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Stochastic Decoding of Linear Block Codes with

High-Density Parity-Check Matrices

Saeed Sharifi Tehrani†, Student Member, IEEE, Christophe Jego‡, Member, IEEE, Bo Zhu†, and

Warren J. Gross†, Member, IEEE

Abstract— Stochastic decoding is a new alternative approach
for iterative decoding on graphs. The capability of stochastic
decoding has been recently validated for decoding Low-Density
Parity-Check (LDPC) codes. This article extends the application
of the stochastic approach to decode linear block codes with high-
density Parity-Check Matrices (PCMs) such as Bose-Chaudhuri-
Hocquenghem (BCH) codes, Reed-Solomon (RS) codes and, block
turbo codes based on BCH component codes. We show how
the stochastic approach, despise its bit-serial nature, is able to
generate soft-output information for iterative Soft-Input Soft-
Output (SISO) decoding. This article describes the structure
of high-degree stochastic variable nodes used in codes with
high-density PCMs. Simulation results for a (128, 120) BCH
code, a (31, 25) and a (63, 55) RS code and, a (256, 121)
and a (1024, 676) BCH block turbo code demonstrate decoding
performance close to the iterative SISO decoding with floating-
point implementation.

I. INTRODUCTION

Iterative Soft-Input Soft-Output (SISO) decoding was first

introduced in 1993 for the turbo decoding of concatenated

convolutional codes [1] to provide performance approaching

the Shannon capacity limit. Since then, the concept of SISO

decoding has been extended for decoding different classes

of error-correcting codes such as product codes and Low-

Density Partiy-Check (LDPC) codes. The well known Belief

Propagation (BP) algorithm is also an iterative SISO-based

algorithm for decoding linear block codes. This algorithm

is the main algorithm for LDPC decoding. In BP, soft in-

formation, in the form of probability messages, propagates

between computing nodes connected by edges of a factor

graph [2] which is defined by the Parity-Check Matrix (PCM)

of the code. The propagation of soft information in BP can

be performed in parallel. This inherent parallelism together

with excellent performance of LDPC codes have made LDPC

decoders attractive for recent high data rate applications in

digital communication.

Stochastic decoding is a new approach for decoding error-

correcting codes. This approach is inspired by stochastic com-

putation [3] where operations on probabilities are bit-serially

performed on streams (or frames in some implementations) of

randomly generated stochastic bits. The two main appealing

features of this approach for iterative decoding are very simple

hardware structures of computing nodes and significantly
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reduced routing and interconnection requirements. These fea-

tures result in great potential for low-complexity and/or high-

throughput decoding. Early stochastic methods were only suc-

cessful for decoding special short/acyclic Hamming or LDPC

codes [4]–[6] and, for trellis decoding of a (256,121) block

turbo code based on acyclic (16,11) Hamming component

decoders [7], [8]. These methods result in poor decoding

performance when used to decode practical codes on factor

graphs (with cycles). A new stochastic method was recently

proposed that shows that stochastic decoding is able to provide

near-optimal performance for decoding practical LDPC codes

with respect to the floating-point BP [9]. The potential of this

method for low-complexity decoding was recently validated

by an FPGA implementation of a (1024,512) LDPC decoder.

This implementation provides a throughput of 706 Mbps at a

Bit Error Rate (BER) of 10−6 with performance loss of about

0.1 dB, compared to the floating-point BP, while occupying

only 36% of a Virtex-4 LX200 FPGA device [10].

Despite the inherent parallelism and excellent performance

of BP for LDPC decoding, it is known that the BP algorithm

is not suitable for decoding codes with non-sparse PCMs.

For this reason, BP can not be directly applied for decoding

many popular and powerful codes such as Bose-Chaudhuri-

Hocquenghem (BCH) and Reed-Solomon (RS) codes. This

problem was recently investigated in [11] and a new Adaptive

Belief Propagation (ABP) was suggested for RS decoding. It

was shown that when BP is applied to a code with high-

density PCM, it is likely that BP gets stuck at some local

minimum points with small gradient which corresponds to

some unreliable symbols. Based on this observation, at each

iteration of ABP, the PCM of the code is adapted accord-

ing to the bit reliabilities to sparsify those columns in the

PCM which are associated with unreliable bits. ABP offers

a decoding gain of more than 3 dB over hard-decision RS

decoding. It also benefits from the parallel message passing in

BP. However, the PCM adaptation step in ABP is complex.

Inspired by ABP, a novel method for the Turbo-oriented

Adaptive Belief propagation (TAB) was recently proposed

for turbo decoding of product codes [12]. In TAB, the PCM

adaptation is performed before the BP process thus the PCM

adaptation is not required during iterations of the BP process

in the component decoder. This feature significantly decreases

decoding complexity. In addition, the TAB outperforms the

ABP and provides a performance close to the Chase-Pyndiah

(CP) algorithm [13] for iterative decoding of product codes.

This article presents a method which extends the application

of stochastic decoding to the important and popular classes of
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Fig. 1. Some possible stochastic streams the probability of 0.6875.

BCH, RS and block turbo codes. It shows how the stochastic

approach, with its bit-serial nature, can be used with the

reliability-based PCM adaptation technique used in the ABP

and the TAB. In addition, the article describes the structure

of high-degree stochastic Variable Nodes (VNs). To the best

of our knowledge, results provided in the paper are the

first results in the literature for stochastic decoding of high-

density linear block codes on factor graphs. These results show

decoding performance close to the floating-point ABP and/or

TAB. The rest of the paper is organized as follows. Section

II provides an overview of stochastic decoding, the ABP and

the TAB. Section III presents the proposed decoding method.

In Section V, simulation results are presented. Finally, Section

VI offers the concluding remarks and the implications of the

results.

II. BACKGROUND

A. Stochastic Representation and Decoding

In stochastic decoding, probabilities received from the

channel are transformed to streams of stochastic bits using

Bernoulli sequences. Each bit in the stream is likely to be ‘1’

with the probability to be transformed. This transformation is

not one-to-one and different stochastic streams are possible

for the same probability. For example, Fig. 1 shows some

possible streams for a probability of 0.6875. In this figure, 11

bits out of 16 bits in each stream are ‘1’, therefore, each stream

represents a probability of 0.6875. Stochastic streams are not

necessarily frames of bits and they can be interpreted and used

as stochastic processes in which no framing is required [14].

Using stochastic representation, operation on probabilities are

transformed to bit-serial operations on stochastic streams using

simple processing elements. For instance, an AND gate can

be used for multiplication of two probabilities.

The simplicity of stochastic computation is favorable for

iterative graph-based decoding such as BP decoding. Stochas-

tic representation results in simple structure of the computing

nodes and more importantly, due to its bit-serial nature, it

lessens the routing congestion and interconnection problem

associated with the implementation of BP-based decoding

algorithm such as LDPC decoders. This is because only one

wire per direction is required to represent an edge in the graph.

Let stochastic bit streams {ai} and {bi} represent the input

probabilities of Pa = Pr(ai = 1) and Pb = Pr(bi = 1),
respectively, and {ci} represent the output probability Pc =
Pr(ci = 1). Fig. 2 shows the equivalent structures for a degree-

3 (dv = 3) VN and a degree-3 (dc = 3) Parity-check Node

(PN) [4], [9], [10]. The VN shown in Fig. 2 is in the hold state

(i.e., ci = ci−1) when the input bits are not equal (ai 6= bi).

The output bits of a VN which are not generated in the hold

state are referred to as regenerative bits [10]. Regenerative bits
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Fig. 2. (a) Stochastic variable node and (b) parity-check node [4], [9], [10].

are important for proper stochastic decoding [10]. Stochastic

decoding proceeds by VNs and PNs exchanging bits along the

edges in the factor graph. Each stochastic decoding round is

referred to as a Decoding Cycle (DC). A DC refers to the

exchange of one bit between VNs and PNs over the edges of

factor graph and hence does not directly correspond to one

iteration in BP [9].

The VN structure in Fig. 2 cannot be directly applied for

decoding practical linear block codes. Stochastic decoding is

sensitive to the level of switching activity (bit transitions)

within the code graph, especially at high Signal-to-Noise

Ratios (SNRs). The latching (lock-up) problem is also a major

problem in stochastic decoding [7], [9]. This problem refers

to the case where the existence of cycles in the code graph

correlates stochastic streams in such a way that some nodes

are stuck into a fixed state for several DCs. These problems

were recently investigated in [9] for LDPC decoding and two

methods were suggested to increase the switching activity and

alleviate the latching problem:

1) Noise-Dependant Scaling (NDS): In NDS, the received

channel Log-Likelihood-Ratios (LLRs), Lch, are scaled by

a factor which is proportional to the noise level. This is to

ensure a similar level of switching activity for different SNRs.

Assuming a Binary Phase-Shift Keying (BPSK) transmission

(±1) over an Additive White Gaussian Noise (AWGN) channel

with a power spectral density of N0 , the scaled LLRs in NDS

are calculated as

L′

i = (
αN0

Y
)Li, (1)

where Li is the channel LLR for the i-th received symbol

in the block, Y is a fixed maximum value for the received

symbols and, α is a constant factor whose value can be chosen

based on decoding performance of the decoder [9].

2) Edge Memory (EM): In addition to NDS, EMs are also

essential for proper stochastic decoding [9]. EMs are memories

assigned to edges of the factor graph and can be implemented

as M -bit shift registers. EMs operates with regenerative bits

and are used to decorrelate and rerandomize the stochastic

streams and hence alleviate the latching problem in stochastic

decoders [9], [14]. When a VN is not in a hold state for the

edge, the corresponding EM is updated with the regenerative

output bit of the node in a first-in-first-out manner. In the case

of a hold state, a bit is randomly chosen from the EM as the

output bit of the node and the EM is not updated [9], [10].
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Fig. 3. Form of an adapted parity-check matrix.

B. Adaptive Belief Propagation

BCH and RS codes are important classes of linear cyclic

error-correcting codes with multiple error detection and correc-

tion capability. For the sake of simplicity, this section briefly

provides an overview of the ABP for SISO RS decoding [11]

over GF(2m), however, the same approach is applicable for

binary BCH codes. The PCM of an (n, k) RS code over

GF(2m) can be represented by

H =











1 β · · · βn

1 β2 · · · β2(n−1)

...
... · · ·

...

1 β(d−1) · · · β(d−1)(n−1)











, (2)

where β is the primitive element in GF(2m) and dmin =
n − k + 1 is the minimum distance of the code. This code

can correct up to t = ⌊(dmin − 1)/2⌋ symbols. In ABP, the

PCM, H , is expanded to its binary representation, Hb, by

substituting each codeword in the GF(2m) with its equivalent

binary representation [11]. This representation transforms the

problem of RS decoding to the general problem of decoding of

an (N,K) binary block code with N = m×n and K = m×k.

Let l denote the iteration step. At l = 0, ABP starts with

Lch and the binary PCM, H
(0)
b = Hb. At each iteration of

ABP, two steps are performed: the reliability-based adaptation

of Hb and the generation of extrinsic information using BP

[11]. In the adaptation step, the LLRs are sorted based on their

absolute value in an ascending manner and ordering indices

are stored. Let L
(l) = {L

(l)
i1

, ..., L
(l)
iN
} be the sorted list of

LLRs and {i1, ...iN} be the stored indices. The first LLR,

L
(l)
i1

, corresponds the least reliable bit (the i1-th bit in the

block) and the last LLR, L
(l)
iN

corresponds to the most reliable

bit (the iN -th bit in the block). After this phase, starting from

j = i1 to iN , row operations are performed to systematize

the j-th column of H
(l)
b to form a unity weight column ej =

[0..010..0]T , in which the only non-zero element is placed at

the j-th position. If such systematization is not possible for

a column, the algorithm proceeds to the next column in L
(l).

This procedure can be done using the Gaussian elimination

method. Fig. 3 shows the form of an adapted PCM which is

decomposed into dense and low-density parts.

After the adaptation step, the BP is applied on the sorted

LLRs, L
(l), based on the adapted PCM, H

(l)
b , to generate

the extrinsic LLRs, L
(l)
ext. The LLR L

(l+1) is then updated

according to

L
(l+1) = L

(l) + λ × L
(l)
ext, (3)
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Fig. 4. Block turbo decoding.

where 0 < λ < 1 is a damping coefficient. The algorithm

returns to the adaptation step unless it has been run for a fixed

maximum number of iterations, lmax, or all the parity-checks

are satisfied [11]. Several variations of the ABP are given in

[11]. One of them that considers a Hard-Decision Decoding

(HDD) step at the end of each iteration of the decoding

algorithm is especially attractive. This variation consists of

performing hard decisions on LLRs produced by the BP. At

the end of the decoding process, the most likely codeword

is selected. This variation improves the convergence and the

performance of the iterative RS decoder [11].

C. Turbo-oriented Adaptive Belief Propagation

TAB is an innovative method for block turbo decoding using

BP-based decoders as elementary SISO component decoders.

TAB is inspired by ABP but it is less complex than ABP

and offers better decoding performance. Fig. 4 shows the

principles of SISO block turbo decoding. It includes sequential

decoding of rows and columns of the component codes and

the iterative process. The “global” iterations, l, have to be

distinguished from the iterations of the BP process which we

call “local” iterations. As mentioned earlier, ABP requires the

adaptation of Hb and the generation of extrinsic information

using BP in each local iteration. The Gaussian elimination

used in the adaptation step of ABP is a computationally-

expensive process. In TAB, the adaption step is only performed

at beginning of each global iteration (before the BP process).

This means that the PCM is the same during the BP process

and no damping coefficient or matrix adaptation is necessary

during local iterations. Instead, the LLR update is performed in

the global iteration of turbo process using µ coefficient. This

innovation significantly reduces the complexity. In addition,

the TAB outperforms ABP for block turbo decoding and

provides performance close to the CP algorithm. Another

advantage of TAB is its high degree of parallelism for high

data rate applications compared to the CP decoding [12].

III. THE PROPOSED METHOD

The binary PCM of an RS or BCH code is a dense matrix

which results in a factor graph with high-degree VNs and

PNs (with degrees much higher than the degree of nodes in

LDPC codes). For instance, the factor graph of the (63,55)

RS code used in this paper, has 378 VNs and 48 PNs over

GF(26). The maximum degrees of VNs and PNs are 34 and

184, respectively, and about 77% of VNs have a dv ≥ 20. In

ABP, the complexity of high-degree nodes is high and a dense
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PCM obliges complex routing requirements. For example,

using 8-bit precision for probabilies in ABP, the factor graph

of the RS code requires more than 127K wires to represent

edges in two directions. The stochastic approach offers nodes

with low complexity1 and significantly alleviates the routing

requirements. Using this approach about 16K wires are needed

for the (63,55) RS code. The stochastic method used for

decoding high-density linear block codes employs NDS and

EMs. In addition, due to the high-degree nodes and the PCM

adaptation step in the ABP and the TAB, it exploits new

stochastic techniques which are discussed as follows.

A. High-Degree Stochastic Variable Nodes

The construction of high-degree stochastic PNs is straight-

forward and is based on XORing input bits. However, the

situation for high-degree VNs is different because of the hold

state. For proper decoding performance, it is essential that a

high-degree stochastic VN is constructed based on subgraphs

of low-degree stochastic VNs (e.g., with dv ≤ 4 subnodes).

To elaborate, consider the structure of the stochastic VN in

Fig. 5(a) with an arbitrary dv . This stochastic structure is not

suitable for high-degree VNs. This is because this structure is

entirely in the hold state when any two input bits are not equal.

Therefore, by using this structure the chance of being in a hold

state increases, as dv increases. An increased chance of hold

state for VNs reduces the regenerative bits propagating in the

graph and results in the less switching activity within the graph

and thus, degraded stochastic decoding performance. Note that

this phenomenon can be very destructive when bits in input

stochastic streams of VNs are mostly ‘0’ (or ‘1’), for instance,

at high SNRs where corresponding probability messages are

either close to 0 (or 1) or, during the convergence to the right

codeword where most PNs are satisfied and only a few PNs

remained unsatisfied. These problems are less likely for the

stochastic structure shown in Fig. 5(b) which is constructed

based on dv = 3 subnodes (with 1-bit memory). This is

because by having stochastic input bits which are either mostly

‘0’ (or ‘1’), the chance of a hold state for the dashed exit

subnode in Fig. 5(b) is much less. Therefore, the entire node

is less likely to be in the hold state. Note that in Fig. 5(b),

an EM is used only for the exit output edge. Fig. 6 shows

an example which compares the averaged percentage of the

hold state between two dv = 9 VNs based on structures

in Figs. 5(a) and (b) for the case where P1 is varying and

P2 = P3 = ... = P8 = 0.9.

B. Representing Soft-Output Information

The ABP and the TAB relies on reliability-based PCM

adaptation as well as the reliability update scheme in (3).

Both of these steps use the soft-output information provided

by BP. Since the BP-based decoders inherently operates on

reliabilities, it can be easily incorporated into the adaptation

and the update scheme. This situation is, however, different

for stochastic decoding methods. Stochastic methods convert

1For example, PNs in the BP-based decoding implement multiplication
and the tanh(·) processing (or an approximation of it), while in stochastic
decoding PNs are simply XOR gates.
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the channel reliabilities to stochastic bit streams and decoding

entirely proceeds in a bit-serial fashion. To incorporate with

the reliability update and the adaptation steps, it is essen-

tial that the stochastic decoding method provides soft-output

information. For this purpose, we propose to use saturating

up/down counters to represent soft-output information. In this

technique, a counter is assigned to each VN. The counter can

be initialized to contain zero value. The counter is incremented

if the corresponding VN output is ‘1’, unless the counter has

reached its maximum limit (+U ). Similarly, when the VN

output is ‘0’ the counter is decremented, unless it has reached

its minimum limit (−U ). After a number of DCs, the contents

of the counters can be converted to soft information and the

LLR update and the PCM adaptation steps can be performed.

Let V be the value of a saturating up/down counter as-

sociated with a VN (−U ≤ V ≤ +U ). This value can

be transformed to soft-information in the probability domain

as Pext = (V + U)/2U . Consequently, the corresponding

extrinsic LLR of the VN is

Lext = ln(
Pext

1 − Pext

) = ln(
U + V

U − V
), (4)

where ln(·) indicates the natural logarithm operation.It should

be noted that the contents of the saturating counters can also

be used for the HDD method used in RS decoding. In this

case, a hard-decision is applied to V . This usage is similar to

the previous usage of up/down counters in [5], [6], [9], [10]

where the sign-bit of the counter determines the hard-decision.

Thus, a ‘0’ sign-bit indicates a −1 decision and, a ‘1’ sign-bit

indicates a +1 decision for a BPSK transmission.
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C. The Summary of the Proposed Decoding Method

The proposed method starts with the binary PCM, Hb,

and Lch. At the adaptation step, the reliability-based PCM

adaptation is performed to obtain H
(l)
b as discussed in the

Section II-B. After the adaptation step, the LLRs are scaled

by NDS according to (1) and then transformed to stochastic

bit streams. Stochastic decoding is then applied to the adapted

PCM H
(l)
b and proceeds by VNs and PNs exchanging bits for

a fixed number of DCs. At the end of the last DC, the contents

of up/down counters are used as the extrinsic LLRs, L
(l)
ext, as

mentioned in the subsection III-B. The L
(l)
ext is then used to

update LLRs according to the ABP or the TAB. For the case of

RS decoding, in addition to soft-output information, the HDD

is also applied to the contents of counters as mentioned in the

subsection III-B. The decoding process continues unless it has

been run for a fixed maximum number of iterations, lmax, or

all the parity checks are satisfied sooner.

IV. SIMULATION RESULTS FOR LINEAR BLOCK CODES

In this section, the BER or the Frame Error Rate (FER)

performance of linear block codes are presented. Concerning

BCH codes, extended BCH codes are considered since they are

more efficient than non-extended codes. A BPSK transmission

with Y = 6 and an average bit energy of Eb over an AWGN

channel is assumed for each simulation. The PCM adaption

step for BCH and RS codes is done based on the ABP. This

step for block turbo codes is performed based on the TAB.

A. BCH Codes

The BER performance of a (128,120) BCH code is de-

picted in Fig. 7. For this code, three decoding methods are

successfully employed: the ABP, the Maximum A Posteriori

(MAP) probability decoding and the stochastic decoding. For

comparison, the uncoded BPSK and the Maximum-Likelihood

(ML) lower bound [15] curves are also plotted. The values

of the damping coefficient and number of adaptations are

λ = 0.2 and lmax = 5. The EM length of M = 25 is

used for the proposed stochastic decoding method. Stochastic

decoding runs for a fixed number of 1K DCs. No significant

BER deviation is observed for (128,120) BCH codes between

the stochastic decoding and floating-point ABP. This result

was also observed for other BCH codes (not shown). The

MAP decoding outperforms these two methods by about 0.25

dB at a BER of 10−6 and achieves the asymptotic bound.

However, the MAP decoding of this BCH code requires a

trellis with 256 states and 128 sections which is too complex

for implementation.

B. Reed-Solomon Codes

Figs. 8 and 9 respectively show the simulation results

obtained for (31,25) and (63,55) RS codes over GF(25) and

GF(26) . In each figure, FER performance for Algebraic

hard-decision decoding method, the ABP and, the stochastic

decoding method are shown. The value of the damping coef-

ficient and number of adaptations for the (31,25) RS code are

λ = 0.05 and lmax = 20 and, for the (63,55) RS code they
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Fig. 8. Simulation results for a (31,25) RS code over GF(25).

are λ = 0.12 and lmax = 5. The NDS parameters used in

stochastic decoding is α = 8 for both codes2. The EM length

of M = 50 and M = 64 are used for decoding the (31,25)

code and the (63,55) code, respectively. Stochastic decoding

runs for 1K DCs between each adaptation for the (31,25) RS

code and, for the (63,55) code, it runs for 2K DCs between

each PCM adaptation. Similar to [11], after each iteration, l,
the HDD is applied. The performance loss for the (31,25) code

is about 0.1 dB at a FER of 3×10−5 and for the (63,55) code,

it is about 0.13 dB at a FER of 5 × 10−5.

C. BCH Block Turbo Codes

Results for a (256,121) block turbo code based on (16,11)

BCH component decoders and a (1024,676) block turbo code

based on (32,26) BCH component decoders are shown in Figs.

10 and 11. For turbo decoding of these codes, the traditional

CP algorithm (with 6 global iterations and 16 error patterns),

the TAB and the stochastic decoding method (applied to

the TAB algorithm) are successively employed for the SISO

2Based on the stochastic performance of the RS codes, we found that α

does not necessarily need to be smaller than Y .
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Fig. 9. Simulation results for a (63,55) RS code over GF(26).
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Fig. 10. Simulation results for a (256,121) BCH block turbo code.

decoding algorithm during the iterative process. Note that only

3 local iterations are necessary during the BP process of the

TAB algorithm and 6 global iterations are sufficient for the

two decoding methods based on TAB algorithm. In addition,

no damping coefficient is necessary for the TAB algorithm.

Instead, the reduction of the extrinsic information effect is

done during the soft information computation [12]. The EM

lengths of M = 25 and M = 40 are used for the (256,121) and

the (1024,676) block turbo codes, respectively. A fixed number

of 1K DCs are used for both codes. For the (256,121) turbo

code, the results for the floating-point TAB and the stochastic

decoding method are close and show a decoding loss of about

0.1 dB compared to the classical CP decoding at 10−6 BER.

For the (1024,676) turbo code, the decoding loss of stochastic

decoding at 10−6 BER is about 0.1 dB and 0.3 dB, compared

to the floating-point TAB and the CP decoding, respectively.

V. CONCLUSIONS

The article extends the application of the stochastic decod-

ing to the important classes of BCH, RS and block turbo codes.

Simulation results provided for the stochastic decoding of

these codes show performance close to the floating-point ABP
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Fig. 11. Simulation results for a (1024,676) BCH block turbo code.

and/or TAB. It should be noted that stochastic decoding is also

able to offer attractive complexity and performance tradeoffs.

For example, it is possible to tradeoff EMs length or number of

DCs with the decoding time and/or performance. Nevertheless,

stochastic decoding opens up interesting research possibilities.
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