) the eigenvalue behavior follows from a comparison between
β and 1 in the neighborhood of zero if polymerization vanishes (α → 0), and in the neighborhood of
infinity if polymerization explodes (α→ ∞). For Problem (5), it is given by a comparison between τ
and x (in the neighborhood of zero when a → ∞ or in the neighborhood of infinity when a → 0).

It can be noticed that these behaviors are somewhat symmetrical: it is easy to see that

Λ 1

α
=
λα
α
, V 1

α
= Uα. (7)

The first step of our proof is thus to use a properly-chosen rescaling, so that both problems (4) and (5)
can be reduced to a single one, stated in Equation (20). Theorem 2 studies the asymptotic behavior
of this new problem, which allows us to quantify precisely the rates of convergence of the eigenvectors
toward self-similar profiles.

A consequence of these results is the possible non-monotonicity of the first eigenvalue as a function
of α or a. In fact, if limx→0 β(x) = limx→∞ β(x) = 0, then the function α 7→ λα satisfies limα→0 λα =

limα→∞ λα = 0 and is positive on (0,+∞), because λα =
∫
βUα > 0 for α > 0. If limx→0

τ(x)
x

=

limx→∞
τ(x)
x

= 0, we have the same conclusion for a 7→ Λa (see Figure 2 for examples).

This article is organised as follows. In Section 1 we state and prove the main result given in
Theorem 2. We first detail the self-similar change of variables that leads to the reformulation of
Problems (4) and (5) in Problem (20), as stated in Lemma 1. We then recall the assumptions for the
existence and uniqueness result of [17]. Here we need these assumptions not only to have well-posed
problems, but also because the main tool to prove Theorem 2 is given by estimates that are based
on them. In Section 2, we give more precise results in the limiting cases, i.e. when limx→L β(x) or

limx→L
τ(x)
x

is finite and positive, and conversely more general results under assumptions weaker than
Assumption (6). Finally, in Section 3 we discuss how the results might be used and interpreted in
various fields of application.
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Figure 2: The dependences of the first eigenvalue on polymerization and fragmentation parameters
for coefficients which satisfy the assumptions of Theorem 1 are plotted. The coefficients are chosen to
obtain non monotonic functions. 2(a): τ(x) = 8x0.2

1+2x4.2
, β(x) = x3

15+x4.5
and κ(x, y) = 1

y
1l0≤x≤y.We have

limx→0 β(x) = limx→∞ β(x) = 0, so limα→0 λα = limα→∞ λα = 0. 2(b): τ(x) = 1.2x1.8

1+2x2.8
, β(x) = 4x2

10+x0.8

and κ(x, y) = 1
y
1l0≤x≤y. We have limx→0

τ(x)
x

= limx→∞
τ(x)
x

= 0, so lima→0Λa = lima→∞ Λa = 0.

1 Self-similarity Result

1.1 Self-similar transformation

The main theorem is a self-similar result, in the spirit of [20]. It considers the cases for Equation (4)
or (5), and whether the parameter α or a goes to zero or to infinity. It gathers the asymptotics of
the eigenvalue and possible self-similar behaviors of the eigenvector, when τ and β have power-like
behavior in the neighborhood of 0 or +∞. We first explain in detail how the study of both Equations
(4) and (5) comes down to the study of the asymptotic behavior of a unique problem, as stated in
Lemma 1.

When fragmentation vanishes or polymerization tends to infinity, one expects the eigenvectors Uα
and Va to disperse more and more. When fragmentation tends to infinity or polymerization vanishes
on the other hand, we expect them to accumulate towards zero. This leads to the idea of performing
an appropriate scaling of the eigenvector (Uα or Va), so that the rescaled problem converges toward a
steady profile instead of a Dirac mass or an increasingly spread-out distribution.

For given k and l, we define vα or wa by the dilation

vα(x) = αkUα(αkx), wa(x) = a
lVa(a

lx). (8)

The function vα satisfies the following equation

α1−k ∂

∂x

(

τ(αkx)vα(x)
)

+
(

λα + β(αkx)
)

vα(x) = 2

∞∫

x

β(αky)κ(αkx, αky)vα(y)dy, (9)
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and similarly the function wa satisfies

a
−l ∂

∂x

(

τ(alx)wa(x)
)

+
(

Λa + aβ(alx)
)

wa(x) = 2a

∞∫

x

β(aly)κ(alx, aly)wa(y)dy. (10)

A vanishing fragmentation or an increasing polymerization will lead the mass to spread more and
more, and thus lead us to consider the behavior of the coefficients τ, β around infinity. On the other
hand, a vanishing polymerization or an infinite fragmentation will lead the mass to concentrate near
zero, and we then consider the behavior of the coefficients around zero. This consideration drives our
main assumption (6) on the power-like behavior of the coefficients τ(x) and β(x) in the neighborhood
of L = 0 and L = +∞. We recall this assumption here

∃ νL, γL ∈ R such that τ(x) ∼
x→L

τxνL , β(x) ∼
x→L

βxγL .

In the class of coefficients satisfying Assumption (6), Assumption (28) of Section 1.2 is equivalent to

γ0 + 1− ν0 > 0, (11)

Assumption (29) coincides with
γ∞ + 1− ν∞ > 0, (12)

and in Assumption (27), the condition linking γ̄ to τ(x) becomes

γ̄ + 1− ν0 > 0. (13)

For the sake of simplicity, in what follows we omit the indices L.
To preserve the fact that κ is a probability measure, we define

κα(x, y) := αkκ(αkx, αky), κa(x, y) := a
lκ(alx, aly). (14)

For our equations to converge, we also make the following assumption concerning the fragmentation
kernels κα and κa :

For k > 0, ∃ κL s.t. ∀ϕ ∈ C∞
c (R+),

∫

ϕ(x)κα(x, y) dx −−−→
α→L

∫

ϕ(x)κL(x, y) dx a.e. (15)

This assumption is the convergence in a distribution sense of κα(., y) for almost every y. This is true
for instance for fragmentation kernels which can be written in homogeneous form as κ(x, y) = 1

y
κ̃
(
x
y

)
.

In this case κα is equal to κ for all α, so κL ≡ κ.
Under Assumption (6), in order to obtain steady profiles, we define

τα(x) := α−kντ(αkx), τa(x) := a
−lντ(alx), βα := α−kγβ(αkx), βa := a

−lγβ(alx). (16)

If k > 0, it provides local uniform convergences on R
∗
+ of τα and βα : τα −→

α→L
τxν and βα −→

α→L
βxγ .

Equations (9) and (10) divided respectively by αkγ and a
l(ν−1) can be written as

α1+k(ν−1−γ) ∂

∂x

(

ταvα(x)
)

+
(

α−kγλα + βα

)

vα(x) = 2

∞∫

x

βα(y)κα(x, y)vα(y)dy, (17)
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∂

∂x

(

τawa(x)
)

+
(

a
l(1−ν)Λa + a

1−l(ν−1−γ)βa

)

wa(x) = 2a1−l(ν−1−γ)

∞∫

x

βa(y)κa(x, y)wa(y)dy. (18)

In order to cancel the multipliers of τα and βa, it is natural to define

k =
1

1 + γ − ν
> 0, l = −k =

−1

1 + γ − ν
< 0, (19)

which leads to

∂

∂x
(τα(x)vα(x)) + (θα + βα(x))vα(x) = 2

∞∫

x

βα(y)κα(x, y)vα(y)dy, (20)

and

∂

∂x
(τa(x)wa(x)) + (Θa + βa(x))wa(x) = 2

∞∫

x

βa(y)κa(x, y)wa(y)dy, (21)

with

θα = α
−γ

1+γ−ν λα, Θa = a

ν−1

1+γ−ν Λa.

The signs of k and l express the fact that for α > 1 or a < 1, vα and wa are contractions of Uα,a, whereas
for α < 1 or a > 1 they are dilations. It is in accordance with our initial idea of the respective roles of
polymerization and fragmentation. Moreover, one notices that if we define a := 1

α
, then a

l = αk, and
so Equations (20) and (21) are identical. By the uniqueness of a solution to this eigenvalue problem,
this implies that θα = Θ 1

α
and vα = w 1

α
. We are ready to state this result in the following lemma.

Lemma 1. Eigenproblems (4) and (5) are equivalent to the eigenproblem (20) with k defined by (19),
βα, τα defined by (16), κα defined by (14), a = 1

α
and the following relations linking the different

problems:

vα(x) = αkUα(αkx) = αkV 1

α
(αkx), θα = α

−γ
1+γ−ν λα = α

1−ν
1+γ−ν Λ 1

α
. (22)

Defining (v∞, θ∞) as the unique solution of the following problem







∂

∂x
(τxνv∞(x)) + (βxγ + θ∞)v∞(x) = 2

∫ ∞

x

βyγκL(x, y)v∞(y)dy, x > 0,

τv∞(x = 0) = 0, v∞(x) > 0 for x > 0,
∫∞

0 v∞(x)dx = 1, θ∞ > 0,

(23)

we expect θα to converge towards θ∞ > 0 and vα towards v∞ when α tends to L, so the expressions
of λα, Λa given by (22) will immediately provide their asymptotic behavior. This result is expressed
in Theorem 2.

1.2 Recall of existence results ([17, 31])

The assumptions of the existence and uniqueness theorem for the eigenequation (3) (see [17] for a
complete motivation of these assumptions) also ensure the well-posedness of Problems (4) and (5).
For all y ≥ 0, κ(·, y) is a non-negative measure with a support included in [0, y]. We define κ on (R+)

2

as follows: κ(x, y) = 0 for x > y. We assume that for all continuous functions ψ, the application

8



fψ : y 7→
∫
ψ(x)κ(x, y)dx is Lebesgue measurable.

For physical reasons, we have stated Assumption (2), so that fψ ∈ L∞
loc(R+).Moreover we assume that

the second moment of κ is uniformly less than the first one

∫
x2

y2
κ(x, y)dx ≤ c < 1/2. (24)

For the polymerization and fragmentation rates τ and β, we introduce the set

P :=
{
f ≥ 0 : ∃µ ≥ 0, lim sup

x→∞
x−µf(x) <∞ and lim inf

x→∞
xµf(x) > 0

}
.

We consider
β ∈ L1

loc(R
∗
+) ∩ P, ∃ r0 ≥ 0 s.t. τ ∈ L∞

loc(R+, x
r0dx) ∩ P (25)

satisfying

∀K compact of (0,∞), ∃mK > 0 s.t. τ(x), β(x) ≥ mK for a.e. x ∈ K, (26)

∃C > 0, γ̄ ≥ 0 s.t.

∫ x

0
κ(z, y) dz ≤ min

(

1, C
(x

y

)γ̄)

and
xγ̄

τ(x)
∈ L1

0. (27)

Notice that if Assumption (27) is satisfied for γ̄ > 0, then Assumption (24) is automatically fulfilled
(see Appendix A in [17]). We assume that growth dominates fragmentation close to L = 0 in the
following sense:

β

τ
∈ L1

0 :=
{
f, ∃a > 0, f ∈ L1(0, a)

}
. (28)

We assume that fragmentation dominates growth close to L = +∞ in the following sense:

lim
x→+∞

xβ(x)

τ(x)
= +∞. (29)

Under these assumptions, we have the existence and uniqueness of a solution to the first eigenvalue
problem (see [17, 31]).

Theorem [17]. Under Assumptions (2), (24)-(29), for 0 < α, a < ∞, there exists a unique solution
(λ,U), respectively, to the eigenproblems (3), (4) and (5), and we have

λ > 0,

xrτU ∈ Lp(R+), ∀r ≥ −γ̄, ∀p ∈ [1,∞],

xrτU ∈W 1,1(R+), ∀r ≥ 0.

We also recall the following corollary (first proved in [31]). We shall use it at some step of our
blow-up analysis.

Corollary [17, 31]. Let τ > 0, β > 0, γ, ν ∈ R such that 1+γ−ν > 0, and κL satisfy Assumptions (2),
(24) and (27). Then there exists a unique (θ∞, v∞) solution to the eigenproblem (3) with τ(x) = τxν

and β(x) = βxγ .

In this particular case, assumptions of the above existence theorem are immediate, and as already
said both assumptions (28) and (29) are satisfied if and only if 1 + γ − ν > 0.

9



1.3 Main result

Based on the previous sections, we can now state our main result.

Theorem 2. Let τ, β and κ satisfy Assumptions (2), (24)-(29). Let L = 0 or L = +∞, and τ and β
satisfy also Assumption (6). Let κα defined by (14) with k defined by (19) satisfy Assumption (15). Let
(vα, θα) be the unique solution to the eigenproblem (21). We have the following asymptotic behaviors

xrvα(x) −−−→
α→L

xrv∞(x) strongly in L1 for all r ≥ 0, and θα −−−→
α→L

θ∞.

Theorem 1 stated in the introduction immediately follows from Theorem 2 and the expression of λα
and Λa given by (22).

Proof. It is straightforward to prove that κα satisfies Assumptions (2), (24) and (27) with the same
constants c and C as κ, thus independent of α. We have local uniform convergences in R

∗
+ τα −→

α→L
τxν

and βα −→
α→L

βxγ , if Assumption (6) holds, for L = 0 as well as L = ∞.

The proof is based on uniform estimates on vα and θα independent of α, in the same spirit as in the
proof of the existence theorem (see [17]). Once they are sufficient to bring compactness in L1(R+),
we shall extract a converging subsequence, which will be a weak solution of Equation (23) ; the global
convergence result will then be a consequence of the uniqueness of a solution to Equation (23).
The first step is to ensure that βα, τα and κα satisfy Assumptions (25), (27)-(29) uniformly for all

α. In fact, they were defined for this very purpose. The reader may refer to Lemmas 4, 5 and 6 in the
appendix for precise statements of these uniform properties (we do not include them here since they
do not present any major difficulty).
The delicate point here is to obtain fine estimates. This relies on successive and increasingly elaborate

steps, which make great use of the link between τ and β given by Assumptions (27), (28) and (29) to
go back and forth from the transport term to the fragmentation terms.

The first estimate: L1bound for xrvα, r ≥ 0. For r ≥ 2, we have by definition and due to Assump-
tion (24)

∫ y

0

xr

yr
κα(x, y) dx ≤

∫ y

0

x2

y2
κα(x, y) dx

=

∫ αky

0

x2

(αky)2
κ(x, αky) dx ≤ c.

So, multiplying the equation (20) on vα by xr and then integrating on [0,∞), we find
∫

(1− 2c)xrβα(x)vα(x) dx ≤ r

∫

xr−1τα(x)vα(x) dx

= r

∫

x≤A

xr−1τα(x)vα(x) dx+ r

∫

x≥A

xr−1τα(x)vα(x) dx. (30)

In (30), we choose A = A r
ω
as defined in Lemma 4 (see the appendix) with ω < 1− 2c, so that for all

x ≥ A and independently of α, we have rxr−1τα(x)vα(x) ≤ ωxrβα(x)vα(x). We obtain

∫

xrβα(x)vα(x) dx ≤
r sup(0,A r

ω
){xr−1τα}

1− 2c− ω
,

10



and the right hand side is uniformly bounded for r − 1 ≥ max(r0,−ν) when α→ L, due to Lemma 5
in the appendix. Finally

∀r ≥ max(2, 1 + r0, 1− ν), ∃Cr,
∫

xrβα(x)vα(x) dx ≤ Cr. (31)

Moreover for all α we have
∫
vαdx = 1. So, once again using Lemma 5 with β−1(x) = O(x−γ) instead

of τ−1(x) = O(x−ν), we conclude that uniformly in α→ L

xrvα ∈ L1(R+), ∀r ≥ 0. (32)

The second estimate: θα upper bound. The next step is to prove the same estimate as (31) for 0 ≤
r < max(2, 1+r0, 1−ν) and for this we first establish a bound on ταvα. Let m = max (2, 1 + r0, 1 − ν),
then, using ε and ρ < 1

2 defined in Lemma 6 of the appendix and integrating (20) between 0 and x ≤ ε,
we find (noticing that the quantity τα(x)vα(x) is well-defined because Theorem [17] ensures that ταvα
is continuous)

τα(x)vα(x) ≤ 2

∫ x

0

∫

βα(y)vα(y)κα(z, y) dy dz

≤ 2

∫

βα(y)vα(y) dy

= 2

∫ ε

0
βα(y)vα(y) dy + 2

∫ ∞

ε

βα(y)vα(y) dy

≤ 2 sup
(0,ε)

{ταvα}
∫ ε

0

βα(y)

τα(y)
dy + 2ε−m

∫ ∞

0
ymβα(y)vα(y) dy

≤ 2ρ sup
(0,ε)

{ταvα}+ 2ε−mCm.

Consequently, we obtain

sup
x∈(0,ε)

τα(x)vα(x) ≤
1 + 2Cmε

−m

1− 2ρ
:= C. (33)

Then we can write for any 0 ≤ r < m

∫

xrβα(x)vα(x) dx =

∫ ε

0
xrβα(x)vα(x) dx+

∫ ∞

ε

xrβα(x)vα(x) dx

≤ εr sup
(0,ε)

{ταvα}
∫ ε

0

βα(x)

τα(x)
dx+ εr−m

∫ ∞

ε

xmβα(x)vα(x) dx

≤ Cρεr + Cmε
r−m := Cr.

Finally we have

∀r ≥ 0, ∃Cr,
∫

xrβα(x)vα(x) dx ≤ Cr (34)

and so

θα =

∫

βαvα ≤ C0. (35)

11



The third estimate: L∞bound for x−γ̄ταvα. First, integrating equation (20) between 0 and x we find

τα(x)vα(x) ≤ 2

∫

βα(y)vα(y) dy = 2θα ≤ 2C0, ∀x > 0. (36)

It remains to prove that x−γ̄ταvα is bounded in a neighborhood of zero.
Let us define fα : x 7→ sup(0,x) ταvα. If we integrate (3) between 0 and x′ < x, we find

τα(x
′)vα(x

′) ≤ 2

∫ x′

0

∫

βα(y)vα(y)κα(z, y) dy dz ≤ 2

∫ x

0

∫

βα(y)vα(y)κα(z, y) dy dz

and so for all x

fα(x) ≤ 2

∫ x

0

∫

βα(y)vα(y)κα(z, y) dy dz.

Considering ε and ρ from Lemma 6 in the appendix and using (27), for all x < ε we have

fα(x) ≤ 2

∫ x

0

∫

βα(y)vα(y)κα(z, y) dy dz

= 2

∫

βα(y)vα(y)

∫ x

0
κα(z, y) dz dy

≤ 2

∫ ∞

0
βα(y)vα(y)min

(

1, C
(x

y

)γ̄)

dy

= 2

∫ x

0
βα(y)vα(y) dy + 2C

∫ ε

x

βα(y)vα(y)
(x

y

)γ̄

dy + 2C

∫ ∞

ε

βα(y)vα(y)
(x

y

)γ̄

dy

= 2

∫ x

0

βα(y)

τα(y)
τα(y)vα(y) dy + 2Cxγ̄

∫ ε

x

βα(y)

τα(y)

τα(y)vα(y)

yγ̄
dy + 2C

∫ ∞

ε

βα(y)vα(y)
(x

y

)γ̄

dy

≤ 2fα(x)

∫ ε

0

βα(y)

τα(y)
dy + 2Cxγ̄

∫ ε

x

βα(y)

τα(y)

fα(y)

yγ̄
dy + 2Cε−γ̄‖βαvα‖L1xγ̄ .

If we set Vα(x) = x−γ̄fα(x), when α→ L we obtain

(1− 2ρ)Vα(x) ≤ Kε + 2C

∫ ε

x

βα(y)

τα(y)
Vα(y) dy

and, from Grönwall’s lemma, we find that Vα(x) ≤
Kεe

2Cρ
1−2ρ

1− 2ρ
. Finally we get

sup
(0,ε)

{x−γ̄τα(x)vα(x)} ≤ Kεe
2Cρ
1−2ρ

1− 2ρ
. (37)

The bound (36) with Assumption (26) and the bound (37) with Lemma 6 (in which we replace βα(x)
by xγ̄) ensure that the family {vα} is uniformly integrable. Along with the first estimate, this result
ensures that {vα} belongs to a compact set in L1-weak due to the Dunford-Pettis theorem. The
sequence {θα} also belongs to a compact interval of R+, so there is a subsequence of {(vα, θα)} which
converges in L1-weak × R. The limit is a solution to (23), but such a solution is unique, so the sequence
converges. To have convergence in L1-strong, we need one more estimate.
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The fourth estimate: W 1,1bound for xrταvα, r ≥ 0. First, the estimates (32) and (37) ensure that
xrταvα is uniformly bounded in L1 for any r > −1. Then, Equation (20) ensures that

∫
∣
∣
∂

∂x
(xrτα(x)vα(x))

∣
∣ dx ≤ r

∫

xr−1τα(x)vα(x) dx+ θα + 3

∫

βα(x)vα(x) (38)

is also uniformly bounded. For r = 0, the same computation works and finally xrταvα is bounded in
W 1,1(R+) for any r ≥ 0.

Due to the Rellich-Kondrachov theorem, the consequence is that {xrταvα} is compact in L1-strong
and so converges strongly to τxr+νv∞(x). Then, using Lemma 5 and estimate (37), we can write

∫

xr|vα(x)− v∞(x)| dx ≤
∫ ε

0
xr|vα(x)− v∞(x)| dx +

∫ ∞

ε

xr|vα(x)− v∞(x)| dx

≤ C

∫ ε

0

xr+γ̄

τα(x)
dx+ C

∫ ∞

ε

xr+m|τα(x)vα(x)− τxνv∞(x)| dx.

The first term is small for ε small and the second term is small for α close to L due to the strong L1

convergence of {xrτα(x)vα(x)}. This proves the strong convergence of {xrvα(x)} and ends the proof
of Theorem 2.

2 Further Results

In this section we examine two ways of going beyond our main result of Theorem 2: either by more
refined assumptions than Assumption (6), and this leads to Corollary 1, or by direct estimates that
do not use self-similarity, and this leads to Theorem 3. A third possible direction is to closely examine
Assumption (6) in order to generalize Theorem 2; this is done in the Appendix by Proposition 1 (we
included it to the appendix since it only slightly improves our result).

2.1 Critical case

When limx→0 β(x) or limx→0
τ(x)
x

is a positive constant, we can enhance the result of Theorem 1 if
we know the higher order term in the series expansion. Assumptions (39) and (41) of Corollary 1
are stronger than Assumption (6), but provide a more precise result on the asymptotic behavior of
λα, Λa.

Corollary 1. If β admits an expansion of the form

β(x) = β0 + β1x
γ1 + o

x→0
(xγ1), γ1 > 0 (39)

with β0 > 0 and β1 6= 0, then for λ the following expansion holds

λα = β0 +

(

β1

∫

xγ1v∞(x) dx

)

αkγ1 + o
α→0

(αkγ1). (40)
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In the same way, if τ admits an expansion of the form

τ(x) = τ0x+ τ1x
ν1 + o

x→0
(xν1), ν1 > 1 (41)

with τ0 > 0 and τ1 6= 0, then

Λa = τ0 +

(

τ1

∫
xν1v∞(x) dx
∫
xv∞(x) dx

)

a
l(ν1−1) + o

a→∞
(al(ν1−1)). (42)

Proof. First we assume that β admits an expansion of the form (39) and we want to prove (40). By
integrating Equation (20) we know that λα

∫
vαdx =

∫
βα(x)vα(x) dx and so multiplying by α−kγ1 we

obtain

α−kγ1(λα − β0) =

∫

α−kγ1(βα(x)− β0)vα(x) dx.

Now the proof is complete if we prove the convergence
∫

α−kγ1(βα(x)− β0)vα(x) dx −−−→
α→0

∫

β1x
γ1v∞(x) dx. (43)

For this we use Expansion (39) which provides, for all x ≥ 0,

βα(x) =
α→0

β0 + β1x
γ1αkγ1 + o(αkγ1). (44)

Let m ≥ γ1 such that lim sup
x→∞

x−mβ(x) <∞ (see Assumption (25)) and define

fα : x 7→ α−kγ1(βα(x)− β0)

xγ1 + xm
.

Due to (44) we know that fα(x) −→
α→0

β1x
γ1

xγ1 + xm
for all x. Moreover, due to Theorem 2 we have

(xγ1 + xm)vα(x) −−−→
α→0

(xγ1 + xm)v∞(x) in L1. So we simply need to prove that fα is uniformly

bounded to get (43) (see Section 5.2 in [24]). Due to (39) and to the fact that lim sup
x→∞

x−mβ(x) < ∞
with m ≥ γ1 > 0, we know that there exists a constant C such that

|β(y)− β0| ≤ C(yγ1 + ym), ∀y ≥ 0,

and so, because α→ 0,
α−kγ1 |β(y)− β0| ≤ C(α−kγ1yγ1 + α−kmym)

which implies, for x = αky,
α−kγ1 |β(αkx)− β0| ≤ C(xγ1 + xm)

and this proves fα(x) ≤ C.

The same method allows us to prove the result on Λa, starting from the identity

(Λa − τ0)

∫

xwa(x) dx =

∫

(τa(x)− τ0x)wa(x) dx

and using the fact that (41) provides the expansion

τa(x) =
a→∞

τ0x+ τ1x
ν1
a
l(ν1−1) + o(al(ν1−1)).
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2.2 Generalized case

In this section, we discard Assumption (6) and give some results regarding the asymptotic behavior
of the first eigenvalues for general coefficients. The techniques used are completely different to the
self-similar ones, but the results still provide comparisons between λα and β(x), and between Λa and
τ(x)
x
.

Theorem 3. 1. Polymerization dependence.

If β ∈ L∞
loc(R

∗
+) and lim sup

x→∞

τ(x)

x
<∞, then lim supα→0 λα ≤ lim supx→0 β(x). (45)

If
1

τ
∈ L1

0 :=
{
f, ∃a > 0, f ∈ L1(0, a)

}
, then lim infα→∞ λα ≥ lim infx→∞ β(x). (46)

2. Fragmentation dependence.

If β ∈ L∞
loc(R+), then there exists r > 0 such that lim sup

a→0
Λa ≤ r lim sup

x→∞

τ(x)

x
. (47)

If lim inf
x→∞

β(x) > 0, and if
1

τ
∈ L1

0, then lim
a→∞

Λa = +∞. (48)

We first state a lemma which links the moments of the eigenvector, the eigenvalue and the polymer-
ization rate.

Lemma 2. Let (U , λ) solution to the eigenproblem (3). For any r ≥ 0 we have
∫

xrU(x) dx ≤ r

λ

∫

xr−1τ(x)U(x) dx. (49)

Proof. Integrating Equation (3) against xr we find

−
∫

rxr−1τ(x)U(x) dx + λ

∫

xrU(x) dx+

∫

xrβ(x)U(x) dx

= 2

∫

xr
∫ x

0
β(y)κ(x, y)U(y) dydx = 2

∫

β(y)U(y)
∫ y

0
xrκ(x, y) dxdy

≤ 2

∫

β(y)U(y)yr−1

∫ y

0
xκ(x, y) dxdy =

∫

yrβ(y)U(y) dy.

Proof of Theorem 3.1.(45). We only have to consider the case lim supx→0 β(x) < ∞. In this case,
β ∈ L∞

loc(R+) since it is assumed that β ∈ L∞
loc(R

∗
+). So for ε > 0, we can define βε := sup(0,ε) β(x) <∞

and, due to Assumption (25), there exist positive constants Cε and r such that β(x) ≤ Cxr for almost
every x ≥ ε. As a consequence, by integration of Equation (4) we get

λα =

∫

β(x)Uα(x) dx ≤ βε + C

∫

xrUα(x) dx.

We can consider that r ≥ r0 + 1, with r0 defined in Assumption (25), and thus Lemma 2 and

Assumption lim supx→∞
τ(x)
x

<∞ lead to

∫

xrUα(x) dx ≤ αr

λα

∫

xr−1τ(x)Uα(x) dx ≤ α

λα
C

(

1 +

∫

xrUα(x) dx
)
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for a new constant C. Combining these two inequalities we obtain

λα ≤ αC

(

1 +
1

∫
xrUα(x) dx

)

≤ αC

(

1 +
1

λα − βε

)

.

Then, either λα ≤ βε, or by multiplication by λα − βε > 0 we obtain

λ2α − (βε + αC)λα − (1− βε)αC ≤ 0,

and so

λα ≤ 1

2

(

βε + αC +

√

βε
2
+ 4αC + α2C2

)

.

Finally we have
lim sup
α→0

λα ≤ βε

and this is true for any ε > 0, so
lim sup
α→0

λα ≤ lim sup
x→0

β(x).

Proof of Theorem 3.1.(46). Let A > 0 and define βA := inf(A,∞) β. Since
1
τ
∈ L1

0 and due to Assump-

tion (26) we can define IA :=
∫ A

0
dx
τ(x) <∞. Then, by integration of Equation (4) we get

λα =

∫

β(y)Uα(y) dy ≥ βA

∫ ∞

A

Uα(y) dy = βA

(

1−
∫ A

0
Uα(y) dy

)

.

We know, by integration of Equation (4) between 0 and x, that for all x > 0, ατ(x)Uα(x) ≤ 2λα.
Thus we obtain

λα ≥ βA

(

1−
∫ A

0
2λα

dy

ατ(y)

)

= βA

(

1− 2

α
IAλα

)

,

and letting first α→ ∞ and then A→ ∞, as for the case (45) above, we obtain (46).

Proof of Theorem 3.2.(47). The fact that β ∈ L∞
loc(R+) from Assumption (25) ensures the existence

of two positive constants C and r such that for almost every x ≥ 0, β(x) ≤ C(1+xr). So, integrating
Equation (5), we have

Λa = a

∫

β(x)Va(x) dx ≤ aC

(

1 +

∫ ∞

0
xrVa(x) dx

)

.

To prove (47), we only have to consider the case lim supx→∞
τ(x)
x

< ∞. So, for any A > 0, we can

define τA := supx>A
τ(x)
x

< ∞. Due to Lemma 2 and considering r ≥ r0 + 1 where r0 is defined in
Assumption (25), we get

∫

xrVa(x) dx ≤ r

Λa

∫

xr−1τ(x)Va(x) dx ≤ r

Λa

(

C + τA

∫

xrVa(x) dx

)

.

Combining both inequalities we obtain

Λa ≤ r

(

τA +
C

∫
xrVa(x) dx

)

≤ r

(

τA +
aC2

Λa − aC

)

.
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Then, either Λa ≤ aC, or multiplication by Λa − aC > 0 leads to

Λ2
a
− (rτA + aC)Λa − r(C − τA)aC ≤ 0,

and so

Λa ≤
1

2

(

rτA + aC +
√

(rτA)2 + 4raC2 + a
2C2

)

.

In both cases, letting first a → 0 and then A→ ∞, we obtain (47).

Proof of Theorem 3.(48). Let ε > 0. Since lim infx→∞ β(x) > 0, due to Assumption (26) we have that
βε := inf(ε,∞) β > 0. Since 1

τ
∈ L1

0, due to Assumption (26) we get that Iε :=
∫ ε

0
dx
τ(x) < ∞ and also

limε→0 Iε = 0. By integration of equation (5), we find

Λa = a

∫

β(y)Va(y) dy ≥ aβε

∫ ∞

ε

Va(y) dy = aβε

(

1−
∫ ε

0
Va(y) dy

)

.

We know, as previously, by integration between 0 and x, that for all x > 0, τ(x)Va(x) ≤ 2Λa. Thus
we obtain

Λa ≥ aβε

(

1−
∫ ε

0
2Λa

dy

τ(y)

)

,

and we get (48) as we previously obtained (46).

3 Applications

As stated in the introduction, Problem (1) is used to model different kinds of structured populations,
so the way its asymptotic profile depends on the parameters can be of major importance in various
fields. In this section, we investigate several possible consequences of our results. In Section 3.1, we
first present the numerical scheme we used to illustrate these applications. Sections 3.2 and 3.3 focus
on the Prion equation, and Section 3.4 introduces a possible use for therapeutic optimization when
Problem (1) models the cell division cycle.
Before looking at applications, we recall a regularity result whose proof can be found in [32].

Lemma 3. Under the assumptions of Section 1.2, the functions α 7→ λα and a 7→ Λa are well defined
and differentiable on (0,∞).

3.1 Numerical scheme based on Theorem 2

First, we present the method we use to compute numerically the principal eigenvector λ without
considering any dependence on parameters. Then we explain how the self-similar change of variable (8)
and the convergence result of Theorem 2 can be used to compute the dependences α 7→ λα and a 7→ Λa,
when parameters α and a are very large or very small.

The method used to compute λ, the solution to Equation (3), is first to compute a numerical
approximation of the first eigenvector U , and then use the identity

λ =

∫ ∞

0
β(x)U(x) dx.
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General Relative Entropy (GRE) introduced by [33, 34, 35] provides the long time asymptotic behavior
of any solution to the fragmentation-drift equation (1). For large times, these solutions behave like
U(x)eλt where U and λ are the eigenelements defined at (3). More precisely we have

∫ ∞

0
|u(x, t)e−λt − 〈u(·, t = 0), φ〉U(x)|φ(x) dx −−−→

t→∞
0,

where φ is the dual eigenvector of Equation (3) (see [17, 34] for more details) and 〈u, φ〉 =
∫∞

0 u(x)φ(x) dx.
In [7, 26], it is even proved that this convergence occurs exponentially fast under some assumptions on
the coefficients. We use this convergence to compute numerically the eigenvector U . We consider, for
u0 ∈ L1(R+), an initial function satisfying

∫∞

0 u0(x) dx = 1, the solution u(x, t) to the fragmentation-
drift equation (1). Since we do not yet know the value of λ, we define the normalized function

ũ(x, t) :=
u(x, t)

∫∞

0 u(x, t) dx
.

We can easily check that ũ satisfies the equation

∂tũ(x, t) + ∂x (τ(x)ũ(x, t)) +

(∫ ∞

0
β(y)ũ(y, t) dy

)

ũ(x, t) + β(x)ũ(x, t) = 2

∫ ∞

x

β(y)κ(x, y)ũ(y, t) dy,

(50)
with the boundary condition τ(0)ũ(0, t) = 0, and that the convergence occurs

∫ ∞

0
|ũ(x, t) − U(x)|φ(x) dx −−−→

t→∞
0. (51)

The scheme used to compute U is based on the resolution of Equation (50) for large times and the use
of (51) for the stop condition.
Numerically, Equation (50) is solved on a truncated domain [0, R] so the integration bounds have

to be changed and we obtain, for x ∈ [0, R],

∂tũ(x, t) + ∂x (τ(x)ũ(x, t)) +

(∫ R

0
β(y)ũ(y, t) dy

)

ũ(x, t) + β(x)ũ(x, t) = 2

∫ R

x

β(y)κ(x, y)ũ(y, t) dy.

(52)
What we lose when we solve this truncated equation are the integral terms

∫∞

R
β(x)ũ(x, t) dx and

∫∞

R
β(y)κ(x, y)ũ(y, t) dy, and the outgoing flux τ(R)ũ(R, t) at the boundary x = R. To be as close as

possible to the non-truncated solution, we need to choose a sufficiently large R so that these quantities
are small enough. It is proved in [17] that β(x)U(x) and τ(x)U(x) are fast decreasing when x→ +∞.
When ũ is close to the equilibrium U , the value of R has to be adapted so that τ(x)ũ(x, t) and
β(x)ũ(x, t) be smaller than a fixed parameter ǫ for x close to R. Parameter ǫ is expected to be very
small, and it is also used for the stop condition (54).
We assume that [0, R] is divided into N uniform cells and we denote xi = i∆x for 0 ≤ i ≤ N with

∆x = R
N
. The time is discretized with the time step ∆t and we denote tn = n∆t for n ∈ N. We adopt

the finite difference point of view, namely we compute an approximation ũni of ũ(xi, t
n). It remains to

explain how we go from the time tn to the time tn+1. To enforce that
∑N

i=1 ũ
n
i = 1 at each time step,

we split the evolution into two steps. First we compute, from (ũni )1≤i≤N , a vector (un+1
i )1≤i≤N which

is obtained with the formula

un+1
i − ũni

∆t
= −τiũ

n+1
i − τi−1ũ

n
i−1

∆x
− βiu

n+1
i + 2∆x

N∑

j=1

βjκi,j ũ
n
j , (53)
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where βi = β(xi), τi = τ(xi) and κi,j = κ(xi, xj). This is a semi-implicit Euler discretization of
the growth-fragmentation equation (1). We choose this scheme to ensure stability without any CFL
condition, since the scheme is positive. Then we set

ũn+1
i :=

un+1
i

∆x
∑N

j=1 u
n+1
j

and the discrete integral of (ũn+1
i )1≤i≤N satisfies ∆x

∑N
i=1 ũ

n+1
i = ∆x

∑N
i=1 ũ

n
i = 1. Using the L1

convergence (51), we end the algorithm when

∆x

∆t

N∑

i=1

|ũni − ũn−1
i | < ǫ (54)

where ǫ≪ ∆x. Then

λ ≃ ∆x

N∑

i=1

βiũ
n
i .

The semi-implicit scheme (53) is efficient to avoid oscillations on the numerical solution, but it is not
conservative. This scheme has to be avoided if we want to solve Equation (1) for any time. Here we
are only interested in the steady state of Equation (50), so non-conservation does not matter, because
the steady state is the same for an implicit or an explicit scheme.

Now we want to compute λα and Λa for a large range of α and a. According to the discussion in
the introduction, the eigenvectors Uα and Va are concentrated at the origin for α small or a large
and, conversely, spread out for α large or a small. Then, to avoid an adaptation of the truncation
parameter R or an adaptation of the discretization size step ∆x when α and a vary, we compute θα
defined in Equation (20). To this end, we need to compute the dilated eigenvector vα defined in (8)
which converges to a fixed profile v∞ when α→ L, as stated in Theorem 2. This convergence ensures
that the vector vα does neither disperses nor concentrates too much when α varies, and so we can
find a truncation and a size step which work for any α → L. It remains to distinguish L = 0 from
L = +∞ by dividing (0,+∞) into two sets: for instance (0, 1] and (1,+∞). For 0 < α < 1, we use
the dilation coefficient k associated to ν and γ such that τ(x) ∼

x→0
xν and β(x) ∼

x→0
xγ . For α > 1

we do the dilation associated to ν and γ such that τ(x) ∼
x→∞

xν and β(x) ∼
x→∞

xγ . Finally, we use

Equation (22) in Lemma 1 to recover λα or Λa from the numerical value of θα (see Figure 2 for a
numerical illustration).

All the figures in the paper were obtained using this numerical scheme.

3.2 Steady States of the Prion Equation

To model polymerization processes, Equation (1) can be coupled to an ODE which incorporates the
evolution of the quantity of monomers. The so-called “prion equation” (see [25, 27, 38]) is







dV (t)

dt
= ξ − V (t)

[

δ +

∫ ∞

0
τ(x)u(x, t) dx

]

,

∂

∂t
u(x, t) = −V (t)

∂

∂x

(
τ(x)u(x, t)

)
− [β(x) + µ(x)]u(x, t) + 2

∫ ∞

x

β(y)κ(x, y)u(y, t) dy,

u(0, t) = 0,

(55)
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where the quantity of monomers is denoted by V (t). In this model, the monomers are prion proteins,
produced and degraded by the cells with rates ξ and δ, and attached to polymers of size x with
respect to the rate τ(x). The polymers are fibrils of misfolded pathogenic proteins, which have the
ability to transconform normal proteins (monomers) into abnormal ones by a polymerization process,
which is not yet very well understood. The size distribution of polymers u(x, t) is the solution to the
growth-fragmentation equation (1) in which V (t) is added as a multiplier for the polymerization rate.
A degradation rate µ(x) is also considered for the polymers. For the sake of simplicity, this rate is
assumed to be size-independent in the following study (µ(x) ≡ µ0).

Equation (55) models the proliferation of prion disease. An individual is said to be infected by prion
disease when polymers of misfolded proteins are present, namely when u(·, t) 6≡ 0 at the time t.

The coupling between V (t) and u(t, x) appears in the equation for u as a modulation of the poly-
merization rate. One can immediately see the link with the eigenproblem (4) satisfied by Uα : Uα
is the principal eigenvector linked to the linearization of the prion equation around a fixed monomer
quantity V = α. Investigating the dependence of the fitness λV with respect to the polymerization
and fragmentation coefficients is a first step towards a better understanding of the propagation of the
disease. It has been reported that the course of prion infection in the brain follows heterogeneous pat-
terns. It has been postulated that the neuropathology of prion infection could be related to different
kinetics in different compartments of the brain [13].

Modeling the propagation of prion in the brain requires a good understanding of possible dynamics
(e.g. monostable, bistable etc). Such a study can be done through the dependence of the first
eigenvalue on parameters [22]. In [10, 25], it is shown that, under some conditions, the coexistence of
two steady states can occur (one endemic and one disease-free).

A steady state (V∞, u∞(x)) is a solution to







0 = ξ − V∞

[

δ +

∫ ∞

0
τ(x)u∞(x) dx

]

,

µ0u∞(x) = −V∞
∂

∂x

(
τ(x)u∞(x)

)
− β(x)u∞(x) + 2

∫ ∞

x

β(y)κ(x, y)u∞(y) dy,

u∞(0) = 0.

(56)

The disease-free steady state corresponds to the solution without any polymer
(

V = ξ
δ
, u ≡ 0

)

. Other

steady states can exist and are called endemic or disease steady states. They are solutions to Sys-
tem (56) with V∞ > 0 and u∞ 6≡ 0 nonnegative. To know if such disease steady states exist, we recall
briefly here the method of [9, 10]. A positive steady state u∞ can be seen as an eigenvector solution
of (4) with α = V∞ such that

λα = λV∞ = µ0. (57)

This shows the crucial importance of a study of the map V 7→ λV . Any value V∞ solution to (57)
provides a size distribution of polymers

u∞(x) = ̺∞UV∞(x).

The quantity of polymers ̺∞ is then prescribed by the equation for monomers and has to satisfy the
relation

̺∞ =
ξV −1

∞ − δ

V∞
∫
τ(x)UV∞(x) dx

.
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The quantity of polymers has to be positive, which is equivalent to the condition

V∞ <
ξ

δ
= V .

Finally, the disease steady states correspond exactly to the zeros of the map V 7→ λV − µ0 in the
interval (0, V ). Due to the different results of Sections 1 and 2, we know that this map is not necessarily
monotonic, as is assumed in [10]. Thus, by continuity of the dependence of λ on V (see Lemma 3),
there can exist several disease steady states for a well-chosen µ0 and a large enough V = ξ

δ
. This point

is illustrated in the example below, where there exist two disease steady states.
We can investigate the stability of the disease-free steady state through the results obtained in [9, 10].

For this, we introduce the dual eigenvector ϕ of the growth-fragmentation operator with the transport
term V







−V τ(x) ∂
∂x

(ϕ(x)) + (β(x) + λ)ϕ(x) = 2β(x)

∫ x

0
κ(y, x)ϕ(y)dy, x > 0,

ϕ(x) ≥ 0,
∫∞

0 ϕ(x)UV (x)dx = 1.

(58)

We assume that we have a case when there exist two constants K1 and K2 such that
∣
∣
∣
∣
τ(x)

∂

∂x
ϕ(x)

∣
∣
∣
∣
≤ K1ϕ(x), and τ(x) ≤ K2ϕ(x). (59)

This assumption generally holds true when τ(x)
x

is bounded because ϕ grows linearly at infinity accord-
ing to general properties proved in [17, 31, 35, 36]. Then we can reformulate the theorems of [9, 10].

Theorem [10] (Local stability). Suppose that assumption (59) holds true and that λV < µ0. Then
the steady state (V , 0) is locally non-linearly stable.

Theorem [9] (Persistence). Suppose that assumption (59) holds, V (0) ≤ V ,
∫∞

0 (1 + x)u(t, x) dx is
uniformly bounded, and that λV > µ0. Then the system remains away from the steady state (V , 0).
More precisely we have:

lim inf
t→∞

∫ ∞

0
ϕ(x)u(x, t) dx > 0.

Example. Let us consider the same coefficients as in Figure 2(a). We can choose a small enough µ0
to ensure the existence of two values V1 < V2 such that λV1 = λV2 = µ0. As a consequence, we know
due to the previous study that there exists no disease steady state if V < V1, one if V1 < V < V2,
and two if V > V2. Concerning the stability of the disease-free steady state, we first notice that the
fragmentation rate β(x) satisfies the assumption β(x) ≤ A + Bx, which is sufficient to ensure that
∫∞

0 (1 + x)u(t, x) dx is uniformly bounded (see [9] Theorem 2.1). Thus we can apply the previous
theorems so that (V , 0) is stable if V < V1, unstable if V1 < V < V2, and recovers its (local) stability if
V > V2. In Figure 3, the graph of the negative fitness V 7→ µ0−λV is plotted (because the quantity of
polymers influences the evolution of V (t) with a negative contribution) and the zones of stability and
unstability for V are pointed out. The non intuitive conclusion is that an increase in the production
rate ξ or a decrease in the death rate δ can stabilize the disease-free steady state. In this situation,
what happens is that the largest polymers are the most stable since limx→∞ β(x) = 0 (this situation is
biologically relevant, see for instance [39]). When the number of polymers is large, the polymerization
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is strong and it results in long stable polymers. Because they do not break easily, their number does
not increase very fast, i.e. the fitness of the polymerization-fragmentation equation is small. But the
degradation term is assumed to be size-independent, and then the fitness λV becomes smaller than
µ0 for a sufficiently large V . This phenomenon stabilizes the disease-free steady state because, when
polymers are injected in a cell, they tend to disappear immediately, since λV < µ0.
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−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Stable

Unstable

Stable

µ0 − λV

V1 V2

V

Figure 3: The negative fitness V 7→ µ0−λV is plotted for the same coefficients as in Figure 2(a). The
zeros V1 and V2 correspond to disease steady states and separate the areas of stability or unstability
of the disease-free steady state.

As regards the stability of the disease steady states, the study is much more complicated. Nev-
ertheless, we can imagine that V1 is stable and V2 unstable. This postulate is based on Figure 3,
on stability results for similar problems [22] and on the results obtained in [18, 38] in a case where
System (55) can be reduced to a system of ODEs. For the coefficients considered in [18, 38], V 7→ λV
is an increasing squareroot function so there is only one value V∞ such that λV∞ = µ0. Moreover, the
dynamics of the solutions is entirely determined: either V ≤ V∞ and the disease-free steady state is
the only steady state and is globally asymptotically stable, or V > V∞ and the endemic steady state
is globally asymptotically stable. This very strong result means that, if V ≤ V∞, the individual is
resistent to the disease because the misfolded prion proteins ultimately disappear even if a very large
quantity is injected. On the other hand, if V > V∞, the individual is very sensitive to the prion disease
because the system converges to the endemic steady state as soon as a minute quantity of misfolded
proteins is injected. This alternative is no longer true in the case of Figure 3 with V > V2 : in this case,
the disease-free steady state is locally stable but coexists with two endemic steady states (with the
one corresponding to V1 which is probably locally stable). So the individual can resist to an injection
of abnormal prion proteins if the quantity is small enough (local stability of V ), but the injection of
a large number of polymers can make the system switch to the endemic equilibrium associated to V1.
Such a bistability situation has already been exhibited for other models of prion proliferation (see [28])
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but never for the polymerization model (55).

3.3 Optimization of the PMCA protocol

Prion diseases, briefly described in Section 3.2 (see [29] for more details), are fatal, infectious and
neurodegenerative diseases with a long incubation period. They include bovine spongiform en-
cephalopathies in cattle, scrapie in sheep and Creutzfeldt-Jakob disease in humans. It is therefore
of importance to be able to diagnose infected individuals to avoid the spread of the disease in a pop-
ulation. But the dynamics of proliferation is slow and the amount of prion proteins is low at the
beginning of the disease. Moreover, these proteins are concentrated in vital organs like the brain, and
are present in only minute quantities in tissues like the blood. To be able to detect prions in these
tissues, a solution is to amplify their quantity. A promising recent technique of amplification is PMCA
(Protein Misfolded Cyclic Amplification). Nevertheless, this protocol is not able to amplify prions for
all the prion diseases from tissues with low infectivity. PMCA diagnosis remains to be improved and
mathematical modeling and analysis can help to do so.

PMCA is an in vitro cyclic process that quickly amplifies very small quantities of prion proteins
present in a sample. In this sample, the pathogenic proteins (polymers) are put in the presence of a
large quantity of normal proteins (monomers). Then the protocol consists in alternating two phases:

- a phase of incubation during which the sample is left to rest and the polymers can attach the
monomers (increasing the size of the polymers),

- a phase of sonication during which waves are sent on the sample in order to break the polymers
into numerous smaller ones (increasing the number of the polymers).

To model this process, we can use the growth-fragmentation equation (1) as in (55). The main
difference is that the PMCA takes place in vitro, and there is no production of monomers. As there
is such a large number of monomers, in order to improve the polymerization, we can neglect their
consumption by the polymerization process and assume that their concentration remains constant
during the PMCA. We now introduce the “sonication” into the equation. Because the sonication phase
increases the fragmentation of polymers, an initial modeling can be to add a time-dependent parameter
a(t) in front of the fragmentation parameter β(x). Then the alternating incubation-sonication phases
correspond to a rectangular function a(t) which is equal to 1 during the incubation time (since the
sample is left to rest), and amax during the sonication pulse (where amax represents the maximal power
of the sonicator). We obtain the model

∂

∂t
u(x, t) = −V0

∂

∂x

(
τ(x)u(x, t)

)
− a(t)β(x)u(x, t) + 2a(t)

∫ ∞

x

β(y)κ(x, y)u(y, t) dy, (60)

where u(x, t) still denotes the quantity of polymers of size x at time t.

With this model, the problem of PMCA improvement becomes a mathematical optimization prob-
lem: find a control a(t) which maximizes the quantity

∫
xu(T, x) dx (total mass of pathogenic proteins)

at a fixed final time T. The answer to this problem is difficult and a first natural simplification is to
consider a control a(t) ≡ a which does not depend on time. In this case the control is a parameter
for Equation (60) and the optimization of the payoff

∫
xu(T, x) dx for a large time T reduces to the

optimization of the fitness Λa of the population. Is amax the best constant to maximize Λa? Is there a
compromise aopt ∈ (1, amax) to be found? The answer depends on the coefficients τ and β as indicated
by the different theorems presented in this paper. More precisely, Theorem 2 ensures that an optimum
aopt can exist between 1 and amax, and an example is proposed below.
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Example. We consider the same coefficients as in Figure 2(b) and suppose that the sonicator can
multiply by 4 the fragmentation at its maximal power. Then in our model amax = 4 and we can see in
Figure 4 that the best strategy to maximize the fitness with a constant coefficient is not the maximal
power, but an intermediate aopt between 1 and amax.
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Figure 4: The fitness is plotted as a function of a for the coefficients of Figure 2(b). There is
a sonication value aopt in the interior of the window [1, amax] which maximizes this fitness.

This value aopt should be computed from experimental values of the coefficients, and the correspond-
ing strategy would then consist in a permanent sonication with this optimal power. But, due to the
heat generated by the sonicator, it is not possible to sonicate constantly throughout the entire exper-
iment. This is why the experimentalists use a periodic protocol with ”rest” phases during which the
sample cools down. The value aopt may provide informations on the optimal ratio between the time of
incubation and sonication phases. For instance one could try a rectangular control such that the time
average is equal to aopt. More generally, the question is whether we can do as well as or even better
than the constant aopt with a periodic control. The Floquet theory (see [35] for instance) provides
a principal eigenvalue for periodic controls. The comparison between the Floquet and the Perron
eigenvalues has to be investigated to optimize the PMCA technique (see [11, 12] for such comparisons
on cell cycle models). The question becomes one of finding a periodic control with an associated
Floquet eigenvalue that is as close as possible to Λaopt , or even better. This problem is adressed in [8]
for a discrete model, for which the Floquet theory is well established. The link is made between the
eigenvalue optimization problem (for constant and periodic controls) and the optimal control for a
final time T <∞, which is to optimize the total mass

∫
xu(T, x) dx. Different situations are observed

where aopt is the best control or can be improved using a periodic control.

3.4 Therapeutic optimization for a cell population

When Problem (1) models the evolution of a size-structured cell population (or yet a protein-, label-,
parasite-structured population), τ represents the growth rate of the cells and β their division rate. It
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is of great interest to know how a change on these rates can affect the Malthus parameter of the total
population, see for instance [11, 12]. It is possible to act on the growth rate by changing the nutrient
properties - the richer the environment, the faster the growth rate of the cells. We can model such an
influence by Equation (4), and the question is then how to make λα as large (if we want to speed up
the population growth, for instance for tissue regeneration) or as small (in the case of cancerous cells)
as possible.

Plausible assumptions (see [15] for instance for the case of a size-structured population of E. Coli) for
the growth of individual cells is that it is exponential up to a certain threshold, meaning that τ(x) = τx
in a neighborhood of zero, and tending to a constant (or possibly vanishing) around infinity, meaning
that the cells reach some maximal size or protein-content, leading to τ →

x→∞
τ∞ < +∞.

Concerning the division rate β, it most generally vanishes around zero, either of the form β(x) ∼ βxγ

with γ > 1 or with support [b,∞] with b > 0, and it has a maximum, and then decreases for large x -
and vanishes. Note that for τ, as for β, very little is known regarding their precise behavior for large
sizes x, since such values are very rarely reached by cells in the real world.

These assumptions allow us to apply our results. Theorem 1 and Corollary 1 lead to vanishing
Malthus parameter λα either for α → 0 or for α → +∞. This means that for cancer drugs, stressing
the cells by diminishing nutrients can be efficient, which is very intuitive and it is known and used
for tumor therapy (by preventing vascularization for instance). What is less intuitive is that forcing
tumor cells to grow too rapidly in size could also reveal an efficient strategy, as soon as it is established
that the division rate decreases for large sizes (this last point could be studied by inverse problem
techniques, see [37, 16, 15]). It recalls the same ideas as for prions, as discussed in Section 3.2.

In contrast, in order to optimize tissue regeneration for instance, these results tend to prove that
there exists an optimal value for α such that the Malthus parameter is maximum. This value can be
established numerically (see Section 3.1 and [23]) as soon as the shape of the division rate is known,
for instance by using the previously-mentioned inverse problem techniques.

Conclusion

The first motivation of our research was to investigate the dependence of the dominant eigenvalue of
Problem (1) upon the coefficients β and τ, since a first and erroneous idea, based on simple cases,
was that it should be monotonic (see [10, 9]). By the use of a self-similar change of variables, we
have explored the asymptotic behavior of the first eigenvalue when fragmentation dominates the
transport term or vice versa. This lead us to counter-examples, where the eigenvalue depends on the
coefficients in a non-monotonic way. Moreover, these counter-examples are far from being exotic and
seem perfectly plausible in many applications, as shown in Section 3. A still open problem is thus to
find what would be necessary and sufficient assumptions on τ and β, or better still on the ratio xβ

τ
,

so that λα or Λa would indeed be monotonic with respect to α or a.

Concerning our assumptions, a first glance at the statement of Theorem 1 gives the impression that
only the behavior of the fragmentation rate β plays a role in the asymptotic behavior of λα, and only
the ratio τ

x
in the behavior of Λa. This seems puzzling and counter-intuitive. In reality, things are

not that simple: to ensure the well-posedness of eigenvalue problems (4) and (5), Assumptions (28)
and (29) strongly link τ with β, so that a dependence on β hides a dependence on τ and vice versa.
Moreover, the mathematical techniques used here (moment estimates, multiplication by polynomial
weights) force us to restrict ourselves to the space P of functions of polynomial growth or decay. The
questions of how to relax these (already almost optimal, as shown in [17]) assumptions and how, if
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possible, to express them in terms of a pure comparison between τ, κ and β like in Assumptions (28)
and (29) are still open.
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Appendix 1: technical lemmas

Here we assume some slight generalizations of Assumption (6), as specified in each lemma, in order
to make it clear where each part of Assumption (6) is necessary. The other assumptions are those of
Theorem 2.

Lemmas 4, 5 and 6 prove, respectively, that βα, τα and κα satisfy Assumption (29), (25) and
(27)-(28) uniformly for all α.

Lemma 4. Suppose

∃ ν, γ ∈ R s.t. 1 + γ − ν > 0, and
τ(x)

β(x)
=
x→L

O(xν−γ) . (61)

Then for all r > 0, there exist Ar > 0 and NL a neighborhod of L such that

for a.e. x ≥ Ar and for all α ∈ NL,
xβα(x)

τα(x)
≥ r. (62)

Proof. Let r > 0.
For all α > 0, using Assumption (29) we define

pα := inf

{

p :
xβ(x)

ατ(x)
≥ r, for a. e. x ≥ p

}

.

Observe that pα is nondecreasing. Let ε > 0. By definition of pα, there exists a sequence {ξα} with
values in [1− ε, 1] such that

ξαpαβ(ξαpα)

ατ(ξαpα)
≤ r. (63)

Assumptions (25) and (26) ensure
τ

xβ
∈ L∞

loc(R
∗
+) so that pα −−−−−→

α→+∞
+∞ (otherwise, since it is

nondecreasing, it would tend to a finite limit, which contradicts the definition of pα). We also have
τ

xβ
> 0 on R

∗
+ so that pα −−−→

α→0
0. Hence, for some constant C

τ(ξαpα)

β(ξαpα)
≤

α→L
C(ξαpα)

ν−γ . (64)

Then, for some absolute constant C, Inequalities (63)-(64) lead to

(1− ε)
pα
αk

≤ ξαpα
αk

≤
[

C
ξαpαβ(ξαpα)

ατ(ξαpα)

]k

≤ Ckrk
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which implies that lim sup
α→L

pα
αk

≤ Ckrk is finite. We can define Ar by

Ar := 1 + lim sup
α→L

pα
αk
.

Then for any x > Ar, when α→ L, we have αkx > pα and so

αkxβ(αkx)

ατ(αkx)
≥ r,

and by definition of βα and τα we obtain the desired result.

Lemma 5. Suppose that

∃ ν ∈ R s.t. τ(x) =
x→L

O(xν) and ∃ r0 > 0 s.t. xr0τ(x) ∈ L∞
loc(R+). (65)

Then for all A > 0 and r ≥ max (r0,−ν), there exist C > 0 and NL a neighborhood of L such that

for a.e. x ∈ [0, A] and for all α ∈ NL, xrτα(x) ≤ C.

Suppose that

∃ ν ∈ R s.t. τ−1(x) =
x→L

O(x−ν) and ∃µ > 0 s.t. inf
x∈[1,+∞)

xµτ(x) > 0. (66)

for all ε > 0 and m ≥ max(µ,−ν), there exist c > 0 and NL a neighborhood of L such that

for a.e. x ≥ ε and for all α ∈ NL, xmτα(x) ≥ c.

Proof. We treat separately the case L = 0 and L = +∞.
Let us start with L = 0. Notice that in this case, if τ(x) = O(xν), then due to Assumption (25),

r0 = −ν, we obtain (65). Considering r ≥ −ν, for some constant C > 0 it holds

sup ess
x∈[0,A]

(xrτα(x)) = sup ess
y∈[0,αkA]

(α−k(r+ν)yrτ(y))

≤
α→0

C sup
[0,αkA]

(α−k(r+ν)yr+ν) = CAr+ν.

For m ≥ max(µ,−ν) and using Assumption (66), for some constants c1, c2 > 0, we have

inf ess
x∈[ε,∞)

(xmτα(x)) = inf ess
y∈[αkε,∞)

(α−k(m+ν)ymτ(y))

≥ min

(

inf ess
[αkε,1]

(α−k(m+ν)ymτ(y)), inf ess
[1,∞)

(α−k(m+ν)yµτ(y))

)

≥
α→0

min

(

c1 inf
[αkε,1]

(α−k(m+ν)ym+ν), c2α
−k(m+ν)

)

= min
(

c1ε
m+ν , c2α

−k(m+ν)
)

Now we consider L = +∞ and r ≥ max (r0,−ν). Due to Assumption (65), for some constants
C1, C2 > 0, we have

sup ess
x∈[0,A]

(xrτα(x)) = sup ess
y∈[0,αkA]

(α−k(r+ν)yrτ(y))

≤ sup ess
[0,1]

(α−k(r+ν)yr0τ(y)) + sup ess
[1,αkA]

(α−k(r+ν)yrτ(y))

≤
α→∞

C1α
−k(r+ν) + C2A

r+ν .
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For m ≥ −ν and using Assumption (66), for some c > 0 we obtain

inf ess
x∈[ε,∞)

(xmτα(x)) = inf ess
y∈[αkε,∞)

(α−k(m+ν)ymτ(y))

≥
α→∞

c inf
[αkε,∞)

(α−k(m+ν)ym+ν) = cεm+ν .

Lemma 6. Suppose that

∃ ν, γ ∈ R s.t. γ + 1− ν > 0, and
β(x)

τ(x)
=
x→L

O(xγ−ν). (67)

Then for all ρ > 0, there exist ε > 0 and NL a neighborhood of L such that

∀α ∈ NL,

∫ ε

0

βα(x)

τα(x)
dx ≤ ρ.

Proof. Due to Assumption (67), for some constant C > 0, we have

∫ ε

0

βα(x)

τα(x)
dx =

1

α

∫ εαk

0

β(x)

τ(x)
dx ≤

α→L
C
1

α

∫ εαk

0
xγ−νdx = Ckε

1

k .

The result follows for ε small enough.

Appendix 2: Relaxed Case

In the same spirit as in Lemmas 4 to 6, we relax Assumption (6) and examine if the asymptotic
behavior of λα and Λa obtained in Theorem 1 remains true. The case we are the most interested in
is the case when the limits are zero (see the applications at Section 3). Is the condition lim

x→L
β(x) =

0 (resp. lim
x→ 1

L

τ(x)

x
= 0) necessary and sufficient to have lim

α→L
λα = 0 (resp. lim

a→L
Λa = 0)? The following

proposition gives partial results in the direction of a positive answer to this question. The assumptions
required are weaker, but the results also are weaker. We obtain asymptotic behavior for the eigenvalue,
but cannot say anything yet on the eigenvector behavior.

Proposition 1. Let us suppose that all assumptions of Theorem 2 are satisfied except Assumption
(6).

1. If τ(x) =
x→0

o(xν), β =
x→0

O(xγ) and β(x)−1 =
x→0

O(x−γ) with γ + 1− ν > 0, we have

if γ > 0, then lim
α→0

λα = 0, and more precisely λα =
α→0

o(α
γ

1+γ−ν ),

if ν ≥ 1, then lim
a→∞

Λa = 0, and more precisely Λa =
a→∞

o(a
1−ν

1+γ−ν ).
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2. If β(x) =
x→∞

o(xγ) and τ(x)−1 =
x→∞

O(x−ν) with γ + 1 − ν > 0 and γ ≤ 0 (so that ν < 1), we

have

lim
α→∞

λα = lim
a→0

Λa = 0, and more precisely λα =
α→+∞

o(α
γ

1+γ−ν ), Λa =
a→0

o(a
1−ν

1+γ−ν ).

Remark. In the second assertion of this proposition, we notice that Assumption (29) means
τ(x)
x

=
x→∞

o(β(x)), so the condition β(x) = o(xγ) with γ ≤ 0 imposes limx→∞
τ(x)
x

= 0.

Proof of Proposition 1.1. We perform the dilation defined by (8): vα(x) = αkUα(αkx) with k = 1
1+γ−ν .

Due to the assumption β(x)−1 =
x→0

O(x−γ) and τ = O(xν), the conclusions of Lemma 4 and Lemma 5

still hold true. Hence we have the following bound (see the first estimate in the proof of Theorem 2)

∫

xrβα(x)vα(x) dx ≤
r sup(0,A r

ω
)(x

r−1τα)

1− 2c− ω

where τα(x) and βα are defined by (16), and the right-hand side is bounded uniformly in α for
r ≥ max (2, 1 + r0, 1− ν). Let ε > 0 and write

α
− γ

1+γ−ν λα = θα =

∫

βαvα ≤
∫ ε

0
βα(x)vα(x) dx+ ε−r

∫ ∞

0
xrβα(x)vα(x) dx

≤ sup
(0,ε)

βα + ε−r
r sup(0,A r

ω
)(x

r−1τα)

1− 2c− ω
.

Thus, since sup
(0,A r

ω
)
xr0τα −→

α→0
0, we obtain

lim sup
α→0

θα ≤ lim sup
α→0

sup
(0,ε)

βα ≤ Cεγ .

This is true for all ε > 0, so Assertion 1 of Proposition 1 is proved (the same proof works with the
fragmentation parameter a).

Proof of Proposition 1.2. We perform the dilation defined by (8) vα(x) = αkUα(αkx) with k = 1
1+γ−ν .

Due to Assumption (67) for L = +∞, we still have the conclusion of Lemma 6 and it is sufficient to
bound ταvα on (0, ε) for ε > 0. We refer to the proof of Theorem 2 in Section 1.3, second estimate,
and write

τα(x)vα(x) ≤ 2 sup
(0,ε)

{ταvα}
∫ ε

0

βα(y)

τα(y)
dy + 2

∫ ∞

ε

βα(y)vα(y) dy

≤ 2ρ sup
(0,ε)

{ταvα}+ 2 sup
(ε,+∞)

βα.

Taking for instance ε small enough so that ρ ≤ 1
4 in this estimate, and α large enough so that

sup(ε,+∞) βα ≤ C, we obtain the boundedness of ταvα on (0, ε0). Then for ε > 0 we write

α
−

γ
1+γ−ν λα = θα =

∫

βαvα

≤ sup
(0,ε)

ταvα

︸ ︷︷ ︸

≤C

∫ ε

0

βα
τα

︸ ︷︷ ︸

−−−→
ε→0

0

+ sup
(ε,∞)

βα

︸ ︷︷ ︸

−−−→
α→∞

0

.
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The latter estimate is a consequence of the assumption β(x) =
x→∞

o(xγ).

We do the same computations for the parameter a.
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