Finite volume schemes for the approximation via characteristics of linear convection equations with irregular data

Abstract : We consider the approximation by multidimensional finite volume schemes of the transport of an initial measure by a Lipschitz flow. We first consider a scheme defined via characteristics, and we prove the convergence to the continuous solution, as the time-step and the ratio of the space step to the time-step tend to zero. We then consider a second finite volume scheme, obtained from the first one by addition of some uniform numerical viscosity. We prove that this scheme converges to the continuous solution, as the space step tends to zero whereas the ratio of the space step to the time-step remains bounded by below and by above, and under assumption of uniform regularity of the mesh. This is obtained via an improved discrete Sobolev inequality and a sharp weak BV estimate, under some additional assumptions on the transport flow. Examples show the optimality of these assumptions.
Type de document :
Article dans une revue
Journal of Evolution Equations, Springer Verlag, 2011, 11 (3), pp.687-724. 〈10.1007/s00028-011-0106-2〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00538438
Contributeur : François Bouchut <>
Soumis le : lundi 22 novembre 2010 - 14:55:21
Dernière modification le : jeudi 20 décembre 2018 - 18:30:11
Document(s) archivé(s) le : vendredi 26 octobre 2012 - 16:21:00

Fichier

artbep.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

François Bouchut, Robert Eymard, Alain Prignet. Finite volume schemes for the approximation via characteristics of linear convection equations with irregular data. Journal of Evolution Equations, Springer Verlag, 2011, 11 (3), pp.687-724. 〈10.1007/s00028-011-0106-2〉. 〈hal-00538438〉

Partager

Métriques

Consultations de la notice

335

Téléchargements de fichiers

90