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Chaotic Dynamics of Red Blood Cells in a Sinusoidal Shear Flow
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We show that the motion of individual red blood cells in an oscillating moderate shear flow
is described by a nonlinear system of three coupled oscillators. Our experiments reveal that the
cell tanktreads and tumbles either in a stable way with synchronized cell inclination, membrane
rotation and hydrodynamic oscillations, or in an irregular way, very sensitively to initial conditions.
By adapting our model described in ref [2], we determine the theoretical diagram for the red cell
motion in a sinusoidal flow close to physiological shear stresses and flow variation frequencies and
reveal large domains of chaotic motions. Finally, fitting our observations allows a characterization
of cell viscosity and membrane elasticity.
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Oscillators are ubiquitous in physics, chemistry
(Belousov-Zhabotinski reaction) and in the living world
at the scale of single organisms (pairs of beating eu-
karyotic flagella [1]) or of populations (fireflies blinking).
Ever since Huygens noticed in 1665 that two pendulum
clocks synchronized, scientists discovered that coupled
oscillators showed a range of complex behaviors from
synchronous to chaotic oscillations. Recently, we demon-
strated that the movement of a red blood cell (RBC) in a
steady shear flow is well described by two ordinary equa-
tions analog to the problem of two dissipative coupled
angular oscillators represented by the cell inclination an-
gle relatively to the flow direction and the rotation angle
of the membrane elements around the center of mass of
the cell [2]. The two angles are synchronized, as required
for 2D non-linear systems [2-4]. In the vasculature, how-
ever, the blood flow is time-dependent. In arteries it is
pulsed and in the microcirculation, it presents irregular
temporal variations, from intermittent cessation in cap-
illary flows to chaotic behavior in arterioles [5-7]. These
fluctuations, which are partly related to fluctuations of
vascular calibre are still poorly understood. At the RBC
scale, the time-dependent external flow plays the role of a
third coupled oscillator, which, by adding a degree of free-
dom to the non-linear system could allow the cell to have
a complex, even chaotic motion. Such motion would in
turn influence the large scale flow of blood and contribute
to its observed temporal fluctuations. In this work, we
provide a theoretical description of the motion of RBCs
in a sinusoidal moderate shear flow close to physiological
shear stresses and flow variation frequencies that we il-
lustrate with several experiments. We predict that RBCs
can present a chaotic motion and we experimentally show
the unstable movement of RBCs. We propose a full the-
oretical diagram of the RBC motion as a function of the

amplitude and the frequency of the shear rate. We show
that the existence of a cell shape memory associated with
a minimum of the elastic energy of the membrane for a
specific position of its elements is crucial for chaos. Fi-
nally, as our experiments allow an easy recording of RBC
motion they may provide a suitable tool to characterize
cell viscosity and elasticity.

Model - The motion under a moderate shear flow of a
RBC whose symmetry axis lies in the shear plane is char-
acterized by two angles: 6, the cell inclination angle with
respect to the flow direction and w, the angle between
the instantaneous position of a membrane element and
its initial position at rest (Fig. 1). At low shear stress,
RBCs tumble (T), i. e. 6 rotates and w oscillates. Above
critical values of the external viscosity and the shear
stress, the cell inclination stabilizes (6 oscillates around
a mean value) while the membrane rotates around the
fixed cell shape (w rotates): the cell both tanktread (TT)
and swing (S). The membrane elements, displaced dur-
ing the tanktreading revolution are deformed and store
an elastic energy which reaches a maximum for every
rotation of the membrane. This energy barrier modi-
fies periodically the energy balance of the system and is
at the origin the f-oscillations (Fig. 1). At the T-STT
transition, there is an intermittent regime with alterna-
tive series of T and STT [2, 8, 9], where the numbers of T
and STT depend on the shear rate. A recent analytical
simple model derived from Keller and Skalak’s (KS) [10]
was proposed [2, 9], which treats a RBC as a viscoelastic
ellipsoidal membrane enclosing a viscous fluid. It does
not account for cell deformation and is therefore adapted
to moderate shear stress. It deals with a basic mechani-
cal description of the membrane and a simplified velocity
field on the membrane, which lead to tractable analyti-
cal equations that retrieved the observed regimes of cell



motion and provided semi-quantitative fits of experimen-
tal data [2]. Subsequent full numerical models [11-13]
derived from this approach basically retrieved the same
features for the cell motion. The RBC shape is described
by a fixed oblate ellipsoid filled with a Newtonian solu-
tion of viscosity 7; and delimited by a viscoelastic thin
membrane, which obeys a simple Kelvin-Voigt constitu-
tive law: o = 2n,,D + 2u,,, B, where 7,,, and pu,, are the
membrane viscosity and shear modulus and D and E are
the strain rate and strain tensors, respectively. The si-
nusoidal shear rate of the flow is ¥ = «,sin(vt). The
balance of torques exerted by the external fluid on the
cell and the conservation of energy [10] - the rate of vis-
cous dissipation in the cell plus the elastic power stored
by the cytoskeleton is equal to the power provided by
the external fluid on the cell - yield the two equations for
RBC motion given in ref [2]. These equations still hold
for time-dependent shear rate. Adding a third equation

with 7 = vt yields a 3D autonomous flow F(X) such as
dX /dt = F(X), where X is the vector (6,w, D):
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f1, fo and f3 are geometrical constants described in ref
[10], a; and ap are the lengths of the long and small axis
of the cell cross-section, V is the RBC volume, 2 is the
membrane volume and 7, is the external suspending fluid
viscosity. The phase space is conveniently described by
the ensemble (0, w, sin(?)). Equations are solved numer-
ically by using the set of parameters [2]: a; = ag = 4um,
ag = L5um, £ = 7481072 no = 34.10 %Pas, n; =
10~2Pa.s, 1, = 0.7 Pa.s, j,, = 1.6 Pa.

For small shear rate (v, < v.), where . is the critical
shear rate of the steady T-STT transition, RBCs tum-
bles periodically. The phase trajectories approach a sta-
ble limit-cycle as shown in Fig. 1la on the projection on
the plane (0, w). The approach to the limit-cycle takes
about 1 sec. The angle # changes monotonously with
time: clockwise during the forward movement (4 > 0)
and counterclockwise back to its initial value during the
backward movement (¥ < 0). The angle w oscillates,
indicating that the membrane slightly moves back and
forth about its position at rest.

For larger values of the shear rate amplitude (v, > v.),
the cells swing and tanktread when the instantaneous
shear rate is larger than v, and tumble when it decreases
below 7, just before the flow changes direction, as shown
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FIG. 1: a-c: numerical simulation of 6(°) vs. w(°). a: limit
cycle Yo = 2571, v = 0.2 rd.s™'. b: two limit cycles v, =
9571, v = 0.35 rd.s*; Initial conditions: wy = 0, 6 = 0 (-)
or §p = m/2 (--). c: non-closed trajectory for v, = 957!,
v = 0.8 rd.s™ !, initial conditions: wo = 0, p = 107° (-) or
0o = —107% (--). d: sketch of a RBC in the flow. e: numerical
chaotic trajectories 6(°) vs. time, initial conditions of c.

F >3
R "8 V@ Vo o Baliic N

s 110 a1
16 =

. g
v e & S & & 8 2

FIG. 2: Sequence of a RBC round trip during one period
of the flow. Forward motion 1- 8, snapshot times (in s): 0,
0.32, 0.64, 1.08, 2.12, 3.28, 3.72, 4.16; backward motion 9- 16,
snapshot times: 4.56, 4.88, 5.16, 5.76, 7.08, 7.98, 8.24 and 8.8

on an experimental sequence in Fig. 2. The model pre-
dicts a stable periodic regime described by either one or
two non-intersecting limit-cycles (see Fig. 1b), whose tra-
jectories are determined by the initial angles. During the
S-TT regime, 6 is little sensitive to the initial conditions.
However, the storage of elastic energy slightly differs on
each trajectory. Therefore the TT-T transition does not
occur at the same moment and the values of 6 and w
when the flow changes direction differ from one trajec-
tory to the other. The consequence for the cell reversal is
major: in one case, at the end of the forward movement
the cell has a counterclockwise reversal and passes verti-
cally (see Fig. 2), perpendicularly to the flow direction,
whereas in the other case, the cell rotates in the clock-
wise direction and passes horizontally, in the alignment
of the flow direction.

For specific values of 7, and v, a non-periodic motion,
highly sensitive to initial conditions and characterized by
an unstable limit-cycle occurs. Projections of portions
of trajectories are shown in Fig. 1c. Trajectories are no
longer closed and two initially very close initial conditions
lead to strongly divergent trajectories. For illustrations
of the attractor and first return map see [14]. In this case,
the three oscillators 0, w and 4 cannot synchronize and



the movement is chaotic. Chaos was further investigated
by computing the Lyapunov exponents of the system,
which characterize the rate of separation of initially close
trajectories. Let X (t) be a solution of the flow F and
5X (0) an initial infinitesimal separation. The separation
at time t, 6.X (t), obeys the equation of evolution obtained
by linearisation of the flow F | and its integration leads
to the exponential evolution of the perturbation 6.X (¢):

dgTX - % i 0X; X () = 6X(0) el oxIxt ¥ (2)
For each given solution, we computed the Jacobian
matrix OF/8X, we numerically determined the matrix
fg g—§| X7y dt, and we calculated its three eigenvalues at
several times. The slopes of the asymptotic linear vari-
ations of these values with time are the three Lyapunov
exponents of the system. The one corresponding to the
parameter 7 is equal to 0 and the second one is always
negative. The largest exponent A may be positive (see
[14]), which is a signature of chaotic motion. Variations
of A and of the error on A (determined from the cor-
relation coefficient of the least square fit, 1 — r2) with
the shear rate frequency are shown in the insert of Fig.
3. The error is small for the largest positive values of
A, thus confirming the existence of chaotic zones of the
RBC motion. We analyzed the Floquet matrix for the
Poincare section computed when the instantaneous shear
rate equals 0 at the bifurcation event. The Floquet eigen-
value crosses the unit circle along the real axis at + 1,
wich characterizes a saddle-node bifurcation and discloses
that the switch to chaotic behavior occurs via an inter-
mittency (type I) mechanism, characterized by bursts of
chaos. We fully characterized the RBC dynamical behav-
ior by plotting A as a function of v and the RMS value of
the shear rate 4,ms = V4/Vv2 (Fig. 3). Values for v span
physiological frequencies, from vasomotion fluctuations
(tenths of Hertz) to the heart frequency (one Hertz) and
values of 4 cover the range of stresses 7,7 observed in the
vaculature, from capillaries to arteries [5-7]. When ;.5
decreases below 3.1, A deeply falls around -0.5, reveal-
ing that the system is stable. The value 3.1 is equal to
e, the critical shear rate of the T-TT transition in con-
stant shear flow for the RBC we computed. Tumbling
stabilizes the motion. Indeed, during tumbling, the cell
membrane is 'quasi-solidified’, the angle w remains very
small and it can be eliminated in the first equation of eq.
1 by using the second equation where the term in sin(2w)
is neglected. The system then loses one dimension and
chaos is no longer possible. Above . the motion is much
less stable. Unstable chaotic zones appear. They form
widening bands located on a bundle of lines. The solid
line represents the (§,ms, ) couples for which a RBC per-
forms a full swinging cycle during the tanktreading time
of the forward motion (¥ > 0) and one swinging cycle
during the backward motion (¥ < 0). The other dotted
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FIG. 3: Diagram of the dynamical RBC motion; a: 3D map
of A vs. v and Yrms; b: 2D projection: values of A (in color)
in the (v, 4rms) plane. Dark regions (positive A) are chaotic
zones. Solid line: flow conditions for which RBCs perform a
full swinging cycle during the forward (or backward) motion.
Dotted lines from top to bottom: RBCs perform respectively
1/2, 2, 3 and 4 swinging cycles during the forward motion;
insert: variation of A and 1 — r? with v in a chaotic zone.

lines characterize the flow conditions for which a RBC
swings respectively 1/2 (steepest line), 2, 3 and 4 times
during half a flow period. The strong correlation be-
tween these lines and the chaotic bands shows that chaos
appears at the resonance of the flow frequency with the
internal specific cell frequency. As expected, chaos is in-
timately related to swinging, i. e. to the elastic storage
of the non spherical membrane, since the term with the
elastic modulus p,,, of Eq.1 induces the coupling of the
three differential equations. Viscous capsules or spheri-
cal viscoelastic capsules must present a stable dynamics
in a time-dependent shear flow.

Observations - Direct measurements of 6§ are provided
from side-view microscopic imaging in a vertical plane
parallel to the shear plane [2, 15]. Sinusoidal flow was
created from the variation of hydrostatic pressure by con-
necting the flow chamber to a reservoir (10ml) bound
to the outer edge of a vertical rotating wheel (radius
9.45 e¢m). The frequency of rotation of the wheel v
(in rd/s) was varied in the range [0.16 — 1.15rd/s] and
~o. = 6.72 s71. RBCs were diluted in a solution of dex-
tran (concentration 9% w/w, n,= 34 mPa.s, Mw= 2.105
g/Mol) with PBS at 290 mOsm and pH=7.4. RBCs were
almost non-buoyant in the solution and could flow dur-
ing several hours without sinking. The membrane shear
modulus as well as the internal and membrane viscosities
of RBCs depend on the age of the cell and are therefore
widely distributed when measured in a blood sample.
The maximal applied shear stress 7,7, was specifically
chosen to be larger than the critical shear stress 7,7,
for the majority of RBCs, so that most cells swing and
tanktread but the stiffest ones tumble. We recorded cell
movements 10 minutes after application of the flow in or-
der to let the motion stabilize and reach the limit-cycle.
We observed the three motions predicted by the model.
Stable tumbling is characterized by the continuous varia-
tion of 8 with time as illustrated in Fig. 4a over three flow
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FIG. 4: Experimental variation and fits of 6 vs. time for 3
RBCs. a: v = 0.08rd.s™*, stable T, fit Ness = 1.25 1072 Pa.s,
u=152Pa; b: v = 0.05rd.s", stable S-TT and T, fit nes; =
4.95 1072 Pa.s, pu = 0.591Pa; c: v = 0.11rd.s"'. Unstable
chaotic motion, fit ness = 3.97 1072 Pa.s, i = 0.49Pa. Inserts
show a zoom of the boxed regions
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FIG. 5: long experiment: variations of the absolute value 6
vs. time. Bottom: the black lines denotes vertical reversals

periods. For v, > 7., the stable regime is shown on two
cells, in Fig. 4b and in Fig. 2, which displays snapshots
of a typical sequence, where one can notice that the cell
shape does not significantly change during the motion.
The cell swings and tanktreads at high shear rate and
tumbles when the shear rate decreases below 7., when
the flow changes direction. The modulation of the shear
rate allows the RBC to exhibit alternatively a solid-state
and a viscoelastic capsule-like dynamical behavior dur-
ing the time flow. Unstable non-periodic regime was also
observed as shown in Fig. 4c and in Fig. 5 over more
than 50 periods. As we predicted theoretically: the way
the cell rotates to change direction varies with time. The
cell non-periodically alternates sequences of horizontal
reversals (0 = 0) and vertical reversals (§ = 7/2). The
consequence is that the number of clockwise and anti-
clockwise rotations are different as illustrated in Fig. 5
where the cell finally presents a net clockwise tumbling
motion although the mean flow is equal to zero.

Finally, our model and our experiments are in good
semi-quantitative agreement: experimental curves 6(t)
are well-fitted by our model by adjusting the two param-
eters, fty, and Nerr = n; —l—nm% as shown in Fig. 4 and in
[14] for a single cell observed at 6 different flow frequen-
cies. In the case of unstable behavior, an adjustement
is stricto sensu not possible since the motion is highly
sensitive to initial conditions but the theoretical curve

well describes the main characteristics of the motion (see
inserts of Fig.4) and predicts the instability of motion.

Here, we predict that dilute RBCs present a chaotic
motion over large domains of external sinusoidal flows,
under shear stresses and flow variation frequencies rele-
vant for arterial and microcirculation physiology. In-vivo,
in the whole blood cells form a concentrated suspension
and interact together. These interactions couple more os-
cillators together and should result in enhanced chaotic
motions which could affect flow properties in the sheared
blood layer close to vessel walls. Finally, our approach
also applies to other physical systems used in flow as
polymer capsules or protein-coated drops.
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