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Abstract—In this paper, the physical nature of the radio-
channel is considered by using an L-path channel model to de-
veloping an algorithm for OFDM systems operating in fast time-
varying vehicular environment. Assuming the Time of Arrival
(TOA) is known, a novel iterative pilot-aided algorithm for joint
estimation of multi-path Rayleigh channel complex gains and
Carrier Frequency Offset (CFO) is introduced. Each complex
gain time-variation, within one OFDM symbol, is approximated
by a Basis Expansion Model (BEM) representation. An auto-
regressive (AR) model is built for the parameters to be estimated
(the AR model for the BEM coefficients is based on the Jakes
process). The algorithm performs recursive estimation using
Extended Kalman Filtering. Hence, the channel matrix is easily
computed, and the data symbol is estimated with free inter-
sub-carrier-interference (ICI) when the channel matrix is QR-
decomposed. It is shown that only one iteration is sufficient to
achieve the performance of the ideal case where knowledge of
channel response and CFO is available.

I. INTRODUCTION

RTHOGONAL  frequency division multiplexing

(OFDM) has become a standard technique for many
wireless networks. However, it is well known that small
carrier frequency offsets (CFOs) yield severe degradation in
OFDM modulation since it produces inter-carrier interference
(ICID) and attenuates the desired signal. These effects reduce
the effective signal-to-noise ratio (SNR) in OFDM reception
resulting in degraded system performance [1] [2]. CFOs
are mainly caused by two different factors: Doppler effects
and oscillator inaccuracies in the transmitter and receiver.
Frequently, these two quantities are grouped together and
modeled as a single frequency offset as in [3][4]. However,
this model is not sufficiently accurate since separate offset
parameter is needed for each propagation path given that
the Doppler shift depends on the angle of arrival, which
is peculiar to each path. Recently, it has been proposed to
track directly the channel paths, which permits to take into
account separate Doppler for each path [5][6]. Those works
estimate the equivalent discrete-time channel taps ([6]) or
the real path complex gains ([5]), which are both modeled
by a basis expansion model (BEM). The BEM methods
are Karhunen-Loeve BEM (KL-BEM), prolate spheroidal
BEM (PS-BEM), complex exponential BEM (CE-BEM) and
polynomial BEM (P-BEM).

However the CFO due to the mismatch between transmitter
and receiver oscillators is not taken into account in those algo-
rithms. In this paper, we propose a complete algorithm capable
of estimating this CFO together with the time-variation of each
channel path. To further improve the estimation accuracy, the
algorithm uses decision feedback. Hence, the accuracy of the
channel estimation, frequency offset estimation and symbol
detection are enhanced simultaneously. Note also that since
the pilots are used for both channel and frequency offset
estimation, the pilot usage efficiency is greatly improved.

Generally, it is preferable to directly estimate the physical
channel parameters [7] [5], instead of the equivalent discrete-
time channel taps [6]. Indeed, as the channel delay spread in-
creases, the number of channel taps also increases, thus leading
to a large number of BEM coefficients, and consequently more
pilot symbols are needed. Estimating the physical propagation
parameters means estimating multi-path TOAs and multi-path
complex gains. Note that the TOAs can be safely assumed
invariant (at least during a block of several OFDM symbols).
In this work, they are assumed perfectly estimated. It should be
noted that an initial, and generally accurate estimation of the
number of paths and TOAs can be obtained by using the MDL
(minimum description length) and ESPRIT (estimation of
signal parameters by rotational invariance techniques) methods
[71(8].

Generally, the CFO due to the oscillator mismatch is
considered constant during the transmission. One reason for
this is that oscillators drift with temperature, supply voltage,
load, and other slowly changing environmental parameters.
However, depending on communication duration, time-varying
CFO can be significant in a real physical environment. Our
algorithm is able to track the CFO in case of variation.
Our algorithm is a recursive algorithm based on Extended
Kalman Filtering (EKF) combined with QR-equalization for
data detection.

This paper is organized as follows: Section II introduces the
OFDM system and the BEM modeling. Section III describes
the AR model for the BEM coefficients and the Extended
Kalman Filter. Section IV covers the algorithm for joint
channel estimation and data recovery. Section V presents the
simulations results which validate our technique. Finally, our
conclusions are presented in Section VI.



The notations adopted are as follows: Upper (lower) bold
face letters denote matrices (column vectors). [X];, denotes the
kth element of the vector x, and [X]j,», denotes the [k, m|th
element of the matrix X (note that the indices begin from 0).
In is a N x N identity matrix and Oy is a N x N matrix of
zeros. diag{x} is a diagonal matrix with x on its main diagonal
and blkdiag{X, Y} is a block diagonal matrix with the matrices
X and Y on its main diagonal. The superscripts (-), (-)* and
() stand respectively for transpose, conjugate and Hermitian
operators. E[-] is the expectation operation. Jy(+) is the zeroth-
order Bessel function of the first kind. Vy represents the first-

order partial derivative operator i.e., Vy = , BJ?N 7.
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II. SYSTEM MODEL
A. OFDM System Model

Consider an OFDM system with N sub-carriers, and a
cyclic prefix length N,. The duration of an OFDM block is
T = N,T,, where T} is the sampling time and Ny = N + N,.
Let X, = [zn[-%],zn[-% + 1], ...,20[§ — 1]}T be the
nth transmitted OFDM symbol and {x,[b]} are normalized
symbols (i.e., E[z,[blz}[b]] = 1). The frequency mismatch
between the oscillators used in the radio transmitters and
receivers causes a CFO AF. The normalized CFO is de-
noted v = AFNT,. After transmission over a multi-path
Rayleigh channel, the nth received OFDM symbol y,,» where

Yo = [l Y yul- X + 1], e yalX —1]]" is given by [9]
(6]
Y, = Hpx,+w, (1)
T .
where w, = [wo[—Z], wo[-5 + 1], wa[5 — 1] is a

white complex Gaussian noise vector of covariance matrix
0?1y and H,, is the N x N channel matrix. The elements
of H,, can be written in terms of equivalent channel taps [10]

{gz(") (qTs) = gu(nT + qTS)}:

[H Jo,m =
L' —1 N—-1
N Z [ REC DY ejzw?—vqg;")(qu)eﬂ”mT*kq] ;
q=0

)

or in terms of physical channel parameters [8] (delays {Tl}

and complex gains {al(n)(qu) = ay(nT + qu)}), yielding:

L—

(m_1)
- [ —j2n (R —35)7T Z egQﬂNa
N
=0

[Hn]km -
1
1 )ejQTrmTfkq:| )
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L’ < N, and L are respectively the number of channel taps
and the number of paths. The delays are normalized by T
and not necessarily integers (7; < Ny). The L elements of

(") (T )} are uncorrelated. However, the L’ elements of

(") (¢Ts )} are correlated, unless that the delays are multiple
of TS as mostly assumed in the literature. They are wide-sense

stationary (WSS), narrow-band zero-mean complex Gaussian
processes of variances o4, 2 and 0,,2, with the so-called Jakes’
power spectrum of maximum Doppler frequency f; [11]. The

average energy of the channel approach is normalized to one,
L'—1

ZU‘” =1 and Zoal =

In the sequel, we will make the calculus based on the second
approach (physical channel) and we can deduce the results of
the first approach (channel taps) by replacing L by L’ and the
set of delays {r} by {l, I=0:L"—1}.

B. BEM Channel Model

Since the number of samples to be estimated LN, is
greater than the number of observation equations N, it is
not efficient to estimate the time-variation of the complex
gains, using directly the observation model in (1). Thus, we
need to reduce the number of parameters to be estimated.
In this section, our aim is to accurately model the time-
variation of al(") (¢Ts) by using a BEM. Collecting the samples
of the [th path within the nth OFDM symbol in a N, x 1
vector al(n) = [al(n)(—NgTs), ey al(n) (V- l)TS)]T, we can
express al(") as:

(o7 = aBEMl+€(n)
where Q = [qg,...,qy, ;] is @ Ny x N, matrix that col-
(n) _

lects N, orthonormal basis function q,; as columns, ¢; "’ =

[cgg)l), EX,)C_I l)} represents the N, BEM coefficients for

the [th complex gain of the nth OFDM symbol, and Sl(”)
represents the corresponding BEM modeling error, which
is assumed to be minimized in the MSE sense [12] [13].
Under this criterion, the optimal BEM coefficients and the
corresponding model error are given by:

¢’ = (Q"Q) Q"a" 5)
" = (v, -S)ay” ©)
—1
where S = Q QHQ) Qf is a N, x N, matrix. It pro-

vides the MMSE approximation for all BEM containing N,
coefficients, given by:

1 n n
MMSE; = — E[él ¢! >H} %)
1
= 5T (v, - S)RY (1, - 8™)) ®)

H
where Rgfl) =E {al(")al("_s) } is the N x N, correlation

(n)

matrix of o’ with elements given by:

RS m = 00,200 (27r faTs(k —m + SNS)> )

Various traditional BEM designs have been reported to
model the channels time-variations, e.g., the CE-BEM
[Qlim = eﬂ'“‘”(w)(m #57) [14], the GCE-BEM [Q]4.m =
eI (5o Si7 [12], the P-BEM
Qlg,m = (k— Ng)m [13] and the DKL-BEM which employs




basis sequences that corresponds to the most significant eigen-
vectors of the autocorrelation matrix Rflol) [15]. From now on,
we can describe the OFDM system model derived previously
in terms of the BEM. Substituting (4) in (1) and neglecting

the BEM model error, we obtain after some algebra:

Y, = Kp@)-c,+w, (10)

where the LN, x 1 vector ¢,, and the N x LN, matrix IC,,
are given by:

T 79T
¢ = [cg"> ,...,c<;_>l] (11)
1 n n
Kav) = + |27 0) 20, 0)] (12)
ZMW) = [My(v) diag{x,} f, ...,
My, —1(v) diag{x,} fi] (13)

where vector fj is the /th column of the N x L Fourier matrix
F and My(v) is a N x N matrix given by:

[Fly, = e 2r(x—5m (14)
N-1 . »
Ma)]j = Y @ F[Qlgsn,.a 27T (15)
q=0

Moreover, the channel matrix can be easily computed by using
the BEM coefficients [9]:

N.—1
H, = Y My(v)diag{Fx{"} (16)
d=0

(n) _ [.(n) (m) 1T
where Xa = I:C(d,())’ ey C(d,L*l)}

III. AR MODEL AND EXTENDED KALMAN FILTER

A. The AR Model for c.,

The optimal BEM coefficients cl(n) are correlated complex
Gaussian variables with zero-means and correlation matrix
given by:

R()

n n—sH
5 Efejei" "]

(@"Q) "@"r(Q(0"Q)

Hence, the dynamics of cl(n) can be well modeled by an auto-

regressive (AR) process [16] [17] [8] . A complex AR process
of order p can be generated as:

p
M= ZA(l)cl(nﬂ) +ul™
i=1

a7

(18)

where A(l)7 - AP are N, x N. matrices and ul(") isa N.x1
complex Gaussian vector with covariance matrix U;. From
[9], it is sufficient to choose p = 1 to correctly model the
coefficients. The matrices A = A and U; are the AR
model parameters obtained by solving the set of Yule-Walker
equations defined as:

A

19)
(20)

-1
R (R)
R(” + AR{ ™V

€

U =

Using (18), we obtain the AR model of order 1 for c¢,:

¢, = Ac “Cp—1 + Uen (21)
where A. = blkdiag {A,...,AT} is a LN, x LN, matrix
and ug, = [ug")T,...,u(Lnjf is a LN, x 1 zero-mean

complex Gaussian vector with covariance matrix U, =
blkdiag{Uo,...,UL_l}.

B. The AR Model for v,

Let us write the order 1 AR model for v,, as follows:

(22)

Vp = Q- Vn-1 +uun

Since the CFO can be assumed as constant during the obser-
vation interval, a is considered to be close to 1, a = 0.99.
The state noise parameter u,,, is assumed to be zero-mean
complex Gaussian with variance o2

v

C. State equation

Now, let us write the state-variable model. The state vector
at time instance n consists of the BEM coefficients ¢,, and the
vector of CFO v,,:

T
o = [T, 7] 23)
There are LN. BEM coefficients and 1 CFO values in the
state vector of dimension LN, + 1 x 1. Then the linear state
equation may be written as follows:

Mo =A- pn_1+u, 24
where the state transition matrix is defined as follows:

A = blkdiag { A, a} (25)
The LN.+ 1 x 1 noise vector is such that u,, = [ucTn, uyn}T

with covariance matrix U = blkdiag {Uc, 03}.

D. Extended Kalman Filter (EKF)

The measurement equation (10) can be reformulated as:

Yo = &(1n) + Wy (26)

where the nonlinear function g of the state vector ., is defined
as g(pun) = Kn(v) - ¢,. Nonlinearity of the measurement
equation (26) is caused by CFO. The BEM coefficients are
still linearly related to observations. Since the measurement
equation is nonlinear, we use the Extended Kalman filter to
adaptively track p,. Let fi(,,|,—1) be our a priori state estimate
at step n given knowledge of the process prior to step 7, fi(,|n)
be our a posteriori state estimate at step n given measurement
¥, and, P, |,,_1) and P(,, |,y are the a priori and the a posteriori
error estimate covariance matrix of size LN, +1 x LN, + 1,
respectively. We initialize the EKF with figj0) = OLn,+1.1
and Pg|0) given by:

blkdiag {R§0>, b}

Popoy = (27)

RES) = blkdiag {Rgi), ey Rgi)—l }



where RS) is the correlation matrix of cl(n) defined in (17). To
derive the EKF equations, we need to compute the Jacobian

matrix G,, of g(u,) with respect to p, and evaluated at
l’l(n|n71):
T _
o v”” (Nn)’#»n:ﬂ(n\n y
T
[VC" (Hn)‘un:ﬂ(n\nq)’ v”"g(un)‘un:ﬂ(n\nq)} (28)
After computation, we find:
G = [Kn(Pnin-1)), K, (¥(nn-1))€min-1)) (29)
where
1 n n
€)= 2"z e 6o
2 (w) = [Mhv) diag{x,} i, ..,
My, 1 (v) diag{x,} fi] (D)

The N x N matrix M(v) is given by:

N—-1
M), = D g2
q=0

The EKEF is a recursive algorithm composed of two stages:
Time Update Equations and Measurement Update Equations.
These two stages are defined as:

. v . —k
6'72FWQ[Q]q+Ng,d e]2ﬂ—_mN q (32)

Time Update Equations:

B(njn-1) Aft(n—1n-1)
Pon-1y = APy 1, A" +U (33)
Measurement Update Equations:
1
Ko = Papn )G (GuPaupn )Gl +0%Ly)
B(n|n) Anin—1) + Kn (¥, — 8 (B(njn-1)))
Popny = Pupn—1) — KiGrPmn—1) (34)

where K,, is the Kalman gain. The Time Update Equations are
responsible for projecting forward (in time) the current state
and error covariance estimates to obtain the a priori estimates
for the next time step. The Measurement Update Equations
are responsible for the feedback, i.e., for incorporating a new
measurement into the a priori estimate to obtain an improved
a posteriori estimate. The Time Update Equations can also
be thought of a predictor equations, while the Measurement
Update Equations can be thought of a corrector equations.

IV. JOINT DATA DETECTION AND EKF

In the iterative algorithm for joint data detection, channel
and CFO extended Kalman estimation, the NV, pilots subcarri-
ers are evently inserted into the N subcarriers at the positions
P=Apr | pr =@ —-1Lf+1, r =1,..,N,}, where
Ly is the distance between two adjacent pilots. We use the
the QR-equalizer [8] [18] for the data detection. The QR-
equalizer allows us to estimate the data symbol with free ICI
by performing a so-called QR-decomposition. The algorithm
proceeds as follows:

initialization:
e o)y = OLN, 4NNz
o compute P oy as (27)

n+<n+1:

o execute the Time Update Equations of EKF (33)

o compute the channel matrix by substituting pn with the prediction
parameters fi(p|n—1) in (16)

o recursion:i <— 1

remove the pilot ICI from the received data subcarriers

Detection of data symbols

execute the Measurement Update Equations of EKF (34)

compute the channel matrix using (16) with the updated parame-

ters

- i+ i+1

where 7 represents the iteration number.

V. SIMULATION

In this section, the performance of our recursive algorithm is
evaluated in terms of MSE for the channel and CFO estimation
and BER for data detection. The normalized channel model
is GSM Rayleigh model with L = 6 paths and maximum
delay Tynae = 1075 (see table I) [19][20][9]. A 4QAM-OFDM
system With normalized symbols N = 128 subcarriers,
Nq = g subcarriers, IV, = 32 pilots (i.e. Lf = 4) and
=~ = 2M H z is used (note that (SNR)dB = ( )dB+3dB).
These parameters are selected in order to be in ’ concordance
with the standard Wimax IEEE802.16e. The MSE and the
BER are evaluated under a rapid time-varying channel such as
faT = 0.1 corresponding to a vehicle speed V;,, = 600km/h
for f. = 2.5GHz. We choose a GCE-BEM [12] and N, = 3
coefficients to model the path complex gain of the channel.
Most advanced technologies have oscillator frequency toler-
ance less than 1 ppm (¢.e. v = 0.16 in normalized units). For
the simulation, we choose v = 0.1.

Fig. 1 shows the MSE as a function of SNR. The MSE
is simulated for three iterations and is shown for the CFO on
the one hand and for the multi-path complex gain on the other
hand. For reference, the MSEs obtained in Data Aided (DA)
mode have been plotted. As expected, the MSEs obtained in
Data Aided mode are lower than the MSEs obtained with just
the pilots, especialy at low SNR where the detection errors are
the most important. At high SNR, the MSEs tend to the MSEs
in DA mode. It is also observed that after 20 dB, there is no
improvement any more. This is due to the fact that beyond 20
dB, the matrix to be inversed to compute the Kalman Gain in
Eq. (34) becomes badly scaled. This issue can be attenuated
by adding some noise on the main diagonal of this matrix.

Fig. 2 gives the BER performance of our proposed iterative
algorithm. For reference, we also plotted performance obtained
with perfect knowledge of channel response and CFO. It is
shown that after just one iteration, our joint estimator can
achieve the same Bit Error Rate (BER) as that of an ideal
reference receiver with perfect knowledge of channel response
and carrier frequency offset. This shows that our proposed iter-
ative joint channel and frequency offset estimator is effective.
Again, it is observed a degradation in the performance after
20 dB. However, most of the typical modern systems operate
with a SNR less than 20 dB.



[ Path number [ Average Power (dB) [ Delay (T%) |

0 -7.219 0
1 -4.219 0.4
2 -6.219 1
3 -10.219 3.2
4 -12.219 4.6
5 -14.219 10
TABLE I

RAYLEIGH CHANNEL PARAMETERS

—— CFO mse for iteration 0
CFO mse for iteration 1

—— CFO mse for iteration 2
CFO mse for iteration 3

— CFO mse for DA

—#— channel mse for iteration 0
channel mse for iteration 1

—*— channel mse for iteration 2
channel mse for iteration 3

| —%— channel mse for DA

MSE

i i i i i

10 15

SNR (dB)

20 25 30

Fig. 1. Mean Square Error (MSE) as a function of SNR for f;7" = 0.1

VI. CONCLUSION

A new iterative algorithm which jointly estimates multipath
complex gain and CFO has been presented. The algorithm
is based on a parametric channel model. Extended Kalman
filtering is used for parameter estimation and the data recovery
is carried out by means of a QR-equalizer. Simulation results
show that by estimating and removing the ICI at each iteration,
the BER is greatly improved, especially after the first iteration.
For a SNR < 20 dB (typical modern systems), our algorithm
needs only one iteration to achieve the same performance than
the ideal case where knowledge of the channel response and
CFO is available. However, for a SNR > 20 dB, performance
is degraded compared to the ideal case.
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